3,833
Views
12
CrossRef citations to date
0
Altmetric
Review

Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination

ORCID Icon, , , ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 1395-1414 | Received 17 Mar 2021, Accepted 23 Apr 2021, Published online: 06 Jun 2021

References

  • Du Toit A. Outbreak of a novel coronavirus. Nat Rev Microbiol. 2020;18(3): 123-123.
  • Wu M, Mei T, Lin C, et al. Melanoma cell membrane biomimetic versatile CuS nanoprobes for homologous targeting photoacoustic imaging and photothermal chemotherapy. ACS Appl Mater Interfaces. 2020;12(14):16031–16039.
  • WHO. Coronavirus disease 2019 (COVID-19) Situation Report-68; 2020 [cited 2020 Apr 6]; Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200328-sitrep-68-covid-19.pdf?sfvrsn=384bc74c_2.
  • Callaway E. Time to use the p-word? Coronavirus enters dangerous new phase. Nature. 2020.
  • Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. ActaBiomed. 2020;91(1):157–160.
  • Chauhan G, Madou MJ, Kalra S, et al., Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 14(7): 7760–7782. 2020.
  • Talebian S, Conde J. Why go NANO on COVID-19 Pandemic? Matter. 2020;3(3):598–601.
  • Jones GW, Monopoli MP, Campagnolo L, et al. No small matter: a perspective on nanotechnology-enabled solutions to fight COVID-19. Nanomed (Lond). 2020;15(24):2411–2427.
  • Tang Z, Kong N, Zhang X, et al. A materials-science perspective on tackling COVID-19. Nat Rev Mater. 2020;5(11):847–860.
  • Tang Z, Zhang X, Shu Y, et al. Insights from nanotechnology in COVID-19 treatment. Nano Today. 2021;36:101019.
  • Pushparajah D, Jimenez S, Wong S, et al. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev. 2021
  • Pilaquinga F, Morey J, Torres M, et al. Silver nanoparticles as a potential treatment against SARS-CoV-2: a review. WIREs Nanomed Nanobiotechnol. 2021;n/a(n/a):e1707.
  • Rana MM. Polymer-based nano-therapies to combat COVID-19 related respiratory injury: progress, prospects, and challenges. J Biomater Sci Polym Ed. 2021;1–33. doi:https://doi.org/10.1080/09205063.2021.1909412
  • Abduljauwad SN, Habib T, Ahmed H-U-R. Nano-clays as potential pseudo-antibodies for COVID-19. Nanoscale Res Lett. 2020;15(1):173.
  • Serrano-Aroca Á, Takayama K, Tuñón-Molina A, et al. Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS Nano. 2021. doi:https://doi.org/10.1021/acsnano.1c00629.
  • Kostarelos K. Nanoscale nights of COVID-19. Nat Nanotechnol. 2020;15(5):343–344.
  • Mitchell MJ, Billingsley M, Haley R, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2020
  • Chung YH, Beiss V, Fiering SN, et al. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020;14(10):12522–12537.
  • Zhang Q, Honko A, Zhou J, et al., Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 20(7): 5570–5574. 2020.
  • Rao L, Xia S, Xu W, et al., Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci U S A. 2020;117(44):27141–27147.
  • Witika B, Makoni P, Mweetwa L, et al. Nano-biomimetic drug delivery vehicles: potential approaches for COVID-19 treatment. Molecules. 2020;25(24):5952.
  • Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193–292.
  • Liu DX, Fung TS, Chong KK-L, et al. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97–109.
  • Mortola E, Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 2004;576(1–2):174–178.
  • Wang C, Zheng X, Gai W, et al. MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget. 2017;8(8):12686–12694.
  • De Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005;64:165–230.
  • Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol. 1984;33(2):281–293.
  • Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11–22.
  • Bertram S, Glowacka I, Muller MA, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011;85(24):13363–13372.
  • Song W, Gui M, Wang X, et al. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018;14(8):e1007236.
  • Li F, Li W, Farzan M, et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864–1868.
  • Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448.
  • Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020;368(6489):409–412.
  • Wec AZ, Wrapp D, Herbert AS. Broad sarbecovirus neutralizing antibodies define a key site of vulnerability on the SARS-CoV-2 spike protein. bioRxiv. 2004:2020. 01.31.929695. doi:https://doi.org/10.1101/2020.05.15.096511
  • Baez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21–38.
  • Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 2019;93(6):e01815-18.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. e8.
