481
Views
10
CrossRef citations to date
0
Altmetric
Review

Atropine in topical formulations for the management of anterior and posterior segment ocular diseases

& ORCID Icon
Pages 1245-1260 | Received 26 Jan 2021, Accepted 24 Mar 2021, Published online: 07 Apr 2021

References

  • Lakstygal AM, Kolesnikova TO, Khatsko SL, et al. DARK classics in chemical neuroscience: atropine, scopolamine, and other anticholinergic deliriant hallucinogens. ACS Chem Neurosci. 2019;10(5):2144–2159.
  • Grynkiewicz G, Gadzikowska M. Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep. 2008;60(4):439–463.
  • Broadley KJ, Kelly DR. Muscarinic receptor agonists and antagonists. Molecules. 2001;6(3):142–193.
  • Kanto J, Klotz U. Pharmacokinetic implications for the clinical use of atropine, scopolamine and glycopyrrolate. Acta Anaesthesiol Scand. 1988;32(2):69–78.
  • Wang LZ, Syn N, Li S, et al. The penetration and distribution of topical atropine in animal ocular tissues. Acta Ophthalmol. 2019;97(2):e238–e247.
  • Tran HDM, Tran YH, Tran TD, et al. A review of myopia control with atropine. J Ocul Pharmacol Ther. 2018;34(5):374–379.
  • McBrien NA, Stell WK, Carr B. How does atropine exert its anti-myopia effects? Ophtalmic. Physiol Opt. 2013;33(3):373–378.
  • Rachana PB, Sequeira J. Effect of intramuscular atropine sulphate and glycopyrrolate on heart rate and salivary secretion in patients undergoing minor oral surgical procedure. CUREUS. 2020;12(11):e11780.
  • Ittichaikulthol W, Pisitsak C, Wirachpisit N, et al. A comparison of the combination of atropine and glycopyrrolate with atropine alone for the reversal of muscle relaxant. J Med Assoc Thai. 2014;97(7):705–709.
  • Geller RJ, Lopez GP, Cutler S, et al. Atropine availability as an antidote for nerve agent casualties: validated rapid reformulation of high-concentration atropine from bulk powder. Ann Emerg Med. 2003;41(4):453–456.
  • Smulyan H. The beat goes on: the story of five ageless cardiac drugs. Am J Med Sci. 2018;356:441–450.
  • Drugs.com [Internet]. Atropine side effects. [cited 2021 Mar 31]. Available from: https://www.drugs.com/sfx/atropine-side-effects.html
  • Lahdes K, Kaila T, Huupponen R, et al. Systemic absorption of topically applied ocular atropine. Clin Pharmacol Ther. 1988;44(3):310–314.
  • North RV, Kelly ME. A review of the uses and adverse effects of topical administration of atropine. Ophthalmic Physiol Opt. 1987;7(2):109–114.
  • Ali-Melkkila T, Kanto J, Iisalo E. Pharmacokinetics and related pharmacodynamics of anticholinergic drugs. Acta Anaesthesiol Scand. 1993;37(7):633–642.
  • Ramsay E, Ruponen M, Picardat T, et al. Impact of chemical structure on conjunctival drug permeability: adopting porcine conjunctiva and cassette dosing for construction of in silico model. J Pharm Sci. 2017;106(9):2463–2471.
  • Armenian P, Campagne D, Stroh G, et al. Hot and cold drugs: national park service medication stability at the extremes of temperature. Prehosp Emerg Care. 2017;21(3):378–385.
  • Berton B, Chennell P, Yessaad M, et al. Stability of ophthalmic atropine solutions for child myopia control. Pharmaceutics. 2020;12(8):781.
  • Donnelly RF, Corman C. Physical compatibility and chemical stability of a concentrated solution of atropine sulfate (2 mg/mL) for use as an antidote in nerve agent casualties. Int J Pharm Compound. 2008;12:550–552.
  • Afsar A, Bajwa JA. Determination of best regime for administration of atropine eye drops for cycloplegia. Adv Ophthalmol Vis Syst. 2017;6:42–45.
  • Wakayama A, Nishina S, Miki A, et al. Incidence of side effects of topical atropine sulfate and cyclopentolate hydrochloride for cycloplegia in Japanese children: a multicenter study. Jpn J Ophthalmol. 2018;62(5):531–536.
