375
Views
13
CrossRef citations to date
0
Altmetric
Review

Recent advances in iron oxide nanoparticles for brain cancer theranostics: from in vitro to clinical applications

, ORCID Icon, ORCID Icon &
Pages 949-977 | Received 07 Nov 2020, Accepted 05 Feb 2021, Published online: 01 Apr 2021

References

  • Koo Y-EL, Reddy GR, Bhojani M, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev. 2006;58(14):1556–1577.
  • Shevtsov M, Nikolaev B, Marchenko Y, et al. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomedicine. 2018;13:1471.
  • Siegel RL, Miller KD, Jemal A Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.
  • Nimsky C, Ganslandt O, Kober H, et al. Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery. 2001;48(5):1082–1091 .
  • Ullrich NJ, Pomeroy SL Pediatric brain tumors. Neurol Clin. 2003;21(4):897–913.
  • Rutka JT, Kuo JS Pediatric surgical neuro-oncology: current best care practices and strategies. J Neurooncol. 2004;69(1–3):139–150.
  • Albayrak B, Samdani A, Black P Intra-operative magnetic resonance imaging in neurosurgery. Acta Neurochir (Wien). 2004;146(6):543–557.
  • Kircher MF, Mahmood U, King RS, et al. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003;63(23):8122–8125.
  • Schulder M, Carmel PW Intraoperative magnetic resonance imaging: impact on brain tumor surgery. Cancer Control. 2003;10(2):115–124.
  • Armstrong C, Hunter J, Ledakis G, et al. Late cognitive and radiographic changes related to radiotherapy: initial prospective findings. Neurology. 2002;59(1):40–48.
  • Taphoorn MJ, editor Neurocognitive sequelae in the treatment of low-grade gliomas. Seminars in oncology: Elsevier. 2003;30(6 Suppl 19):45-48. DOI:10.1053/j.seminoncol.2003.11.023.
  • Gatmaitan ZC, Arias IM Structure and function of P-glycoprotein in normal liver and small intestine. Adv Pharmacol. Vol. 24: Elsevier; 1993. p. 77–97.
  • Izquierdo MA, Scheffer GL, Flens MJ, et al. Relationship of LRP-human major vault protein toin vitro and clinical resistance to anticancer drugs. Cytotechnology. 1996;19(3):191–197.
  • Hasanifard L, Sheervalilou R, Majidinia M, et al. New insights into the roles and regulation of SphK2 as a therapeutic target in cancer chemoresistance. J Cell Physiol. 2019;234(6):8162–8181.
  • Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. JNCI. 1998;90(12):889–905.
  • Dougherty TJ An update on photodynamic therapy applications. Journal of clinical laser medicine surgery 2002;20(1):3–7.
  • Kostron H, Weiser G, Fritsch E, et al. Photodynamic therapy of malignant brain tumors: clinical and neuropathological results. Photochem Photobiol. 1987;46(5):937–943.
  • Schmidt MH, Meyer GA, Reichert KW, et al. Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neurooncol. 2004;67(1–2):201–207.
  • Irajirad R, Ahmadi A, Najafabad BK, et al. Combined thermo-chemotherapy of cancer using 1 MHz ultrasound waves and a cisplatin-loaded sonosensitizing nanoplatform: an in vivo study. Cancer Chemother Pharmacol 2019;84(6):1315–1321.
  • Norouzi M, Yasamineh S, Montazeri M, et al. Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater Sci Eng C 2019:110007. 104
  • Sheervalilou R, Shahraki O, Hasanifard L, et al. Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs. Curr Mol Med. 2020;20(1):13–35.
  • Naseri N, Ajorlou E, Asghari F, et al. An update on nanoparticle-based contrast agents in medical imaging. Artificial cells, nanomedicine, biotechnology. 2018;46(6):1111–1121.
  • Brigger I Dubernet C and Couvreur P. Adv Drug Deliv Rev 2002;2002:54.
  • Moffat BA, Reddy GR, McConville P, et al. A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol Imaging. 2003;2(4):15353500200303163.
  • Burt BM, Humm JL, Kooby DA, et al. Using positron emission tomography with [18F] FDG to predict tumor behavior in experimental colorectal cancer. Neoplasia. 2001;3(3):189.
  • Ponomarev V, Doubrovin M, Lyddane C, et al. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia. 2001;3(6):480.