  • Lung J, Lin Y-S, Yang Y-H, et al. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol. 2020;92(6):693–697.
  • Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV–a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226–236.
  • Shin MD, Shukla S, Chung YH, et al., COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 15(8): 646–655. 2020.
  • Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269.
  • Chiappelli F, Khakshooy A, Greenberg G. CoViD-19 Immunopathology and Immunotherapy. Bioinformation. 2020;16(3):219–222.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395(10223):497–506.
  • Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422.
  • Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–432.
  • De Wit E, Van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–534.
  • Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–374.
  • Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9(1):382–385.
  • Shin YW, Chang K-H, Hong G-W, et al. Selection of vaccinia virus-neutralizing antibody from a phage-display human-antibody library. J Microbiol Biotechnol. 2019;29(4):651–657.
  • Casadevall A, Pirofski LA, Racaniello V. The Ebola epidemic crystallizes the potential of passive antibody therapy for infectious diseases. PLoS Pathog. 2015;11(4):e1004717.
  • Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22(3):326–330.
  • Wu CJ, Huang H-W, Liu C-Y, et al. Inhibition of SARS-CoV replication by siRNA. Antiviral Res. 2005;65(1):45–48.
  • Barik S. RNAi applications to defeat respiratory viral infections, in RNA interference and viruses: current innovations and future trends. RNAi Interference and Viruses: Current Innovations and Future Trends. Caister Academic Press. 2010.
  • Tian D, Liu Y, Liang C, et al. An update review of emerging small-molecule therapeutic options for COVID-19. Biomed Pharmacother. 2021;137:111313.
  • Kobayashi K, Wei J, Iida R, et al. Surface engineering of nanoparticles for therapeutic applications. Polym J. 2014;46(8):460–468.
  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–627.
  • Zhou J, Krishnan N, Jiang Y, et al. Nanotechnology for virus treatment. Nano Today. 2021;36:101031.
  • Pereira-Silva M, Jarak I, Alvarez-Lorenzo C, et al. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. J Control Release. 2020;323:442–462.
  • Santos AC, Pereira I, Pereira-Silva M, et al. Nanocarriers for resveratrol delivery: impact on stability and solubility concerns. Trends Food Sci Technol. 2019;91:483–497.
  • Luo C, Sun J, Sun B, et al. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci. 2014;35(11):556–566.
  • Machhi J, Shahjin F, Das S, et al. Nanocarrier vaccines for SARS-CoV-2. Adv Drug Deliv Rev. 2021
  • Park KS, Sun X, Aikins M, et al. Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev. 2020;169:137–151.
  • Volpatti LR, Wallace R, Cao S, et al. Polymersomes decorated with SARS-CoV-2 spike protein receptor binding domain elicit robust humoral and cellular immunity. bioRxiv. 2021; 438884
  • Meng Q-F, Tian R, Long H, et al. Capturing cytokines with advanced materials: a potential strategy to tackle COVID-19 cytokine storm. Adv Mater. 2021;n/a(n/a):2100012.
  • Loczechin A, Séron K, Barras A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. 2019;11(46):42964–42974.
  • Rao L, Tian R, Chen X. Cell-membrane-mimicking nanodecoys against infectious diseases. ACS Nano. 2020;14(3):2569–2574.
  • Lauster D, Klenk S, Ludwig K, et al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat Nanotechnol. 2020;15(5):373–379.
  • Magee WE, Miller OV. Liposomes containing antiviral antibody can protect cells from virus infection. Nature. 1972;235(5337):339–341.
  • Rao L, Wang W, Meng Q-F, et al. A biomimetic nanodecoy traps zika virus to prevent viral infection and fetal microcephaly development. Nano Lett. 2019;19(4):2215–2222.
  • Valcourt DM, Harris J, Riley RS, et al. Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Res. 2018;11(10):4999–5016.
  • Tan T, Wang Y, Wang J, et al. Targeting peptide-decorated biomimetic lipoproteins improve deep penetration and cancer cells accessibility in solid tumor. Acta Pharm Sin B. 2020;10(3):529–545.
  • Tan T, Hu H, Wang H, et al. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat Commun. 2019;10(1):3322.
  • Yong T, Zhang X, Bie N, et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun. 2019;10(1):3838.
  • Lu Q, Yi M, Zhang M, et al. Folate-conjugated cell membrane mimetic polymer micelles for tumor-cell-targeted delivery of doxorubicin. Langmuir. 2019;35(2):504–512.
