329
Views
10
CrossRef citations to date
0
Altmetric
Review

Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM)

ORCID Icon, , , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 849-876 | Received 28 Oct 2020, Accepted 05 Jan 2021, Published online: 23 Jan 2021

References

  • Gorelick PB. Cerebrovascular disease. Pathophysiol. diagnosis. Nurs. Clin North Am Jun 1986;21(2):275–288.
  • Siddiqui FM, Bekker SV, Qureshi AI. Neuroimaging of hemorrhage and vascular defects. Neurotherapeutics. 2011 Jan;8(1):28–38.
  • De Cocker LJ, Lindenholz A, Zwanenburg JJ, et al. Clinical vascular imaging in the brain at 7T. Neuroimage. 03 2018;168: 452–458.
  • Katan M, Luft A. Global Burden of Stroke. Semin Neurol. 04 2018;38(2):208–211.
  • Gorelick PB. The global burden of stroke: persistent and disabling. Lancet Neurol. 05 2019;18(5):417–418.
  • Collaborators GS. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 05 2019;18(5):439–458.
  • Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019 12; 50(12): e344–e418.
  • Amarenco P, Bogousslavsky J, Caplan LR, et al. Classification of stroke subtypes. Cerebrovasc Dis. 2009;27(5):493–501.
  • van Asch CJ, Luitse MJ, Rinkel GJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010 Feb;9(2):167–176.
  • Mendelow AD, Gregson BA, Rowan EN, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013 Aug;382(9890):397–408.
  • Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005 2005 Jan 29-Feb 4 365(9457): 387–397.
  • Al-Mufti F, Thabet AM, Singh T, et al. Clinical and Radiographic Predictors of Intracerebral Hemorrhage Outcome. Interv Neurol. 2018 Feb;7(1–2):118–136.
  • Li Z, You M, Long C, et al. Hematoma Expansion in Intracerebral Hemorrhage: an Update on Prediction and Treatment. Front Neurol. 2020;11:702.
  • Boehme AK, Esenwa C, Elkind MS, et al. Genetics, and Prevention. Circ Res. 2017 Feb;120(3):472–495.
  • Kim HA, Perrelli A, Ragni A, et al. Vitamin D Deficiency and the Risk of Cerebrovascular Disease. Antioxidants (Basel). 2020;9(4): Apr. 10.3390/antiox9040327.
  • Ferrell AS, Zhang YJ, Diaz O, et al. Modern interventional management of stroke. Methodist Debakey Cardiovasc J. 2014 Apr-Jun 2014;10(2):105–110.
  • Feigin VL, Roth GA, Naghavi M, et al. Global burden of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016;15(9):913–924. 08.
  • Belotti F, Zanin L, Fontanella MM, et al. The oculomotor neurovascular conflict: literature review and proposal of management. Clin Neurol Neurosurg. 2020 May;195:105920.
  • Etminan N, Rinkel GJ. Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol. 2016;12;12(12):699–713.
  • Bacigaluppi S, Piccinelli M, Antiga L, et al. Factors affecting formation and rupture of intracranial saccular aneurysms. Neurosurg Rev. 2014 Jan;37(1):1–14.
  • Starke RM, Chalouhi N, Ali MS, et al. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res. 2013 Aug;10(3):247–255.
  • Sawyer DM, Pace LA, Pascale CL, et al. Lymphocytes influence intracranial aneurysm formation and rupture: role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. J Neuroinflammation. 2016 07; 13(1): 185.
  • Caranci F, Briganti F, Cirillo L, et al. Epidemiology and genetics of intracranial aneurysms. Eur J Radiol. 2013 Oct;82(10):1598–1605.
  • Molyneux AJ, Kerr RS, Yu LM, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005 Sep 3-9;366(9488):809–817. 2005.
  • Chai CL, Pyeong Jeon J, Tsai YH, et al. Endovascular Intervention Versus Surgery in Ruptured Intracranial Aneurysms in Equipoise: A Systematic Review. Stroke. 2020 06; 51(6): 1703–1711.
  • McCormick WF, Nofzinger JD. “Cryptic” vascular malformations of the central nervous system. J Neurosurg. 1966 May;24(5):865–875.
  • Zafar A, Fiani B, Hadi H, et al. Cerebral vascular malformations and their imaging modalities. Neurol Sci. 2020 Sep;41(9):2407–2421.
  • Idiculla PS, Gurala D, Philipose J, et al. Cerebral Cavernous Malformations, Developmental Venous Anomaly, and Its Coexistence: A Review. Eur Neurol. 2020;83(4):360-368.
  • Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg. 1982 Mar;69(3):412–422.
  • Mulliken JB, Fishman SJ, Burrows PE. Vascular anomalies. Curr Probl Surg. 2000 Aug;37(8):517–584.
  • Dasgupta R, Fishman SJ. ISSVA classification. Semin Pediatr Surg. 2014 Aug;23(4):158–161.
  • Bashir U, Shah S, Jeph S, et al. Magnetic Resonance (MR) Imaging of Vascular Malformations. Pol J Radiol. 2017;82:731–741.
  • Aoki R, Srivatanakul K. Developmental Venous Anomaly: benign or Not Benign. Neurol Med Chir (Tokyo). 2016 Sep;56(9):534–543.
  • Mooney MA, Zabramski JM. Developmental venous anomalies. Handb Clin Neurol. 2017;143:279–282.
  • Sayama CM, Osborn AG, Chin SS, et al. Capillary telangiectasias: clinical, radiographic, and histopathological features. Clinical Article. J Neurosurg.. Oct 2010;113(4):709–714.
  • Leblanc GG, Golanov E, Awad IA, et al. Biology of vascular malformations of the brain. Stroke. 2009 Dec;40(12):e694–702.
  • Al-Shahi R, Warlow C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain. 2001 Oct;124(Pt 10):1900–1926.
  • Whitehead KJ, Smith MC, Li DY. Arteriovenous malformations and other vascular malformation syndromes. Cold Spring Harb Perspect Med. 2013 Feb;3(2):a006635.
  • Rangel-Castilla L, Russin JJ, Martinez-Del-Campo E, et al. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment. Neurosurg Focus. 2014 Sep;37(3):E1.
  • Panciani PP, Fontanella M, Carlino C, et al. Progressive spontaneous occlusion of a cerebellar AVM: pathogenetic hypothesis and review of literature. Clin Neurol Neurosurg. 2008 May;110(5):502–510.
  • Panciani PP, Fontanella M, Crobeddu E, et al. Spontaneous occlusion of a spinal arteriovenous malformation: is treatment always necessary? J Neurosurg Spine. 2010 Apr;12(4):397–401.
  • Weinsheimer S, Bendjilali N, Nelson J, et al. Genome-wide association study of sporadic brain arteriovenous malformations. J Neurol Neurosurg Psychiatry. 2016;87(9):916–923. 09.
  • Moftakhar P, Hauptman JS, Malkasian D, et al. Cerebral arteriovenous malformations. May 2009;26(5):E10. Part 1: Cell. Mol Biolo. Neurosurg Focus..
  • Mouchtouris N, Jabbour PM, Starke RM, et al. Biology of cerebral arteriovenous malformations with a focus on inflammation. J Cereb Blood Flow Metab. 2015 Feb;35(2):167–175.
  • Dalton A, Dobson G, Prasad M, et al. De novo intracerebral arteriovenous malformations and a review of the theories of their formation. Br J Neurosurg. 2018 Jun;32(3):305–311.
  • Naylor RM, Flemming KD, Brinjikji W, et al. Changes in Clinical Presentation and Treatment Over Time in Patients with Unruptured Intracranial Arteriovenous Malformations. World Neurosurg. 2020 Sep;141:e261–e265.
  • Mohr JP, Overbey JR, Hartmann A, et al. Medical management with interventional therapy versus medical management alone for unruptured brain arteriovenous malformations (ARUBA): final follow-up of a multicentre, non-blinded, randomised controlled trial. Lancet Neurol. 2020 07; 19(7): 573–581.
  • Retta SF, Perrelli A, Trabalzini L, et al. From Genes and Mechanisms to Molecular-Targeted Therapies: the Long Climb to the Cure of Cerebral Cavernous Malformation (CCM) Disease. Methods Mol Biol. 2020;2152:3–25.