  • Koutcher JA, Hux X, Xu S, et al. MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia. 2002;4(6):480–485.
  • Jennings D, Hatton BN, Guo J, et al. Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia. 2002;4(3):255–262.
  • Rogers WJ, Basu P Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis. 2005;178(1):67–73.
  • Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348(25):2491–2499.
  • Montet X, Montet-Abou K, Reynolds F, et al. Nanoparticle imaging of integrins on tumor cells. Neoplasia. 2006;8(3):214–222.
  • Weissleder R, Mahmood U Molecular imaging. Radiology. 2001;219(2):316–333.
  • Weissleder R Molecular imaging in cancer. Science. 2006;312(5777):1168–1171.
  • Cancer Facts and Figures 2004, American Cancer Society 2004.
  • Statistical Report: Primary Brain Tumors in the United States1998–2002, Central Brain Tumor Registry of the United States, 2005.
  • Dolecek TA, Propp JM, Stroup NE, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14(suppl_5):1–v49.
  • Dolecek TA, Propp JM, Stroup NE, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14(suppl_5):1–v49. DOI:10.1093/neuonc/nos218.
  • Kiwit J, Floeth F, Bock W Survival in malignant glioma: analysis of prognostic factors with special regard to cytoreductive surgery. Zentralblatt fur Neurochirurgie. 1996;57(2):76–88.
  • Siegel RL, Miller KD, Jemal A Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.
  • Quinn T, Ostrom H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 2015;17(suppl 4):iv1–iv62.
  • Liu H-L, Fan C-H, Ting C-Y, et al. Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics. 2014;4(4):432.
  • Parodi A, Rudzińska M, Deviatkin AA, et al. Established and emerging strategies for drug delivery across the blood-brain barrier in brain cancer. Pharmaceutics. 2019;11(5):245.
  • Kargar S, Khoei S, Khoee S, et al. Evaluation of the combined effect of NIR laser and ionizing radiation on cellular damages induced by IUdR-loaded PLGA-coated nano-graphene oxide. Photodiagnosis photodynamic therapy. 2018;21:91–97.
  • Leece R, Xu J, Ostrom QT, et al. Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro Oncol. 2017;19(11):1553–1564.
  • Eichler AF, Chung E, Kodack DP, et al. The biology of brain metastases—translation to new therapies. Nat Rev Clin Oncol. 2011;8(6):344.
  • Hustinx R, Alavi A SPECT andPET imaging of brain tumors. Neuroimaging Clin N Am. 1999;9(4):751–766.
  • Makary M, Chiocca EA, Erminy N, et al. Clinical and economic outcomes of low‐field intraoperative MRI‐guided tumor resection neurosurgery. J Magn Reson Imaging. 2011;34(5):1022–1030.
  • Nabavi DG, Cenic A, Craen RA, et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology. 1999;213(1):141–149.
  • Rezaie P, Khoei S, Khoee S, et al. Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87MG glioblastoma cell line. Int J Radiat Biol. 2018;94(11):1027–1037.
  • Kopelman R, Koo Y-EL, Philbert M, et al. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. Journal of Magnetism Magnetic Materials 2005;293(1):404–410.
  • Cheng Y, Morshed R, Auffinger B, et al. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy. Adv Drug Deliv Rev 2013. 66 42–57
  • Fisher PG, Buffler PA Malignant gliomas in 2005: where to GO from here? Jama. 2005;293(5):615–617.
  • Israel LL, Galstyan A, Holler E, et al. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. JControlled Release 2020;320:45–62 .
  • Blasiak B, Van Veggel FC, Tomanek B Applications of nanoparticles for MRI cancer diagnosis and therapy. J Nanomater 2013;2013. DOi:10.1155/2013/148578.
  • Ehman EC, Johnson GB, Villanueva‐Meyer JE, et al. PET/MRI: where might it replace PET/CT? J Magn Reson Imaging. 2017;46(5):1247–1262.
  • Abed Z, Beik J, Laurent S, et al. Iron oxide–gold core–shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. Journal of cancer research clinical oncology. 2019;145(5):1213–1219.
  • Haacke EM, Brown RW, Thompson MR, et al. Magnetic resonance imaging: physical principles and sequence design. Vol. 82. Wiley-Liss New York; 1999.
  • Caravan P, Ellison JJ, McMurry TJ, et al. Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–2352.
  • Zhao Z, Nelson AR, Betsholtz C, et al. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163(5):1064–1078.