  • Fang RH, Kroll AV, Gao W, et al., Cell membrane coating nanotechnology. Adv Mater. 30(23): e1706759. 2018.
  • Sabu C, Rejo C, Kotta S, et al. Bioinspired and biomimetic systems for advanced drug and gene delivery. J Control Release. 2018;287:142–155.
  • Pinky, Gupta S, Krishnakumar V, et al. Mesenchymal stem cell derived exosomes: a nano platform for therapeutics and drug delivery in combating COVID-19. Stem Cell Rev Rep. 2021;17(1):33–43.
  • Topol EJ. Messenger RNA vaccines against SARS-CoV-2. Cell. 2021;184(6):1401.
  • Khurana A, Allawadhi P, Khurana I, et al. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today. 2021;38:101142.
  • Schoenmaker L, Witzigmann D, Kulkarni JA, et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm. 2021;601:120586.
  • Park KS, Bazzill JD, Son S, et al. Lipid-based vaccine nanoparticles for induction of humoral immune responses against HIV-1 and SARS-CoV-2. J Control Release. 2021;330:529–539.
  • He L, Lin X, Wang Y, et al. Single-component, self-assembling, protein nanoparticles presenting the receptor binding domain and stabilized spike as SARS-CoV-2 vaccine candidates. Sci Adv. 2021;7(12)
  • Hassan AO, Feldmann F, Zhao H, et al. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. bioRxiv. 2021. 428251
  • Kim E, Weisel FJ, Balmert SC, et al. A single subcutaneous or intranasal immunization with adenovirus-based SARS-CoV-2 vaccine induces robust humoral and cellular immune responses in mice. Eur J Immunol. 2021. DOI:https://doi.org/10.1002/eji.202149167.
  • Feng L, Wang Q, Shan C, et al. An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques. Nat Commun. 2020;11(1):4207.
  • Huang L, Rong Y, Pan Q, et al. SARS-CoV-2 vaccine research and development: conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci. 2020. DOI:https://doi.org/10.1016/j.ajps.2020.08.001.
  • Jia Q, Bielefeldt-Ohmann H, Maison RM, et al. Replicating bacterium-vectored vaccine expressing SARS-CoV-2 membrane and nucleocapsid proteins protects against severe COVID-19-like disease in hamsters. NPJ Vaccines. 2021;6(1):47.
  • Zheng B, Peng W, Guo M, et al. Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chem Eng J. 2021;418:129392.
  • Rogers TF, Zhao F, Huang D, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020;369(6506):956–963.
  • Li W, Drelich A, Martinez D, et al. Potent neutralization of SARS-CoV-2 in vitro and in an animal model by a human monoclonal antibody. bioRxiv. 2020:093088
  • Cao L, Goreshnik I, Coventry B, et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science. 2020;370(6515):426–431.
  • Panda SK, Sen Gupta PS, Biswal S, et al. ACE-2-derived biomimetic peptides for the inhibition of spike protein of SARS-CoV-2. J Proteome Res. 2021;20(2):1296–1303.
  • Hanke L, Vidakovics Perez L, Sheward DJ, et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun. 2020;11(1):4420.
  • Kwon PS, Oh H, Kwon S-J, et al. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov. 2020;6(1):50.
  • Kim J, Mukherjee A, Nelson D, et al. Rapid generation of circulating and mucosal decoy ACE2 using mRNA nanotherapeutics for the potential treatment of SARS-CoV-2. bioRxiv. 2020:205583
  • Xuan M, Shao J, Li J. Cell membrane-covered nanoparticles as biomaterials. Natl Sci Rev. 2019;6(3):551–561.
  • Zhang D, Ye Z, Wei L, et al. Cell membrane-coated porphyrin metal–organic frameworks for cancer cell targeting and O2-evolving photodynamic therapy. ACS Appl Mater Interfaces. 2019;11(43):39594–39602.
  • Pereira-Silva M, Santos A, Conde J, et al. Biomimetic cancer cell membrane-coated nanosystems as next-generation cancer therapies. Expert Opin Drug Deliv. 2020;17(11):1515–1518.
  • Gan J, Du G, He C, et al. Tumor cell membrane enveloped aluminum phosphate nanoparticles for enhanced cancer vaccination. J Control Release. 2020;326:297–309.