  • Flemming KD. Incidence, Prevalence, and Clinical Presentation of Cerebral Cavernous Malformations. Methods Mol Biol. 2020;2152:27–33.
  • Trapani E, Retta SF. Cerebral cavernous malformation (CCM) disease: from monogenic forms to genetic susceptibility factors. J Neurosurg Sci. 2015 Sep;59(3):201–209.
  • Choquet H, Trapani E, Goitre L, et al. Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1. Free Radic Biol Med. 2016 Mar;92:100–109.
  • Goitre L, Balzac F, Degani S, et al. KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One. 2010 Jul;5(7):e11786.
  • Goitre L, De Luca E, Braggion S, et al. KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med. 2014 Mar;68:134–147.
  • Marchi S, Corricelli M, Trapani E, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med. 2015 Nov;7(11):1403–1417.
  • Marchi S, Retta SF, Pinton P. Cellular processes underlying cerebral cavernous malformations: autophagy as another point of view. Autophagy. 2016;12(2):424–425.
  • Antognelli C, Trapani E, Delle Monache S, et al. Data in support of sustained upregulation of adaptive redox homeostasis mechanisms caused by KRIT1 loss-of-function. Data Brief. 2018 Feb;16:929–938.
  • Antognelli C, Trapani E, Delle Monache S, et al. KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: implication for Cerebral Cavernous Malformation disease. Free Radic Biol Med. 2018 Feb;115:202–218.
  • Cianfruglia L, Perrelli A, Fornelli C, et al. KRIT1 Loss-Of-Function Associated with Cerebral Cavernous Malformation Disease Leads to Enhanced. Antioxidants (Basel). 2019;8(1):Jan.
  • Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: two sides of the same coin. Int J Biochem Cell Biol. 2016;12;81(Pt B):254–270.
  • Goitre L, DiStefano PV, Moglia A, et al. Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium. Sci Rep. 2017 Aug;7(1):8296.
  • Vieceli Dalla Sega F, Mastrocola R, Aquila G, et al. KRIT1 Deficiency Promotes Aortic Endothelial Dysfunction. Int J Mol Sci. 2019 Oct;20(19):19.
  • Antognelli C, Perrelli A, Armeni T, et al. Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel). 2020;9(2):Feb.
  • Flemming KD, Kumar S, Brown Jr RD, et al. Cavernous Malformation Hemorrhagic Presentation at Diagnosis Associated with Low 25-Hydroxy-Vitamin D Level. Cerebrovasc Dis. 2020;49(2):216–222.
  • Gibson CC, Zhu W, Davis CT, et al. Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation. 2015 Jan;131(3):289–299.
  • Moglia A, Goitre L, Gianoglio S, et al. Evaluation of the bioactive properties of avenanthramide analogs produced in recombinant yeast. Biofactors. 2015 Jan-Feb;41(5):15–27.
  • Moglianetti M, De Luca E, Pedone D, et al. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale. 2016 Feb;8(6):3739–3752.
  • Marchi S, Trapani E, Corricelli M, et al. Beyond multiple mechanisms and a unique drug: defective autophagy as pivotal player in cerebral cavernous malformation pathogenesis and implications for targeted therapies. Rare Dis. 2016;4(1):e1142640.
  • Perrelli A, Goitre L, Salzano AM, et al. Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: from Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. Oxid Med Cell Longev. 2018;2018:6015351.
  • De Luca E, Pedone D, Moglianetti M, et al. Multifunctional Platinum@BSA-Rapamycin Nanocarriers for the Combinatorial Therapy of Cerebral Cavernous Malformation. ACS Omega. 2018 Nov;3(11):15389–15398.
  • Flemming KD. Clinical Management of Cavernous Malformations. Curr Cardiol Rep. 2017;10;19(12):122.
  • Chrissobolis S, Miller AA, Drummond GR, et al. Oxidative stress and endothelial dysfunction in cerebrovascular disease. Front Biosci (Landmark Ed). 2011 Jan;16(1):1733–1745.
  • Storkebaum E, Quaegebeur A, Vikkula M, et al. Cerebrovascular disorders: molecular insights and therapeutic opportunities. Nat Neurosci. 2011 Oct;14(11):1390–1397.
  • Chondrogianni M, Bregianni M, Frantzeskaki F, et al. Three new case reports of Arteriovenous malformation-related Amyotrophic Lateral Sclerosis. J Neurol Sci. 2018 10;393:58–62.
  • Xiao M, Xiao ZJ, Yang B, et al. Blood-Brain Barrier: more Contributor to Disruption of Central Nervous System Homeostasis Than Victim in Neurological Disorders. Front Neurosci. 2020;14:764.
  • Lendahl U, Nilsson P, Betsholtz C, Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes. EMBO Rep. 2019; 20(11): e48070.
  • Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. Nov 2011;42(11):3323–3328.
  • Carvalho C, Moreira PI. Oxidative Stress: A Major Player in Cerebrovascular Alterations Associated to Neurodegenerative Events. Front Physiol. 2018;9:806.
  • Alfieri A, Srivastava S, Siow RCM, et al. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med. 2013 Dec;65:1012–1022.
  • Yu G, Liang Y, Huang Z, et al. Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke. J Neuroinflammation. 2016 05; 13(1): 119.
  • Zhang R, Xu M, Wang Y, et al. Nrf2-a Promising Therapeutic Target for Defensing Against Oxidative Stress in Stroke. Mol Neurobiol. 2017 10; 54(8): 6006–6017.
  • Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol. 2019;10:153.
  • Frösen J, Cebral J, Robertson AM, et al. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg Focus. 2019 07; 47(1): E21.
  • Zhang R, Han Z, Degos V, et al. Persistent infiltration and pro-inflammatory differentiation of monocytes cause unresolved inflammation in brain arteriovenous malformation. Angiogenesis. 2016 10; 19(4): 451–461.
  • Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007 Nov;10(11):1369–1376.
  • Freeman LR, Keller JN. Oxidative stress and cerebral endothelial cells: regulation of the blood-brain-barrier and antioxidant based interventions. Biochim Biophys Acta. 2012 May;1822(5):822–829.
  • Lehner C, Gehwolf R, Tempfer H, et al. Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal. 2011 Sep;15(5):1305–1323.
  • Lapchak PA, Chapman DF, Zivin JA. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke. 2000 Dec;31(12):3034–3040.
  • Harteveld AA, van der Kolk AG, Zwanenburg JJ, et al. 7-T MRI in Cerebrovascular Diseases: challenges to Overcome and Initial Results. Top Magn Reson Imaging. 2016 Apr;25(2):89–100.
  • Kyle S, Saha S. Nanotechnology for the detection and therapy of stroke. Adv Healthc Mater. 2014 Nov;3(11):1703–1720.
  • Chalouhi N, Jabbour P, Magnotta V, et al. Molecular imaging of cerebrovascular lesions. Transl Stroke Res. 2014 Apr;5(2):260–268.
  • Sarmah D, Saraf J, Kaur H, et al. Stroke Management: an Emerging Role of Nanotechnology. Micromachines (Basel). 2017;8(9): Aug. 10.3390/mi8090262.
  • Agulla J, Brea D, Campos F, et al. In vivo theranostics at the peri-infarct region in cerebral ischemia. Theranostics. 2013;4(1):90–105.
  • Biswas SK. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid Med Cell Longev. 2016;2016:5698931.
  • Xu R, Zhang G, Mai J, et al. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol. 2016 Apr;34(4):414–418.
  • Huang D, Qian H, Qiao H, et al. Bioresponsive functional nanogels as an emerging platform for cancer therapy. Expert Opin Drug Deliv. 2018 07; 15(7): 703–716.
  • Luo S, Ma C, Zhu MQ, et al. Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment of Neurodegenerative Diseases With Emphasis on Alzheimer’s Disease. Front Cell Neurosci. 2020;14:21.
  • Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev. 2020 Jul;161–178. 10.1016/j.addr.2020.07.010
  • Dou Y, Li C, Li L, et al. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release. 2020 Sep;327:641–666.