  • Ljubimova JY, Sun T, Mashouf L, et al. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017;113:177–200.
  • Khaitan D, Reddy PL, Narayana DS, et al. Recent advances in understanding of blood–brain tumor barrier (BTB) permeability mechanisms that enable better detection and treatment of brain tumors. In: Alexandru Mihai Grumezescu, editor. Drug Targeting and Stimuli Sensitive Drug Delivery Systems: Elsevier; 2018. p. 673–688.
  • Danhier F To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? JControlled Release 2016;244:108–121.
  • Anchordoquy TJ, Barenholz Y, Boraschi D, et al. Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions. ACS Publications; 2017;11 (1), 12-18. DOI:10.1021/acsnano.6b08244.
  • Ruan S, Qin L, Xiao W, et al. Acid‐responsive transferrin dissociation and GLUT mediated exocytosis for increased blood–brain barrier transcytosis and programmed glioma targeting delivery. Adv Funct Mater. 2018;28(30):1802227.
  • Inoue S, Patil R, Portilla-Arias J, et al. Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer. PLoS One. 2012;7(2):e31070.
  • Tsai M-F, Hsu C, Yeh C-S, et al. Tuning the distance of rattle-shaped IONP@ shell-in-shell nanoparticles for magnetically-targeted photothermal therapy in the second near-infrared window. ACS applied materials interfaces. 2018;10(2):1508–1519.
  • Monaco I, Arena F, Biffi S, et al. Synthesis of lipophilic core–shell Fe3O4@ SiO2@ Au nanoparticles and polymeric entrapment into nanomicelles: a novel nanosystem for in vivo active targeting and magnetic resonance–photoacoustic dual imaging. Bioconjug Chem. 2017;28(5):1382–1390.
  • Jokerst JV, Gambhir SS Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44(10):1050–1060.
  • Padmanabhan P, Kumar A, Kumar S, et al. Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater 2016;41:1–16.
  • Kim Jonghoon, Lee Nohyun and Hyeon Taeghwan 192017Recent development of nanoparticles for molecular imagingPhil. Trans. R. Soc. A.3752017002220170022. DOI:10.1098/rsta.2017.0022.
  • Pysz MA, Gambhir SS, Willmann JK Molecular imaging: current status and emerging strategies. Clin Radiol. 2010;65(7):500–516.
  • Bulte JW, Kraitchman DL Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17(7):484–499.
  • Clevers H The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–319.
  • Lee N, Hyeon T Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2012;41(7):2575–2589.
  • Lee N, Yoo D, Ling D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115(19):10637–10689.
  • Mirrahimi M, Hosseini V, Shakeri-Zadeh A, et al. Modulation of cancer cells’ radiation response in the presence of folate conjugated Au@ Fe 2 O 3 nanocomplex as a targeted radiosensitizer. Clinical Translational Oncology. 2019;21(4):479–488.
  • Hosseini V, Mirrahimi M, Shakeri-Zadeh A, et al. Multimodal cancer cell therapy using Au@ Fe2O3 core–shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagnosis photodynamic therapy. 2018;24:129–135.
  • Neshastehriz A, Khosravi Z, Ghaznavi H, et al. Gold-coated iron oxide nanoparticles trigger apoptosis in the process of thermo-radiotherapy of U87-MG human glioma cells. Radiation environmental biophysics. 2018;57(4):405–418.
  • Neshastehriz A, Khateri M, Ghaznavi H, et al. Investigating the therapeutic effects of alginate nanogel co-loaded with gold nanoparticles and cisplatin on U87-MG human glioblastoma cells. Anticancer Agents Med Chem. 2018;18(6):882–890.
  • Shirvalilou S, Khoei S, Khoee S, et al. Enhancement radiation-induced apoptosis in C6 glioma tumor-bearing rats via pH-responsive magnetic graphene oxide nanocarrier. Journal of Photochemistry Photobiology B: Biology. 2020;205:111827.
  • Afzalipour R, Khoei S, Khoee S, et al. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomaterials Science Engineering. 2019;5(11):6000–6011.
  • Afzalipour R, Khoei S, Khoee S, et al. Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. Nanomed. 2020;31:102319.
  • Shirvalilou S, Khoei S, Khoee S, et al. Development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: in vitro and in vivo evaluations. Chem Biol Interact. 2018;295:97–108.