  • Siurana JM, Akel G, Cavero L, et al. Is treatment with atropine 0.01% eye drops safe to prevent the progression of childhood myopia? Arch Dis Child. 2019;104(3):428.
  • Leblanc B, Jezequel S, Davies T, et al. Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol. 1998;28(2):124–132.
  • Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–754.
  • Cristaldi M, Olivieri M, Pezzino S, et al. Atropine differentially modulates ECM production by ocular fibroblasts, and its ocular surface toxicity is blunted by colostrum. Biomedicines. 2020;8(4):78.
  • Wen Q, Fan TJ, Tian CL. Cytotoxicity of atropine to human corneal endothelial cells by inducing mitochondrion-dependent apoptosis. Exp Biol Med. 2016;241(13):1457–1465.
  • Argikar UA, Dumouchel JL, Kramlinger VM, et al. Do we need to study metabolism and distribution in the eye: why, when, and are we there yet? J Pharm Sci. 2017;106(9):2276–2281.
  • Lee J, Pelis RM. Drug transport by the blood-aqueous humor barrier of the eye. Drug Metab Dispos. 2016;44(10):1675–1681.
  • Castro-Balado A, Mondelo-García C, González-Barcia M, et al. Ocular bio-distribution studies using molecular imaging. Pharmaceutics. 2019;237(11):1–20.
  • Dahlin A, Geier E, Stocker SL, et al. Gene expression profiling of transporters in the solute carrier and ATP-binding cassette superfamilies in human eye substructures. Mol Pharm. 2013;10(2):650–663.
  • Bévalot F, Cartiser N, Bottinelli C, et al. Correlation of bile and vitreous humor concentrations with blood drug concentrations for forensic interpretation: a comparative study between animal experimental and human postmortem data. Forensic Toxicol. 2015;33(1):131–140.
  • Farkouh A, Frigo P, Czejka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Ophtalmol. 2016;10:2433–2441.
  • Short BG. Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol. 2008;36(1):49–62.
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Revs. 2006;58(11):1131–1135.
  • Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012;3:188.
  • Toropainen E, Ranta VP, Vellonen KS, et al. Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model. Eur J Pharm Sci. 2003;20(1):99–106.
  • Mori N, Mochizuki T, Yamazaki F, et al. MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration. PLoS ONE. 2019;14(1):e0211376.
  • Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–1488.
  • Shen M, Li J, Wang J, et al. Upper and lower tear menisci in the diagnosis of dry eye. Investig Ophthalmol Vis Sci. 2009;50:722–2726.
  • Kaila T, Korte JM, Saari KM. Systemic bioavailability of ocularly applied 1% atropine eyedrops. Acta Ophthalmol Scand. 1999;77(2):193–196.
  • Salazar M, Patil PN. An explanation for the long duration of mydriatic effect of atropine in eye. Invest Ophthalmol Vis Sci. 1976;15:671–673.
  • Gore A. Broad spectrum treatment for ocular insult induced by organophosphate chemical warfare agents. Toxicol Sci. 2020;177(1):1–10.
  • Agrawal RV, Murthy S, Sagwan V, et al. Current approach in diagnosis and management of anterior uveitis. Indian J Ophtalmol. 2010;58(1):11–19.
  • Bajoria SK, Biswas J. Recent approach in diagnosis and management of anterior uveitis. J Clin Ophthalmol Res. 2018;6:36–41.
  • Tantou A, Konstas AG, Kozeis N, et al. Update on the treatment of uveitis in patients with juvenile idiopathic arthritis: a review. Adv Ther. 2017;34(12):2558–2565.
  • Hussaindeen JR, Mani R, Agarkar S, et al. Acute adult onset comitant esotropia associated with accommodative spasm. Optom Vis Sci. 2014;91(4):46–51.
  • Hyndman J. Spasm of the near reflex: literature review and proposed management strategy. J Binocul Vis Ocul Motil. 2018;68(3):78–86.
  • Lind T, Atkinson S, Marsh JD. Diagnosis of accommodative spasm aided by handheld photoscreener. J Binocul Vis Ocul Motil. 2020;70(1):37–39.
  • Satgunam P. Relieving accommodative spasm: two case reports. Optom Vis Sci. 2018;6(5):207–212.
  • Amescua G, Miller D, Alfonso E. What is causing the corneal ulcer? Management strategies for unresponsive corneal ulceration. Eye. 2012;26(2):228–236.