  • Yang G, Song J, Zhang J. Biomimetic and bioresponsive nanotherapies for inflammatory vascular diseases. Nanomedicine (Lond). 2020;15(20):1917–1921. 08.
  • Bertoni S, Machness A, Tiboni M, et al. Reactive oxygen species responsive nanoplatforms as smart drug delivery systems for gastrointestinal tract targeting. Biopolymers. 2020 Jan;111(1):e23336.
  • Li CW, Li LL, Chen S, et al. Antioxidant Nanotherapies for the Treatment of Inflammatory Diseases. Front Bioeng Biotechnol. 2020;8:200.
  • Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 2010 Jan;7(1):2.
  • Etheridge ML, Campbell SA, Erdman AG, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013 Jan;9(1):1–14.
  • Choi YH, Han HK. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2018;48(1):43–60.
  • Tong R, Cheng J. Anticancer Polymeric Nanomedicines. Polymer Rev. August 2 2007;47(3):345–381. 2007.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007 Dec;2(12):751–760.
  • Iqbal P, Preece JA, Mendes PM. Nanotechnology: the “Top-Down” and “Bottom-Up” Approaches. In: Wiley J, Sons L, editors. Supramolecular Chemistry. Vol. From Molecules to Nanomaterials. USA: John Wiley & Sons, Ltd; 2012.
  • Wang S, Qin L, Yamankurt G, et al. Rational vaccinology with spherical nucleic acids. Proc Natl Acad Sci U S A. 2019 05; 116(21): 10473–10481.
  • He W, Hosseinkhani H, Mohammadinejad R, et al. Polymeric nanoparticles for therapy and imaging. Polym Adv Technol. 7 October 25( Frommacromolecules to materials to systems 2014; 9 1216–1225. 11
  • Sharma G, Sharma AR, Lee SS, et al. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int J Pharm. 2019 Mar;559:360–372.
  • Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Ther Deliv. 2013 Jun;4(6):687–704.
  • Rigon L, Salvalaio M, Pederzoli F, et al. Targeting Brain Disease in MPSII: preclinical Evaluation of IDS-Loaded PLGA Nanoparticles. 2019. Int J Mol Sci. Apr Vol. 20:8.
  • Pathak K, Shankar R, Joshi M. An Update of Patents, Preclinical and Clinical Outcomes of Lipid Nanoparticulate Systems. Curr Pharm Des. 2017;23(43).
  • Shankar R, Joshi M, Pathak K. Lipid Nanoparticles: A Novel Approach for Brain Targeting. Pharm Nanotechnol. 2018;6(2):81–93.
  • Kaushik A, Jayant RD, Bhardwaj V, et al. Personalized nanomedicine for CNS diseases. Drug Discov Today. 2018;23(5):1007–1015. 05.
  • Flores AM, Ye J, Jarr KU, et al. Nanoparticle Therapy for Vascular Diseases. Arterioscler Thromb Vasc Biol. 2019;39(4):635–646. 04.
  • Pathak YV. Surface Modification of Nanoparticles for Targeted Drug Delivery. Pathak YVE, editor. Switzerland: Springer International Publishing: 2019.
  • Ventola CL. Progress in Nanomedicine: approved and Investigational Nanodrugs. P T. 2017 Dec;42(12):742–755.
  • Rizzo LY, Theek B, Storm G, et al. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013 Dec;24(6):1159–1166.
  • Lim EK, Kim T, Paik S, et al. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015 Jan;115(1):327–394.
  • Kubinová S, Syková E. Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine (Lond). 2010 Jan;5(1):99–108.
  • Fan W, Yung B, Huang P, et al. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev. 2017 Nov;117(22):13566–13638.
  • Das P, Fatehbasharzad P, Colombo M, et al. Multifunctional Magnetic Gold Nanomaterials for Cancer. Trends Biotechnol. 2019;37(9):995–1010. 09.
  • Gadde S. Multi-drug delivery nanocarriers for combination therapy. Med Chem Comm. 2015;6(11):1916–1929.
  • Jeong Y, Hwang HS, Na K. Theranostics and contrast agents for magnetic resonance imaging. Biomater Res. 2018;22(1):20.
  • d’Angelo M, Castelli V, Benedetti E, et al. Theranostic Nanomedicine for Malignant Gliomas. Front Bioeng Biotechnol. 2019;7:325.
  • Blum AP, Kammeyer JK, Rush AM, et al. Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc. 2015 Feb;137(6):2140–2154.
  • Kevadiya BD, Ottemann BM, Thomas MB, et al. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev. 08 2019;148: 252–289.
  • Naqvi S, Panghal A, Flora SJS. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front Neurosci. 2020;14:494.
  • Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv. 2012 May;9(5):497–508.
  • Jin Z, Lv Y, Cao H, et al. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting. Sci Rep. 2016;6(1):27559. 06.
  • Chang X, Li J, Niu S, et al. Neurotoxicity of metal-containing nanoparticles and implications in glial cells. J Appl Toxicol. 2021 Jan;41(1):65–81.
  • Feng X, Chen A, Zhang Y, et al. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine. 2015;10:4321–4340.
  • Sawicki K, Czajka M, Matysiak-Kucharek M, et al. Toxicity of metallic nanoparticles in the central nervous system. Nanotechnol Rev. November 6 2019;8(1):1-17.
  • Simkó M, Mattsson MO. Interactions between nanosized materials and the brain. Curr Med Chem. 2014;21(37):4200–4214.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of Nanoparticle Delivery to Tumours. Nat Rev Mater. August 28 2016 (5) 10.1038/natrevmats.2016.14.
  • Hay M, Thomas DW, Craighead JL, et al. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014 Jan;32(1):40–51.
  • Scheinberg DA, Grimm J, Heller DA, et al. Advances in the clinical translation of nanotechnology. Curr Opin Biotechnol. 2017 08;46:66–73.
  • Mackiewicz N, Nicolas J, Handké N, et al. Precise Engineering of Multifunctional PEGylated Polyester Nanoparticles for Cancer Cell Targeting and Imaging [Original Article]. Chem Mater. February 5 2014;26(5):1834–1847.
  • Cruz LJ, Stammes MA, Que I, et al. Effect of PLGA NP size on efficiency to target traumatic brain injury. J Control Release. 2016 Feb;223:31–41.
  • Sun Y, Cao W, Li S, et al. Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy. Sci Rep. 2013 Oct;3(1):3036.
  • Kang C, Cho W, Park M, et al. H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics. Biomaterials. 2016 Apr;85:195–203.
  • Sarin H, Kanevsky AS, Wu H, et al. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med. 2008 Dec;6(1):80.
  • Agyare EK, Curran GL, Ramakrishnan M, et al. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer’s disease and cerebral amyloid angiopathy. Pharm Res. 2008 Nov;25(11):2674–2684.
  • Jaruszewski KM, Ramakrishnan S, Poduslo JF, et al. Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer’s disease amyloid protein. Nanomedicine. 2012 Feb 8;8(2):250–260.
  • Jaruszewski KM, Curran GL, Swaminathan SK, et al. Multimodal nanoprobes to target cerebrovascular amyloid in Alzheimer’s disease brain. Biomaterials. 2014 Feb;35(6):1967–1976.
  • Agyare EK, Jaruszewski KM, Curran GL, et al. Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J Control Release. 2014 Jul;185:121–129.
  • Liu S, Ho PC. Intranasal administration of brain-targeted HP-β-CD/chitosan nanoparticles for delivery of scutellarin, a compound with protective effect in cerebral ischaemia. J Pharm Pharmacol. 2017 Nov;69(11):1495–1501.
  • Li H, Zeng Y, Zhang H, et al. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release. 2020 Sep. 10.1016/j.jconrel.2020.08.064
  • Kim JY, Ryu JH, Schellingerhout D, et al. Direct Imaging of Cerebral Thromboemboli Using Computed Tomography and Fibrin-targeted Gold Nanoparticles. Theranostics. 2015;5(10):1098–1114.
  • Fatehbasharzad P, Stefania R, Carrera C, et al. Relaxometric Studies of Gd-Chelate Conjugated on the Surface of Differently Shaped Gold Nanoparticles. Nanomaterials (Basel). 2020 Jun;10(6):1115.