  • Crowder KC, Hughes MS, Marsh JN, et al. Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery. Ultrasound Med Biol. 2005;31(12):1693–1700.
  • Brigger I, Dubernet C, Couvreur P Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2012;64:24–36.
  • Langer R Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res. 2000;33(2):94–101.
  • Feng -S-S, Chien S Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci. 2003;58(18):4087–4114.
  • Janes K, Calvo P, Alonso M Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev. 2001;47(1):83–97.
  • Yih T, Al‐Fandi M Engineered nanoparticles as precise drug delivery systems. J Cell Biochem. 2006;97(6):1184–1190.
  • Farajzadeh R, Zarghami N, Serati-Nouri H, et al. Macrophage repolarization using CD44-targeting hyaluronic acid–polylactide nanoparticles containing curcumin. Artificial cells, nanomedicine, biotechnology. 2018;46(8):2013–2021.
  • Firouzi-Amandi A, Dadashpour M, Nouri M, et al. Chrysin-nanoencapsulated PLGA-PEG for macrophage repolarization: possible application in tissue regeneration. Biomedicine Pharmacotherapy. 2018;105:773–780.
  • Tavakoli F, Jahanban-Esfahlan R, Seidi K, et al. Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artificial cells, nanomedicine, biotechnology. 2018;46(sup2):75–86.
  • Farokhzad OC, Langer R Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.
  • Kondori T, Akbarzadeh-T N, Ghaznavi H, et al. A binuclear iron (III) complex of 5, 5′-dimethyl-2, 2′-bipyridine as cytotoxic agent. BioMetals. 2020;33(6):365–378.
  • Sadeghzadeh H, Pilehvar-Soltanahmadi Y, Akbarzadeh A, et al. The effects of nanoencapsulated curcumin-Fe3O4 on proliferation and hTERT gene expression in lung cancer cells. Anticancer Agents Med Chem. 2017;17(10):1363–1373.
  • Xie J, Lee S, Chen X Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62(11):1064–1079.
  • Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–2110.
  • Kim D-H, Rozhkova EA, Ulasov IV, et al. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater. 2010;9(2):165.
  • Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29(4):487–496.
  • Chertok B, David AE, Yang VC Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. J Control Release. 2011;155(3):393–399.
  • Samadzadeh S, Babazadeh M, Zarghami N, et al. An implantable smart hyperthermia nanofiber with switchable, controlled and sustained drug release: possible application in prevention of cancer local recurrence. Materials Science Engineering: C. 2020;118:111384.
  • Zhang H, Li L, Liu XL, et al. Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T 1 magnetic resonance imaging contrast agent. ACS Nano. 2017;11(4):3614–3631.
  • Wang S-T, Hua Z-X, Fan D-X, et al. Gadolinium retention and clearance in the diabetic brain after administrations of gadodiamide, gadopentetate dimeglumine, and gadoterate meglumine in a rat model. Biol Med Res Int 2019;2019. 2019
  • Veiseh O, Sun C, Gunn J, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 2005;5(6):1003–1008.
  • Arbab AS, Frenkel V, Pandit SD, et al. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells. 2006;24(3):671–678.
  • Heyn C, Ronald JA, Ramadan SS, et al. In vivo MRI of cancer cell fate at the single‐cell level in a mouse model of breast cancer metastasis to the brain. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 2006;56(5):1001–1010.
  • Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res. 2006;12(22):6677–6686.
  • Lee H-Y, Li Z, Chen K, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med. 2008;49(8):1371.
  • Wu X, Hu J, Zhou L, et al. In vivo tracking of superparamagnetic iron oxide nanoparticle–labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. J Neurosurg. 2008;108(2):320–329.
  • Veiseh O, Sun C, Fang C, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res. 2009;69(15):6200–6207.
  • Chertok B, David AE, Yang VC Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials. 2010;31(24):6317–6324.
  • Hadjipanayis CG, Machaidze R, Kaluzova M, et al. EGFRvIII antibody–conjugated iron oxide nanoparticles for magnetic resonance imaging–guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer research. 2010;70(15):6303-6312. DOI:10.1158/0008-5472.CAN-10-1022.
  • Liu H-L, Hua M-Y, Yang H-W, et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Nat Acad Sci 2010;107(34):15205-15210. DOI:10.1073/pnas.1003388107.
  • Cole AJ, David AE, Wang J, et al. Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials. 2011;32(26):6291–6301.