  • Garg P, Rao GN. Corneal ulcer: diagnosis and management. Community Eye Health. 1999;12(30):21–23.
  • Shoshany TN, Michalak S, Staffa SJ, et al. Effect of primary occlusion therapy in asymmetric, bilateral amblyopia. Am J Ophthalmol. 2020;211:87–93.
  • Jefferis JM, Connor AJ, Clarke MP. Amblyopia. BMJ. 2015;351(nov12 1):h5811.
  • Gopal SKS, Kelkar J, Kelkar A, et al. Simplified updates on the pathophysiology and recent developments in the treatment of amblyopia: a review. Indian J Ophthalmol. 2019;67(9):1392–1399.
  • Li, Li Y, Sun H, et al. Efficacy of interventions for amblyopia: a systematic review and network metaanalysis. BMC Ophthalmol. 2020;20(1):203. .
  • Park SH. Current management of childhood amblyopia. Korean J Ophthalmol. 2019;33(6):557–568.
  • Li T, Qureshi R, Taylor K. Conventional occlusion versus pharmacologic penalization for amblyopia (Review). Cochrane Database Syst Rev. 2019;8:CD006460.
  • Osborne DC, Greenhalgh KM, Evans MJE, et al. Atropine penalization versus occlusion therapies for unilateral amblyopia after the critical period of visual development: a systematic review. Ophthalmol Ther. 2018;7(2):323–332.
  • Wang J. Compliance and patching and amblyopia treatments. Vision Res. 2015;114:31–40.
  • Kraus CL, Culican SM. New advances in amblyopia therapy I: binocular therapies and pharmacologic augmentation. Br J Ophthalmol. 2018;102(11):1492–1496.
  • Repka MX, Kraker RT, Holmes JM, et al. Pediatric Eye Disease Investigator Group. A randomized trial of atropine versus patching for treatment of moderate amblyopia: follow-up at 15 years of age. JAMA Ophthalmol. 2014;132(7):799–805.
  • Haridas A, Syrimi M, Al-Ahmar B, et al. Intraoperative floppy iris syndrome (IFIS) in patients receiving tamsulosin or doxazosin- a UK-based comparison of incidence and complication rates. Graefes Arch Clin Exp Ophthalmol. 2013;251(6):1541–1545.
  • Esen F, Erdagi Bulutu A, Toker E. Efficacy and safety of low-concentration, bisulphite-containing, intracameral epinephrine and topical atropine treatments for the prevention of intraoperative floppy iris syndrome. Cutan Ocul Toxicol. 2018;37(3):286–290.
  • Pérez Silguero D, Ramallo Fariña Y, Pérez Silguero MA, et al. Comparison of the effectiveness of two different pharmacologic approaches to prevent intraoperative floppy iris syndrome. Arch Soc Esp Oftalmol. 2009;84(11):549–556.
  • Bendel RE, Phillips MB. Preoperative use of atropine to prevent intraoperative floppy-iris syndrome in patients taking tamsulosin. J Cataract Refract Surg. 2006;32(10):1603–1605.
  • Chang DF, Campbell JR. Intraoperative floppy iris syndrome associated with tamsulosin. J Cataract Refract Surg. 2005;31(4):664–673.
  • Masket S, Belani S. Combined preoperative topical atropine sulfate 1% and intracameral nonpreserved epinephrine hydrochloride 1:2500 for management of intraoperative floppy-iris syndrome. J Cataract Refract Surg. 2007;33(4):580–582.
  • Flitcroft DI, He M, Jonas JB, et al. IMI – defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci. 2019;60(3):M20–M30.
  • Tkatchenko TV, Tkatchenjo AV. Pharmacogenomic approach to antimyopia drug development: pathways lead the way. Trends Pharmacol Sci. 2019;40(11):833–852.
  • Stone RA, Pardue MT, Iuvone PM, et al. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. Exp Eye Res. 2013;114:35–47.
  • Cooper J, Tkatchenko A. A review of current concepts of the etiology and treatment of myopia. Eye Contact Lens. 2018;44(4):231–247.
  • World Health Organization [Internet]. [cited 2021 Mar 31]. Available from: https://www.who.int/publications/i/item/world-report-on-vision.
  • De Jong PTVM. Myopia: its historical context. Br J Ophthalmol. 2018;102(8):1021–1027.