  • Lee SH, Jun BH. Silver Nanoparticles: synthesis and Application for Nanomedicine. Int J Mol Sci. Feb 2019;20(4):865.
  • Dai Y, Xiao H, Liu J, et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J Am Chem Soc. 2013 Dec;135(50):18920–18929.
  • Pedone D, Moglianetti M, De Luca E, et al. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev. 2017 Aug;46(16):4951–4975.
  • Fahmy SA, Preis E, Bakowsky U, et al. Palladium Nanoparticles Fabricated by Green Chemistry: promising Chemotherapeutic, Antioxidant and Antimicrobial Agents. Materials (Basel). 2020 Aug;13(17):3661.
  • Bertin A, Steibel J, Michou-Gallani AI, et al. Development of a dendritic manganese-enhanced magnetic resonance imaging (MEMRI) contrast agent: synthesis, toxicity (in vitro) and relaxivity (in vitro, in vivo) studies. Bioconjug Chem. 2009 Apr;20(4):760–767.
  • Ananta JS, Godin B, Sethi R, et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol. 2010 Nov 5;5(11):815–821.
  • Turco A, Moglianetti M, Corvaglia S, et al. Sputtering-Enabled Intracellular X-ray Photoelectron Spectroscopy: A Versatile Method To Analyze the Biological Fate of Metal Nanoparticles. ACS Nano. 2018 08;12(8):7731–7740.
  • Larrañaga A, Isa ILM, Patil V, et al. Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta Biomater. 2018 02;67:21–31.
  • Ferguson RM, Khandhar AP, Kemp SJ, et al. Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging. 2015 May;34(5):1077–1084.
  • Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007 Sep 2;2(9):577–583.
  • Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019 Feb;48(4):1004–1076.
  • Liang M, Nanozymes: YX, Concepts FN. Mechanisms, and Standards to Applications. Acc Chem Res. 2019 08;52(8):2190–2200.
  • Kajita M, Hikosaka K, Iitsuka M, et al. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res. 2007 Jun;41(6):615–626.
  • Hamasaki T, Kashiwagi T, Imada T, et al. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir. 2008 Jul;24(14):7354–7364.
  • Moglianetti M, Pedone D, Udayan G, et al. Intracellular Antioxidant Activity of Biocompatible Citrate-Capped Palladium Nanozymes. Nanomaterials (Basel). 2020 Jan;10(1):99.
  • Shibuya S, Ozawa Y, Watanabe K, et al. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS One. 2014;9(10):e109288.
  • Gupta MK, Lee Y, Boire TC, et al. Recent strategies to design vascular theranostic nanoparticles. Nanotheranostics. 2017;1(2):166–177.
  • Mauricio MD, Guerra-Ojeda S, Marchio P, et al. Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. Oxid Med Cell Longev. 2018;2018:6231482.
  • Mulder WJ, Strijkers GJ, Griffioen AW, et al. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug Chem. 2004 Jul-Aug;15(4):799–806.
  • Battaglia L, Panciani PP, Muntoni E, et al. Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opin Drug Deliv. 2018 04;15(4):369–378.
  • Yu S, Xu X, Feng J, et al. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm. 2019 Apr;560:282–293.
  • Teixeira MI, Lopes CM, Amaral MH, et al. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm. 2020 Apr;149:192–217.
  • Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016 08;235:34–47.
  • Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017 Oct;264:306–332.
  • Wang J, Wang H, Zhu R, et al. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials. 2015;53:475–483.
  • Jung E, Noh J, Kang C, et al. Ultrasound imaging and on-demand therapy of peripheral arterial diseases using H. Biomaterials. 2018 10;179:175–185.
  • Watal G, Watal A, Rai PK, et al. Biomedical applications of nano-antioxidant. Methods Mol Biol. 2013;1028:147–151.
  • Kulkarni AD, Vanjari YH, Sancheti KH, et al. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: a mini review. J Drug Target. 2015;23(9):775–788.
  • Panagiotou S, Saha S. Therapeutic benefits of nanoparticles in stroke. Front Neurosci. 2015;9:182.
  • Ramanathan S, Archunan G, Sivakumar M, et al. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine. 2018;13:5561–5576.
  • Shilo M, Sharon A, Baranes K, et al. The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model. J Nanobiotechnology. 2015 Mar;13(1):19.
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009 Jun;86(3):215–223.
  • Li Y, Kröger M, Liu WK. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale. Oct 7 2015;7(40):16631–16646.
  • Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci U S A. 2013 Jun;110(26):10753–10758.
  • Rai M, Yadav A. Nanobiotechnology in Neurodegenerative Diseases. Rai M, Yadav AE editors. USA: Springer; 2019.
  • Fuentes E, Yameen B, Bong SJ, et al. Antiplatelet effect of differentially charged PEGylated lipid-polymer nanoparticles. Nanomedicine. 2017 04; 13(3): 1089–1094.
  • Wiley DT, Webster P, Gale A, et al. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci U S A. 2013 May;110(21):8662–8667.
  • Bramini M, Ye D, Hallerbach A, et al. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano. 2014 May 8;8(5):4304–4312.
  • Ibricevic A, Guntsen SP, Zhang K, et al. PEGylation of cationic, shell-crosslinked-knedel-like nanoparticles modulates inflammation and enhances cellular uptake in the lung. Nanomedicine. 2013 Oct 9;9(7):912–922.
  • Gao X, Qian J, Zheng S, et al. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano. 2014 Apr 8;8(4):3678–3689.
  • Boyd BJ, Galle A, Daglas M, et al. Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. J Drug Target. 2015;23(9):847–853.
  • Shlosberg D, Benifla M, Kaufer D, et al. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010 Jul 6;6(7):393–403.
  • Nance EA, Woodworth GF, Sailor KA, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 2012 Aug;4(149):149ra119.
  • Bharadwaj VN, Rowe RK, Harrison J, et al. Blood-brainbarrier disruption dictates nanoparticle accumulation following experimental brain injury. Nanomedicine. 2018 10; 14(7): 2155–2166.
  • Curtis C, Toghani D, Wong B, et al. Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids Surf B Biointerfaces. 2018 Oct;170:673–682.
  • Bharadwaj VN, Lifshitz J, Adelson PD, et al. Temporal assessment of nanoparticle accumulation after experimental brain injury: effect of particle size. Sci Rep. 2016 07; 6(1): 29988.
  • Mishra MK, Beaty CA, Lesniak WG, et al. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano. 2014 Mar 8;8(3):2134–2147.
  • Nance E, Porambo M, Zhang F, et al. Systemic dendrimer-drug treatment of ischemia-induced neonatal white matter injury. J Control Release. 2015 Sep;214:112–120.
  • Nance E, Zhang F, Mishra MK, et al. Nanoscale effects in dendrimer-mediated targeting of neuroinflammation. Biomaterials. 2016 09;101:96–107.
  • Zhang F, Trent Magruder J, Lin YA, et al. Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model. J Control Release. 2017 03;249:173–182.
  • Alnasser Y, Kambhampati SP, Nance E, et al. Preferential and Increased Uptake of Hydroxyl-Terminated PAMAM Dendrimers by Activated Microglia in Rabbit Brain Mixed Glial Culture. Molecules. 2018 Apr;23(5):1025.
  • Kaviarasi S, Yuba E, Harada A, et al. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J Control Release. 2019 04;300:22–45.
  • Ferraris C, Cavalli R, B. L. Overcoming the Blood – brain Barrier : successes and Challenges in Developing Nanoparticle-Mediated Drug Delivery Systems for the Treatment of Brain Tumours [Review]. Int J Nanomed. april 30 2020;15:2999–3022.
  • Zhao H, Bao XJ, Wang RZ, et al. Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes attenuates ischemic brain injury after experimental stroke in rats. Hum Gene Ther. 2011 Feb;22(2):207–215.
  • Karatas H, Aktas Y, Gursoy-Ozdemir Y, et al. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci. 2009 Nov;29(44):13761–13769.
  • Liu Z, Zhang L, He Q, et al. Effect of Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody on regulating the levels of baicalin and amino acids during cerebral ischemia-reperfusion in rats. Int J Pharm. 2015 Jul;489(1–2):131–138.