  • Yang H, Zhuang Y, Sun Y, et al. Targeted dual-contrast T1-and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials. 2011;32(20):4584–4593.
  • Kim B, Yang J, Hwang M, et al. Aptamer-modified magnetic nanoprobe for molecular MR imaging of VEGFR2 on angiogenic vasculature. Nanoscale Res Lett. 2013;8(1):399.
  • Govindarajan S, Kitaura K, Takafuji M, et al. Gene delivery into human cancer cells by cationic lipid-mediated magnetofection. Int J Pharmaceut 2013;446 87–99. 1–2
  • Huang R-Y, Chiang P-H, Hsiao W-C, et al. Redox-sensitive polymer/SPIO nanocomplexes for efficient magnetofection and MR imaging of human cancer cells. Langmuir. 2015;31(23):6523–6531.
  • Fan C-H, Cheng Y-H, Ting C-Y, et al. Ultrasound/magnetic targeting with SPIO-DOX-microbubble complex for image-guided drug delivery in brain tumors. Theranostics. 2016;6(10):1542.
  • Boucher M, Geffroy F, Prévéral S, et al. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials. 2017;121:167–178.
  • Ghorbani M, Bigdeli B, Jalili-baleh L, et al. Curcumin-lipoic acid conjugate as a promising anticancer agent on the surface of gold‑iron oxide nanocomposites: a pH-sensitive targeted drug delivery system for brain cancer theranostics. Eur J Pharmaceut Sci 2018;114:175–188.
  • Sun C, Veiseh O, Gunn J, et al. In vivo MRI detection of gliomas by chlorotoxin‐conjugated superparamagnetic nanoprobes. Small. 2008;4(3):372–379.
  • Stephen ZR, Kievit FM, Zhang M Magnetite nanoparticles for medical MR imaging. Mater Today. 2011;14(7–8):330–338.
  • Shevtsov MA, Nikolaev BP, Yakovleva LY, et al. Recombinant interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles for theranostic targeting of experimental glioblastoma. Neoplasia. 2015;17(1):32–42
  • Abed Z, Beik J, Laurent S, et al. Iron oxide–gold core–shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. J Cancer Res Clin Oncol 2019;145(5):1213–1219.
  • Beik J, Asadi M, Khoei S, et al. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. J Photochem Photobiol 2019;199:111599.
  • Asadi M, Beik J, Hashemian R, et al. MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Phys Med. 2019;66:124–132.
  • Ma N, Ma C, Li C, et al. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. Journal of nanoscience nanotechnology. 2013;13(10):6485–6498.
  • Panyam J, Labhasetwar V Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–347.
  • Sahoo SK, Panyam J, Prabha S, et al. Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82(1):105–114.
  • Champion JA, Katare YK, Mitragotri S Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers. J Control Release. 2007;121(1–2):3–9.
  • Klymchenko AS, Roger E, Anton N, et al. Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Adv. 2012;2(31):11876–11886.
  • Simonsson C, Bastiat G, Pitorre M, et al. Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules. European Journal of Pharmaceutics Biopharmaceutics. 2016;98:47–56.
  • Snipstad S, Westrøm S, Mørch Y, et al. Contact-mediated intracellular delivery of hydrophobic drugs from polymeric nanoparticles. Cancer nanotechnology. 2014;5(1):8.
  • Snipstad S, Hak S, Baghirov H, et al. Labeling nanoparticles: dye leakage and altered cellular uptake. Cytometry Part A. 2017;91(8):760–766.
  • Kang H, Kim S, Wong DSH, et al. Remote manipulation of ligand nano-oscillations regulates adhesion and polarization of macrophages in vivo. Nano Lett. 2017;17(10):6415–6427.
  • Zanganeh S, Hutter G, Spitler R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–994.
  • Tong H-I, Kang W, Shi Y, et al. Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles—Implication of macrophage-based drug delivery into the central nervous system. Int J Pharm. 2016;505(1–2):271–282.
  • Lee C, Kim GR, Yoon J, et al. In vivo delineation of glioblastoma by targeting tumor-associated macrophages with near-infrared fluorescent silica coated iron oxide nanoparticles in orthotopic xenografts for surgical guidance. Sci Rep. 2018;8(1):1–12.
  • Bullivant JP, Zhao S, Willenberg BJ, et al. Materials characterization of Feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int J Mol Sci. 2013;14(9):17501–17510.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.