  • Hughes RPJ, Vincent SJ, Read SA, et al. Higher order aberrations, refractive error development and myopia control: a review. Clin Exp Optom. 2020;103(1):68–85.
  • Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res. 2013;114:106–119.
  • Truong HT, Cottriall CL, Gentle A, et al. Pirezepine affects scleral metabolic changes in myopia through a non-toxic mechanism. Exp Eye Res. 2002;74(1):103–111.
  • Harper AR, Summers JA. The dynamic sclera: extracellular matrix remodelling in normal ocular growth and myopia development. Exp Eye Res. 2015;133:100–111.
  • Vagge A, Ferro Desideri L, Nucci P, et al. Prevention of progression in myopia: a systematic review. Diseases. 2018;6(4):1–25.
  • Vutipongsatorn K, Yokoi T, Ohno-Matsui K. Current and emerging pharmaceutical interventions for myopia. Br J Ophthalmol. 2019;103(11):1539–1548.
  • Schwahn HN, Kaymak H, Schaeffel F. Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick. Vis Neurosci. 2000;17(2):165–176.
  • Anders LM, Heinrich SP, Lagrèze WA, et al. Little effect of 0.01% atropine eye drops as used in myopia prevention on the pattern electroretinogram. Doc Ophtalmol. 2019;138(2):85–89.
  • Carr BJ, Stel WK. Nitric oxide (NO) mediates the inhibition of form-deprivation myopia by atropine in chicks. Sci Rep. 2016;6(1):1–13.
  • Garcia Del Valle AM, Blázquez V, Gros-Otero J, et al. Efficacy and safety of a soft contact lens to control myopia progression. Clin Exp Optom. 2021;104(1):14–21.
  • Novack GD. Drug to prevent pediatric myopia: what would it take? Eye Contact Lens. 2018;44(4):220–223.
  • Wan L, Wei CC, Chen CS, et al. The synergistic effects of orthokeratology and atropine in slowing the progression of myopia. J Clin Med. 2018;7(9):259.
  • Fang PC, Chung MY, Yu HJ, et al. Prevention of myopia onset with 0.025% atropine in premyopic children. J Ocul Pharmacol Ther. 2010;26(4):341–345.
  • Upadhyay A, Beuerman RW. Biological mechanisms of atropine control of myopia. Eye Contact Lens. 2020;46(3):129–135.
  • Cooper J, Eisenberg N, Schulman E, et al. Maximum atropine dose without clinical signs or symptoms. Optom Vis Sci. 2013;90(12):467–472.
  • Ho MC, Hsieh YT, Shen EP, et al. Short‑term refractive and ocular parameter changes after topical atropine. Taiwan J Ophthalmol. 2020;10(2):111–115.
  • Cheng J, Yang Y, Kong X, et al. The effect of 0.01% atropine eye drops on the ocular surface in children for the control of myopia—the primary results from a six-month prospective study. Ther Clin Risk Manag. 2020;16:735–740.
  • Gong Q, Janowski M, Luo M, et al. Efficacy and adverse effects of atropine in childhood myopia A meta-analysis. JAMA Ophthalmol. 2017;135(6):624–630.
  • Loughman J, Flitcroft DI. The acceptability and visual impact of 0.01% atropine in Caucasian population. Br J Ophtalmol. 2016;100(11):1525–1529.
  • Chan LW, Hsieh YT, Hsu WC, et al. Optic disc parameters of myopic children with atropine treatment. Curr Eye Res. 2017;42(12):1614–1619.
  • Lee CY, Sun CC, Lin YF, et al. Effects of topical atropine on intraocular pressure and myopia progression: a prospective comparative study. BMC Ophthalmol. 2016;16(1):114.
  • Yu TC, Wu TE, Wang YS, et al. A STROBE-compliant case–control studyEffects of cumulative doses of topical atropine on intraocular pressure and myopia progression. Medicine (Baltimore). 2020;99(48):e22745.
  • Liu YM, Xie P. The safety of orthokeratology - a systematic review. Eye Contact Lens. 2016;42(1):35–42.
  • Lipson MJ, Brooks MM, Koffler BH. The role of orthokeratology in myopia control: a review. Eye Contact Lens. 2018;44(4):224–230.
  • Kinoshita N, Konno Y, Hamada N, et al. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first years results. Jpn J Ophthalmol. 2018;62(5):544–553. .