  • Wu Y, Song X, Kebebe D, et al. Brain targeting of Baicalin and Salvianolic acid B combination by OX26 functionalized nanostructured lipid carriers. Int J Pharm. 2019 Nov;571:118754.
  • Zhao C, Zhang J, Hu H, et al. Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine. Mater Sci Eng C Mater Biol Appl. 2018 Nov;92:1031–1040.
  • Bao Q, Hu P, Xu Y, et al. Simultaneous Blood-Brain Barrier Crossing and Protection for Stroke Treatment Based on Edaravone-Loaded Ceria Nanoparticles. ACS Nano. 2018 07; 12(7): 6794–6805.
  • Zhao Y, Jiang Y, Lv W, et al. Dual targeted nanocarrier for brain ischemic stroke treatment. J Control Release. 2016 07;233:64–71.
  • Han L, Cai Q, Tian D, et al. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. Nanomedicine. 2016 10; 12(7): 1833–1842.
  • Mann AP, Scodeller P, Hussain S, et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun. 2016 06;7(11980). 10.1038/ncomms11980
  • Joo J, Kwon EJ, Kang J, et al. Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horiz. 2016 Sep 1;1(5):407–414.
  • Yun X, Maximov VD, Yu J, et al. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab. 2013 Apr;33(4):583–592.
  • Zhang C, Ling CL, Pang L, et al. Direct Macromoleculr Drug Delivery to Cerebral Ischemia Area using Neutrophil-Mediated Nanoparticles. Theranostics. 2017;7(13):3260–3275. .
  • Muntoni E, Martina K, Marini E, et al. Methotrexate-Loaded Solid Lipid Nanoparticles: protein Functionalization to Improve Brain Biodistribution. Pharmaceutics. 2019 Feb;11(2):65.
  • Karim R, Palazzo C, Evrard B, et al. Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J Control Release. 2016;227:23–37.
  • de Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol. 2007;47(1):323–355.
  • Chen H, Qin Y, Zhang Q, et al. Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur J Pharm Sci. 2011 Sep;44(1–2):164–173.
  • Lin Y, Pan Y, Shi Y, et al. Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain. Nanotechnology. 2012 Apr;23(16):165101.
  • Zou J, Pyykkö I, Counter SA, et al. In vivo observation of dynamic perilymph formation using 4.7 T MRI with gadolinium as a tracer. Acta Otolaryngol. 2003 Oct;123(8):910–915.
  • Zhang X, Chen G, Wen L, et al. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur J Pharm Sci. 2013 Mar;48(4–5):595–603.
  • Goycoolea MV, Muchow D, Schachern P. Experimental studies on round window structure: function and permeability. Laryngoscope. 1988 Jun;98(6Pt 2 Suppl 44):1–20.
  • Liu H, Hao J, Lia KS. Current strategies for drug delivery to the inner ear. Acta Pharm Sin B. March 3 2013;3(2):86–96.
  • Md S, Mustafa G, Baboota S, et al. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm. 2015;41(12):1922–1934.
  • Mittal D, Ali A, Md S, et al. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv. 2014 Mar;21(2):75–86.
  • Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv. Jun 5 2014;5(6):709–733.
  • Selvaraj K, Gowthamarajan K, Karri VVSR. Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):2088–2095.
  • Bonferoni MC, Rossi S, Sandri G, et al. Nanoemulsions for “Nose-to-Brain” Drug Delivery. Pharmaceutics. 2019 Feb;11(2):84.
  • Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci. Mar 2007;96(3):473–483.
  • Illum L. Nasal drug delivery - recent developments and future prospects. J Control Release. 2012 Jul;161(2):254–263.
  • Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv. 2016;23(3):681–693.
  • Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009 Sep;379(1):146–157.
  • Sonvico F, Clementino A, Buttini F, et al. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: from Bioadhesion to Targeting. Pharmaceutics. 2018 Mar;10(1):34.
  • Rejman J, Oberle V, Zuhorn IS, et al. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004 Jan;377(Pt 1):159–169.
  • Lauzon MA, Daviau A, Marcos B, et al. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer’s disease. J Control Release. 2015 May;206:187–205.
  • Duan Z, Cai H, Zhang H, et al. PEGylated Multistimuli-Responsive Dendritic Prodrug-Based Nanoscale System for Enhanced Anticancer Activity. ACS Appl Mater Interfaces. 2018 Oct;10(42):35770–35783.
  • Chen K, Liao S, Guo S, et al. Multistimuli-responsive PEGylated polymeric bioconjugate-based nano-aggregate for cancer therapy. Chem Eng J. July 1 2020;391.
  • Rusznak C, Devalia JL, Lozewicz S, et al. The assessment of nasal mucociliary clearance and the effect of drugs. Respir Med. 1994 Feb;88(2):89–101.
  • Haffejee N, Du Plessis J, Müller DG, et al. Intranasal toxicity of selected absorption enhancers. Pharmazie. 2001 Nov;56(11):882–888.
  • Liu S, Feng X, Jin R, et al. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin Drug Deliv. 2018 02; 15(2): 173–184.
  • Shirley R, Ord EN, Work LM. Oxidative Stress and the Use of Antioxidants in Stroke. Antioxidants (Basel). Jul 3 2014;3(3):472–501.
  • Sivandzade F, Prasad S, Bhalerao A, et al. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019 02;21:101059.
  • Poellmann MJ, Bu J, Hong S. Would antioxidant-loaded nanoparticles present an effective treatment for ischemic stroke? Nanomedicine (Lond). 09 2018;13(18):2327–2340.
  • Liang J, Liu B. ROS-responsive drug delivery systems. Bioeng Transl Med. 09 2016;1(3):239–251.
  • Saravanakumar G, Kim J, Kim WJ. Reactive-Oxygen-Species-Responsive Drug Delivery Systems: promises and Challenges. Adv Sci (Weinh). 01 2017;4(1):1600124.
  • Ye H, Zhou Y, Liu X, et al. Recent Advances on Reactive Oxygen Species-Responsive Delivery and Diagnosis System. Biomacromolecules. 2019 07; 20(7): 2441–2463.
  • Ballance WC, Qin EC, Chung HJ, et al. Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials. 2019 10;217:119292.
  • Parodi A, Rudzinska M, Leporatti S, et al. Smart Nanotheranostics Responsive to Pathological Stimuli. Front Bioeng Biotechnol. 2020;8:503.
  • Lu Y, Aimetti AA, Langer R, et al. Bioresponsive materials. Nat Rev Mater. 2017 January;2(1):16075.
  • Gao Y, Chen X, Liu H. A facile approach for synthesis of nano-CeO. J Photochem Photobiol B. 2018 Oct;187:184–189.
  • Samuel EL, Marcano DC, Berka V, et al. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proc Natl Acad Sci USA. 2015 Feb;112(8):2343–2348.
  • Vani JR, Mohammadi MT, Foroshani MS, et al. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. Excli J. 2016;15:378–390.
  • Fabian RH, Derry PJ, Rea HC, et al. Efficacy of Novel Carbon Nanoparticle Antioxidant Therapy in a Severe Model of Reversible Middle Cerebral Artery Stroke in Acutely Hyperglycemic Rats. Front Neurol. 2018;9:199.
  • Zhang J, Han X, Li X, et al. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomedicine. 2012;7:4299–4310.
  • Jiang Y, Brynskikh AM, S-Manickam D, et al. SOD1 nanozyme salvages ischemic brain by locally protecting cerebral vasculature. J Control Release. 2015 Sep;213:36–44.
  • Petro M, Jaffer H, Yang J, et al. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain. Biomaterials. 2016 Mar;81:169–180.
  • Marin E, Tapeinos C, Lauciello S, et al. Encapsulation of manganese dioxide nanoparticles into layer-by-layer polymer capsules for the fabrication of antioxidant microreactors. Mater Sci Eng C Mater Biol Appl. 2020 Dec;117:111349.
  • Takamiya M, Miyamoto Y, Yamashita T, et al. Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- and tissue plasminogen activator-related brain damages in mice. Neuroscience. 2012 Sep;221:47–55.
  • Lanfranconi S, Locatelli F, Corti S, et al. Growth factors in ischemic stroke. J Cell Mol Med. 2011 Aug;15(8):1645–1687.
  • Abe K, Zhang WR. Gene therapy for stroke. Int Rev Neurobiol. 2003;55:243–269.
  • Sokolov ME, Bashirov FV, Markosyan VA, et al. Triple-Gene Therapy for Stroke: A Proof-of-Concept. Front Pharmacol. 2018;9:111.
  • Guan S, Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 03 2017;24(3):133–143.
  • Horn J, Limburg M. Calcium antagonists for ischemic stroke: a systematic review. Stroke. 2001 Feb;32(2):570–576.
  • Clementino A, Batger M, Garrastazu G, et al. The nasal delivery of nanoencapsulated statins - an approach for brain delivery. Int J Nanomedicine. 2016;11:6575–6590.
  • Mo Y, Sun YY, Liu KY. Autophagy and inflammation in ischemic stroke. Neural Regen Res. 2020 Aug;15(8):1388–1396.
  • Agyare E, Kandimalla K. Delivery of Polymeric Nanoparticles to Target Vascular Diseases. J Biomol Res Ther. Jan 2014;3(1). 10.4172/2167-7956.s1-00.
  • Fernandes LF, Bruch GE, Massensini AR, et al. Recent Advances in the Therapeutic and Diagnostic Use of Liposomes and Carbon Nanomaterials in Ischemic Stroke. Front Neurosci. 2018;12:453.
  • Park JW, Ku SH, Moon HH, et al. Cross-linked iron oxide nanoparticles for therapeutic engineering and in vivo monitoring of mesenchymal stem cells in cerebral ischemia model. Macromol Biosci. 2014 Mar;14(3):380–389.
  • Tang C, Wang C, Zhang Y, et al. Recognition, Intervention, and Monitoring of Neutrophils in Acute Ischemic Stroke. Nano Lett. 2019 07; 19(7): 4470–4477.
  • Marinescu M, Chauveau F, Durand A, et al. Monitoring therapeutic effects in experimental stroke by serial USPIO-enhanced MRI. Eur Radiol. 2013 Jan;23(1):37–47.
  • Feczkó T, Piiper A, Ansar S, et al. Stimulating brain recovery after stroke using theranostic albumin nanocarriers loaded with nerve growth factor in combination therapy. J Control Release. 2019 01;293:63–72.
  • Jeon TY, Kim JH, Im GH, et al. Hollow manganese oxide nanoparticle-enhanced MRI of hypoxic-ischaemic brain injury in the neonatal rat. Br J Radiol. 2016 Nov;89(1067):20150806.
  • Hudson JS, Chung TK, Prout BS, et al. Iron nanoparticle contrast enhanced microwave imaging for emergent stroke: A pilot study. J Clin Neurosci. 2019 Jan;59:284–290.
  • Kim W, Lee SH, Ahn YJ, et al. A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosens Bioelectron. 2018 Jul;111:59–65.
  • Bacigaluppi S, Fontanella M, Manninen P, et al. Monitoring techniques for prevention of procedure-related ischemic damage in aneurysm surgery. World Neurosurg. 2012 Sep-Oct;78(3–4):276–288.
  • Re F, Moresco R, Masserini M. Nanoparticles for neuroimaging. J Phys D: Appl Phys. February 1 2012;45(7):073001.
  • Gerhard A, Schwarz J, Myers R, et al. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage. 2005 Jan;24(2):591–595.
  • Chae SY, Kwon TW, Jin S, et al. A phase 1, first-in-human study of. EJNMMI Res. 2019 Jan 7;9(1):3.
  • Coda AR, Anzilotti S, Boscia F, et al. In vivo imaging of CNS microglial activation/macrophage infiltration with combined, Eur. J. Nucl Med Mol Imaging 2020 May 10.1007/s00259-020-04842-7
  • Ogata A, Kimura Y, Yasuno F, et al. PET/CT for Neuroinflammation. In: LY TH, Hatazawa J, Huang G, et al.editors. PET/CT for Inflammatory Diseases. Singapore: Springer; 2020. p. 217–228.
  • Sato K, Shimizu H, Inoue T, et al. Temporal and Spatial Changes in Cerebral Blood Flow during Management for Preventing Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage: serial Semiquantitative Analysis. J Stroke Cerebrovasc Dis. 2017 Sep;26(9):2027–2037.
  • Wahl RL, Herman JM, Ford E. The promise and pitfalls of positron emission tomography and single-photon emission computed tomography molecular imaging-guided radiation therapy. Semin Radiat Oncol. 2011 Apr;21(2):88–100.
  • Yang S, Xing D, Zhou Q, et al. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Med Phys. 2007 Aug;34(8):3294–3301.
  • Wang D, Wu Y, Xia J. Review on photoacoustic imaging of the brain using nanoprobes. Neurophotonics. 2016 Jan;3(1):010901.
  • Hong G, Diao S, Chang J, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics. 2014 Sep 8;8(9):723–730.
  • Feng Z, Yu X, Jiang M, et al. Excretable IR-820 for. Theranostics. 2019;9(19):5706–5719.
  • Das SS, Bharadwaj P, Bilal M, et al. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel). 2020 Jun;12(6):1397.
  • Sharma M, Dube T, Chibh S, et al. Nanotheranostics, a future remedy of neurological disorders. Expert Opin Drug Deliv. 2019 02; 16(2): 113–128.
  • Urakami T, Kawaguchi AT, Akai S, et al. vivo distribution of liposome-encapsulated hemoglobin determined by positron emission tomography. Artif Organs. 2009 Feb;33(2):164–168.
  • Wang J, Zhang Y, Xia J, et al. Neuronal PirB Upregulated in Cerebral Ischemia Acts as an Attractive Theranostic Target for Ischemic Stroke. J Am Heart Assoc. 2018 01;7(3). 10.1161/JAHA.117.007197
  • Liu H, Jablonska A, Li Y, et al. Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke. Theranostics. 2016;6(10):1588–1600.
  • Whitehead KJ, Chan AC, Navankasattusas S, et al. The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med. 2009 Feb;15(2):177–184.
  • Li DY, Whitehead KJ. Evaluating strategies for the treatment of cerebral cavernous malformations. Stroke. 2010 Oct;41(10Suppl):S92–4.
  • Ashrafizadeh M, Ahmadi Z, Farkhondeh T, et al. Modulatory effects of statins on the autophagy: A therapeutic perspective. J Cell Physiol. 2020 Apr;235(4):3157–3168.
  • Vaughan CJ, Delanty N. Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke. 1999 Sep;30(9):1969–1973.
  • Di Napoli M. Benefits of statins in cerebrovascular disease. Curr Opin Invest Drugs. 2004 Mar 5;5(3):295–305.
  • Lesniewski LA, Seals DR, Walker AE, et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell. 2017 Feb;16(1):17–26.
  • Di Domenico F, Tramutola A, Barone E, et al. Restoration of aberrant mTOR signaling by intranasal rapamycin reduces oxidative damage: focus on HNE-modified proteins in a mouse model of down syndrome. Redox Biol. 2019 05;23:101162.
  • Zhuang XX, Wang SF, Tan Y, et al. Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson’s disease models. Cell Death Dis. 2020 Feb;11(2):128.
  • Maddaluno L, Rudini N, Cuttano R, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013 Jun;498(7455):492–496.
  • Pan D, Zheng X, Zhang Q, et al. Dendronized-Polymer Disturbing Cells’ Stress Protection by Targeting Metabolism Leads to Tumor Vulnerability. Adv Mater. 2020 Apr;32(14):e1907490.
  • Yoshitomi T, Nagasaki Y. Nitroxyl radicalcontaining nanoparticles for novel nanomedicine against oxidative stress injury. Nanomedicine (Lond). Apr 6 2011;6(3):509–518.
  • Kim CK, Kim T, Choi IY, et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl. 2012 Oct;51(44):11039–11043.
  • Baranoski JF, Ducruet AF. Nanoparticle-Facilitated Delivery of Antioxidant Therapy following Aneurysmal Subarachnoid Hemorrhage. Neurosurgery. 08 2019;85(2):E174–E175.
  • Woodcock J, Griffin JP, Behrman RE. Development of novel combination therapies. N Engl J Med. 2011 Mar;364(11):985–987.