  • Dumouchel JL, Chemuturi N, Milton MN, et al. Models and approaches describing metabolism, transport and toxicity of drugs administered by the ocular route. Drug Metab Dispos. 2018;46(11):1670–1683. .
  • El Hoffy NM, Azim EAA, Hathout RM, et al. Glaucoma: management and future perspectives for nanotechnology-based treatment modalities. Eur J Pharm Sci. 2021;158:105648.
  • Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur J Pharm Biopharm. 2016;109:214–223.
  • Addo RT, Yeboah KG, Siwale RC, et al. Formulation and characterization of atropine sulfate in albumin-chitosan microparticles for in vivo ocular drug delivery. J Pharm Sci. 2015;104(5):1677–1690. .
  • Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Revs. 1995;16(1):3–19.
  • Rathore KS, Nema RK. An insight into ophthalmic drug delivery system. Int J Pharm Sci Drug Res. 2009;1(1):1–5.
  • Meisner D, Pringle J, Mezei M. Liposomal ophthalmic drug delivery 3. pharmacodynamic and biodisposition studies of atropine. Int J Pharm. 1989;55:105–113.
  • Verestiuc L, Nastasescu O, Barbu E, et al. Functionalized chitosan/NIPAM (HEMA) hybrid polymer networks as inserts for ocular drug delivery: synthesis, in vitro assessment, and in vivo evaluation. J Biomed Mater Res A. 2006;77A(4):726–753.
  • Pijls RT, Koole LH, Hanssen HH, et al. Flexible coils with a drug-releasing hydrophilic coating: a new platform for controlled delivery of drugs to the eye? J Bioact Compat Polym. 2004;19(4):267–285.
  • Gonzalez-Chomón C, Concheiro A, Alvarez-Lorenzo C. Soft contact lenses for controlled ocular delivery: 50 years in the making. Ther Deliv. 2013;4(9):1141–1161.
  • Alvarez-Lorenzo C, Anguiano-Igea S, Varela-Garcia A, et al. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater. 2019;84:49–62.
  • Lanier OL, Christopher KG, Macoon RM, et al. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv. 2020;17(8):1133–1149.
  • Glisoni RJ, Garcia-Fernandez MJ, Pino M, et al. Beta-cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym. 2013;93(2):449–457.
  • Topete A, Oliveira AS, Fernandes A, et al. Improving sustained drug delivery from ophthalmic lens materials through the control of temperature and time of loading. Eur J Pharm Sci. 2018;117:107–117.
  • Li CC, Chauhan A. Modelling ophthalmic drug delivery by soaked contact lenses. Ind Eng Chem Res. 2006;45(10):3718–3734.
  • Dixon P, Ghosh T, Mondal K, et al. Controlled delivery of pirfenidone through vitamin E-loaded contact lens ameliorates corneal inflammation. Drug Deliv Transl Res. 2018;8(5):1114–1126.
  • Tieppo A, White CJ, Paine AC, et al. Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release. 2012;157(3):391–397.
  • Desai AR, Maulvi FA, Desai DM, et al. Multiple drug delivery from the drug-implants-laden silicone contact lens: addressing the issue of burst drug release. Mater Sci Eng C. 2020;112:110885.
  • Musgrave CSA, Fang F. Contact lens materials: a materials science perspective. Materials. 2019;12(261):1–36.
  • Choi JH, Li Y, Jin R, et al. The efficiency of cyclosporine a-eluting contact lenses for the treatment of dry eye. Curr Eye Res. 2019;44(5):486–496.
  • Braga MEM, Costa VP, Pereira MJT, et al. Effects of operational conditions on the supercritical solvent impregnation of acetazolamide in Balafilcon A commercial contact lenses. Int J Pharm. 2011;420(2):231–243.
  • Ubani-Ukoma U, Gibson D, Schultz G, et al. Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model. Int J Pharm. 2019;565:499–508.
  • Silva D, De Sousa HC, Gil MH, et al. Diclofenac sustained release from sterilised soft contact lens materials using an optimised layer-by-layer coating. Int J Pharm. 2020;585:119506.
  • Hui A, Bagrowicz-Cieslak M, Phan C, et al. In vitro release of two antimuscarinic drugs from soft contact lenses. Clin Ophthalmol. 2017;11:1657–1665.
  • Lasowski F, Sheardown H. Atropine and roscovitine release from model silicone hydrogels. Optom Vis Sci. 2016;93(4):404–411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.