  • Iyengar R. Complex diseases require complex therapies. EMBO Rep. 2013 Dec;14(12):1039–1042.
  • Chen SH, Lahav G. Two is better than one; toward a rational design of combinatorial therapy. Curr Opin Struct Biol. 12 2016;41:145–150.
  • Qian M, Li Q, Zhang M, et al. Multidisciplinary therapy strategy of precision medicine in clinical practice. Clin Transl Med. 2020 Jan;10(1):116–124.
  • Cai P, Zhang X, Wang M, et al. Combinatorial Nano-Bio Interfaces. ACS Nano. 2018 06; 12(6): 5078–5084.
  • Cai H, Dai X, Wang X, et al. A Nanostrategy for Efficient Imaging-Guided Antitumor Therapy through a Stimuli-Responsive Branched Polymeric Prodrug. Adv Sci (Weinh). 2020 Mar;7(6):1903243.
  • Chen K, Cai H, Zhang H, et al. Stimuli-responsive polymer-doxorubicin conjugate: antitumor mechanism and potential as nano-prodrug. Acta Biomater. 2019;84(01):339–355.
  • Musazzi UM, Marini V, Casiraghi A, et al. Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanomaterials? Drug Discov Today. 2017 06; 22(6): 870–882.
  • Zhang X, Zhou J, Gu Z, et al. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials. 2020 Oct;120492. 10.1016/j.biomaterials.2020.120492
  • Zhang X, Wu Y, Li Z, et al. Glycodendron/pyropheophorbide-a (Ppa)-functionalized hyaluronic acid as a nanosystem for tumor photodynamic therapy. Carbohydr Polym. 2020 Nov;247:116749.
  • Huang L, Hu J, Huang S, et al. Nanomaterial applications for neurological diseases and central nervous system injury. Prog Neurobiol. 2017 Oct;157:29–48.
  • Dobrovolskaia MA, Neun BW, Clogston JD, et al. Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine (Lond). 2014;9(12):1847–1856.
  • Chung YH, Beiss V, Fiering SN, et al. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS Nano. 2020 10; 14(10): 12522–12537.
  • Del Pozo-Rodríguez A, Rodríguez-Gascón A, Rodríguez-Castejón J, et al. Gene Therapy. Adv Biochem Eng Biotechnol. 2020;171:321–368.
  • Bacigaluppi S, Retta SF, Pileggi S, et al. Genetic and cellular basis of cerebral cavernous malformations: implications for clinical management. Clin Genet. 2013 Jan;83(1):7–14.
  • Fontanella M, Bacigaluppi S. Treatment of cerebral cavernous malformations: where do we stand? J Neurosurg Sci. 2015 Sep;59(3):199–200.
  • Fontanella MM, Zanin L, Fiorindi A, et al. Surgical Management of Brain Cavernous Malformations. Methods Mol Biol. 2020;2152:109–128.
  • Jin Q, Cai Y, Li S, et al. Edaravone-Encapsulated Agonistic Micelles Rescue Ischemic Brain Tissue by Tuning Blood-Brain Barrier Permeability. Theranostics. 2017;7(4):884–898.
  • Choi SH, Kim HJ, Hwangbo L, et al. The minimum percentage of triolein emulsion for studying cerebral vascular permeability with least brain edema. Iran J Radiol. 2014 Dec;11(4):e14887.
  • Ahmad N, Ahmad R, Alam MA, et al. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int J Biol Macromol. 2016 Jul;88:320–332.
  • Galho AR, Cordeiro MF, Ribeiro SA, et al. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats. Nanotechnology. 2016 Apr;27(17):175101.
  • Huang S, Huang Z, Fu Z, et al. A Novel Drug Delivery Carrier Comprised of Nimodipine Drug Solution and a Nanoemulsion: preparation, Characterization, in vitro, and in vivo Studies. Int J Nanomedicine. 2020;15:1161–1172.
  • Gaudin A, Yemisci M, Eroglu H, et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol. 2014;9(12):1054–1062.
  • Morsi NM, Ghorab DM, Badie HA. Brain targeted solid lipid nanoparticles for brain ischemia: preparation and in vitro characterization. Pharm Dev Technol. 2013 May-Jun;18(3):736–744.
  • Lu YM, Huang JY, Wang H, et al. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials. 2014 Jan;35(1):530–537.
  • Graverini G, Piazzini V, Landucci E, et al. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2018 Jan;161:302–313.
  • Gao Y, Gu W, Chen L, et al. The role of daidzein-loaded sterically stabilized solid lipid nanoparticles in therapy for cardio-cerebrovascular diseases. Biomaterials. 2008 Oct;29(30):4129–4136.
  • Pan HP, Li G. Protecting mechanism of puerarin on the brain neurocyte of rat in acute local ischemia brain injury and local cerebral ischemia-reperfusion injury. Yakugaku Zasshi. 2008 Nov;128(11):1689–1698.
  • Zhao B, Gu S, Du Y, et al. Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. Int J Pharm. 2018 Jan;535(1–2):164–171.
  • Kaur H, Kumar B, Chakrabarti A, et al. A New Therapeutic Approach for Brain Delivery of Epigallocatechin Gallate: development and Characterization Studies. Curr Drug Deliv. 2019;16(1):59–65.
  • Tiebosch IA, Crielaard BJ, Bouts MJ, et al. Combined treatment with recombinant tissue plasminogen activator and dexamethasone phosphate-containing liposomes improves neurological outcome and restricts lesion progression after embolic stroke in rats. J Neurochem. 2012 Nov;2(123 Suppl):65–74.
  • Fukuta T, Asai T, Sato A, et al. Neuroprotection against cerebral ischemia/reperfusion injury by intravenous administration of liposomal fasudil. Int J Pharm. 2016 Jun;506(1–2):129–137.
  • Fukuta T, Asai T, Yanagida Y, et al. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke. Faseb J. 2017 05; 31(5): 1879–1890.
  • Campos-Martorell M, Cano-Sarabia M, Simats A, et al. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats. Int J Nanomedicine. 2016;11:3035–3048.
  • Ishii T, Asai T, Oyama D, et al. Treatment of cerebral ischemia-reperfusion injury with PEGylated liposomes encapsulating FK506. Faseb J. 2013 Apr;27(4):1362–1370.
  • Partoazar A, Nasoohi S, Rezayat SM, et al. Nanoliposome containing cyclosporine A reduced neuroinflammation responses and improved neurological activities in cerebral ischemia/reperfusion in rat. Fundam Clin Pharmacol. 2017 Apr;31(2):185–193.
  • Kawaguchi AT, Haida M, Ohba H, et al. Liposome-encapsulated hemoglobin ameliorates ischemic stroke in nonhuman primates: longitudinal observation. Artif Organs. 2013 Oct;37(10):904–912.
  • Zhao YZ, Lin M, Lin Q, et al. Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release. 2016 Feb;224:165–175.
  • Zhao Y, Xin Z, Li N, et al. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic Biol Med. 2018 08;124:1–11.
  • So PW, Ekonomou A, Galley K, et al. Intraperitoneal delivery of acetate-encapsulated liposomal nanoparticles for neuroprotection of the penumbra in a rat model of ischemic stroke. Int J Nanomedicine. 2019;14:1979–1991.
  • Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013 Nov;33(11):1711–1715.
  • Doeppner TR, Herz J, Görgens A, et al. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med. 2015 Oct 4;4(10):1131–1143.
  • Lee JY, Kim E, Choi SM, et al. Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci Rep. 2016 9; 6(1): 33038.
  • Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats. Stroke. 2017 03; 48(3): 747–753.
  • Xin H, Wang F, Li Y, et al. Secondary Release of Exosomes From Astrocytes Contributes to the Increase in Neural Plasticity and Improvement of Functional Recovery After Stroke in Rats Treated With Exosomes Harvested From MicroRNA 133b-Overexpressing Multipotent Mesenchymal Stromal Cells. Cell Transplant. 2017 02; 26(2): 243–257.
  • Otero-Ortega L, Gómez de Frutos MC, Laso-García F, et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage. J Cereb Blood Flow Metab. 2018 05; 38(5): 767–779.
  • Moon GJ, Sung JH, Kim DH, et al. Application of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Stroke: biodistribution and MicroRNA Study. Transl Stroke Res. 2019 10; 10(5): 509–521.
  • Jiang M, Wang H, Jin M, et al. Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization. Cell Physiol Biochem. 2018;47(2):864–878.
  • Huang X, Ding J, Li Y, et al. Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis. Exp Cell Res. 2018 10; 371(1): 269–277.
  • Kalani A, Chaturvedi P, Kamat PK, et al. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol. 2016 10;79:360–369.
  • Webb RL, Kaiser EE, Jurgielewicz BJ, et al. Human Neural Stem Cell Extracellular Vesicles Improve Recovery in a Porcine Model of Ischemic Stroke. Stroke. 2018 05;49(5):1248–1256.
  • Pan Q, He C, Liu H, et al. Microvascular endothelial cells-derived microvesicles imply in ischemic stroke by modulating astrocyte and blood brain barrier function and cerebral blood flow. Mol Brain. 2016 06; 9(1): 63.
  • Yang J, Zhang X, Chen X, et al. Exosome Mediated Delivery of miR-124 Promotes Neurogenesis after Ischemia. Mol Ther Nucleic Acids. 2017 Jun 7;7:278–287.
  • Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018 Jan;150:137–149.
  • Moghaddam AH, Mokhtari Sangdehi SR, Ranjbar M, et al. Preventive effect of silymarin-loaded chitosan nanoparticles against global cerebral ischemia/reperfusion injury in rats. Eur J Pharmacol. 2020;877:173066.
  • Kim ID, Sawicki E, Lee HK, et al. Robust neuroprotective effects of intranasally delivered iNOS siRNA encapsulated in gelatin nanoparticles in the postischemic brain. Nanomedicine. 2016 07; 12(5): 1219–1229.
  • Xu G, Gu H, Hu B, et al. PEG. Int J Nanomedicine. 2017;12:2243–2254.
  • Mukherjee A, Sarkar S, Jana S, et al. Neuro-protective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury. Brain Res. 2019 02;1704:164–173.
  • Ghosh S, Sarkar S, Choudhury ST, et al. Triphenyl phosphonium coated nano-quercetin for oral delivery: neuroprotective effects in attenuating age related global moderate cerebral ischemia reperfusion injury in rats. Nanomedicine. 2017 Nov;13(8):2439–2450.
  • Xiao XY, Zhu YX, Bu JY, et al. Evaluation of Neuroprotective Effect of Thymoquinone Nanoformulation in the Rodent Cerebral Ischemia-Reperfusion Model. Biomed Res Int. 2016 2571060. 10.1155/2016/2571060
  • Wang Y, Li SY, Shen S, et al. Protecting neurons from cerebral ischemia/reperfusion injury via nanoparticle-mediated delivery of an siRNA to inhibit microglial neurotoxicity. Biomaterials. 2018 04;161:95–105.
  • Huang L, Wang J, Huang S, et al. Polyacrylic acid-coated nanoparticles loaded with recombinant tissue plasminogen activator for the treatment of mice with ischemic stroke. Biochem Biophys Res Commun. 2019 Aug;516(2):565–570.
  • Bai YY, Gao X, Wang YC, et al. Image-guided pro-angiogenic therapy in diabetic stroke mouse models using a multi-modal nanoprobe. Theranostics. 2014;4(8):787–797.
  • Kwon EJ, Skalak M, Bu R L, et al. Neuron-Targeted Nanoparticle for siRNA Delivery to Traumatic Brain Injuries. ACS Nano. 2016 08; 10(8): 7926–7933.
  • Xu J, Ypma M, Chiarelli PA, et al. Theranostic Oxygen Reactive Polymers for Treatment of Traumatic Brain Injury. Adv Funct Mater. 2016 June 20;26(23):4124–4133. 10.
  • Fluri F, Grünstein D, Cam E, et al. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats. Exp Neurol. 2015 Mar;265:142–151.
  • Vernimmen F, Schmatov ML. Gold Nanoparticles in Stereotactic Radiosurgery for Cerebral Arteriovenous Malformations. J Biomater Nanobiotechnol.. 2015;06(2015–07):204–212.
  • Iv M, Choudhri O, Dodd RL, et al. High-resolution 3D volumetric contrast-enhanced MR angiography with a blood pool agent (ferumoxytol) for diagnostic evaluation of pediatric brain arteriovenous malformations. J Neurosurg Pediatr. 2018 09; 22(3): 251–260.
  • Jin AY, Tuor UI, Rushforth D, et al. Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. Contrast Media Mol Imaging. 2009 Nov-Dec;4(6):305–311.
  • Montagne A, Gauberti M, Macrez R, et al. Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. Neuroimage. 2012 Nov;63(2):760–770.
  • Harms C, Datwyler AL, Wiekhorst F, et al. Certain types of iron oxide nanoparticles are not suited to passively target inflammatory cells that infiltrate the brain in response to stroke. J Cereb Blood Flow Metab. 2013 May;33(5):e1–9.
  • Liu DF, Qian C, An YL, et al. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles. Nanoscale. 2014 Dec 6;6(24):15161–15167.
  • Saito A, Mekawy MM, Sumiyoshi A, et al. Noninvasive targeting delivery and in vivo magnetic resonance tracking method for live apoptotic cells in cerebral ischemia with functional Fe2O3 magnetic nanoparticles. J Nanobiotechnology. 2016 Mar;14(1):19.
  • Mekawy MM, Saito A, Sumiyoshi A, et al. Hybrid magneto-fluorescent nano-probe for live apoptotic cells monitoring at brain cerebral ischemia. Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:485–492.
  • Rausch M, Sauter A, Fröhlich J, et al. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med. 2001 Nov;46(5):1018–1022.
  • Schroeter M, Saleh A, Wiedermann D, et al. Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia. Magn Reson Med. 2004 Aug;52(2):403–406.
  • Saleh A, Schroeter M, Ringelstein A, et al. Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke. 2007 Oct;38(10):2733–2737.
  • Desestret V, Brisset JC, Moucharrafie S, et al. Early-stage investigations of ultrasmall superparamagnetic iron oxide-induced signal change after permanent middle cerebral artery occlusion in mice. Stroke. 2009 May;40(5):1834–1841.
  • Nucci LP, Silva HR, Giampaoli V, et al. Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: a systematic review with meta-analysis. Stem Cell Res Ther. 2015 Mar;6(1):27.
  • Wang C, Lin G, Luan Y, et al. HIF-prolyl hydroxylase 2 silencing using siRNA delivered by MRI-visible nanoparticles improves therapy efficacy of transplanted EPCs for ischemic stroke. Biomaterials. 2019 03;197:229–243.
  • Wang J, Zhang H, Ni D, et al. High-Performance Upconversion Nanoprobes for Multimodal MR Imaging of Acute Ischemic Stroke. Small. 2016 Jul;12(26):3591–3600.
  • Morawski AM, Winter PM, Yu X, et al. Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles. Magn Reson Med. 2004 Dec;52(6):1255–1262.
  • Flögel U, Ding Z, Hardung H, et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation. 2008 Jul;118(2):140–148.
  • Deuchar GA, Brennan D, Griffiths H, et al. Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke. J Cereb Blood Flow Metab. 2013 Sep;33(9):1422–1428.
  • Deuchar GA, Brennan D, Holmes WM, et al. Perfluorocarbon Enhanced Glasgow Oxygen Level Dependent (GOLD) Magnetic Resonance Metabolic Imaging Identifies the Penumbra Following Acute Ischemic Stroke. Theranostics. 2018;8(6):1706–1722.
  • Marsh JN, Hu G, Scott MJ, et al. A fibrin-specific thrombolytic nanomedicine approach to acute ischemic stroke. Nanomedicine (Lond). 2011 Jun;6(4):605–615.
  • Culp WC, Woods SD, Skinner RD, et al. Dodecafluoropentane emulsion decreases infarct volume in a rabbit ischemic stroke model. J Vasc Interv Radiol. 2012 Jan;23(1):116–121.
  • Woods SD, Skinner RD, Ricca AM, et al. Progress in dodecafluoropentane emulsion as a neuroprotective agent in a rabbit stroke model. Mol Neurobiol. 2013 Oct;48(2):363–367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.