  • Liang H, Huang K, Su T, et al. Mesenchymal stem cell/red blood cell-inspired nanoparticle therapy in mice with carbon tetrachloride-induced acute liver failure. ACS Nano. 2018;12(7):6536–6544.
  • Fu Y, Liu W, Wang L-Y, et al. Erythrocyte-membrane-camouflaged nanoplatform for intravenous glucose-responsive insulin delivery. Adv Funct Mater. 2018;28(41):1802250.
  • Zhang Q, Dehaini D, Zhang Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol. 2018;13(12):1182–1190.
  • Wu G, Wei W, Zhang J, et al. A self-driven bioinspired nanovehicle by leukocyte membrane-hitchhiking for early detection and treatment of atherosclerosis. Biomaterials. 2020;250:119963.
  • Wei X, Ying M, Dehaini D, et al. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis. ACS Nano. 2018;12(1):109–116.
  • Ai X, Wang S, Duan Y, et al. Emerging approaches to functionalizing cell membrane-coated nanoparticles. Biochemistry. 2020;60(13):941–955.
  • Guo Y, Wang D, Song Q, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano. 2015;9(7):6918–6933.
  • Li M, Fang H, Liu Q, et al. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomater Sci. 2020;8(7):1802–1814.
  • Meng QF, Cheng Y-X, Huang Q, et al. Biomimetic immunomagnetic nanoparticles with minimal nonspecific biomolecule adsorption for enhanced isolation of circulating tumor cells. ACS Appl Mater Interfaces. 2019;11(32):28732–28739.
  • Ou W, Byeon JH, Soe ZC, et al. Tailored black phosphorus for erythrocyte membrane nanocloaking with interleukin-1αsiRNA and paclitaxel for targeted, durable, and mild combination cancer therapy. Theranostics. 2019;9(23):6780–6796.
  • Xiong K, Wei W, Jin Y, et al. Biomimetic immuno-magnetosomes for high-performance enrichment of circulating tumor cells. Adv Mater. 2016;28(36):7929–7935.
  • Poudel K, Banstola A, Gautam M, et al. Macrophage-membrane-camouflaged disintegrable and excretable nanoconstruct for deep tumor penetration. ACS Appl Mater Interfaces. 2020;12(51):56767–56781.
  • Hu Q, Sun W, Qian C, et al. Anticancer platelet-mimicking nanovehicles. Adv Mater. 2015;27(44):7043–7050.
  • Jing L, Qu H, Wu D, et al. Platelet-camouflaged nanococktail: simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics. 2018;8(10):2683–2695.
  • Lin Y, Zhong Y, Chen Y, et al. Ligand-modified erythrocyte membrane-cloaked metal-organic framework nanoparticles for targeted antitumor therapy. Mol Pharm. 2020;17(9):3328–3341.
  • Zhou H, Fan Z, Lemons PK, et al. A facile approach to functionalize cell membrane-coated nanoparticles. Theranostics. 2016;6(7):1012–1022.
  • Han Y, Gao C, Wang H, et al. Macrophage membrane-coated nanocarriers Co-Modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer’s disease mice. Bioact Mater. 2021;6(2):529–542.
  • Wang T, Luo Y, Lv H, et al. Aptamer-based erythrocyte-derived mimic vesicles loaded with siRNA and doxorubicin for the targeted treatment of multidrug-resistant tumors. ACS Appl Mater Interfaces. 2019;11(49):45455–45466.
  • Chen HY, Deng J, Wang Y, et al. Hybrid cell membrane-coated nanoparticles: a multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater. 2020;112:1–13.
  • Molinaro R, Corbo C, Martinez JO, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater. 2016;15(9):1037–1046.
  • Zinger A, Soriano S, Baudo G, et al. Biomimetic nanoparticles as a theranostic tool for traumatic brain injury. Adv Funct Mater. 2021;n/a(n/a):2100722.
  • Jiang L, Zhu Y, Luan P, et al. Bacteria -anchoring hybrid liposome capable of absorbing multiple toxins for antivirulence therapy of escherichia coli infection. ACS Nano. 2021;15(3):4173–4185.
  • Sato YT, Umezaki K, Sawada S, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6(1):21933.
  • Angsantikul P, Fang RH, Zhang L. Toxoid vaccination against bacterial infection using cell membrane-coated nanoparticles. Bioconjug Chem. 2018;29(3):604–612.
  • Fang RH, Luk BT, Hu C-MJ, et al. Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv Drug Deliv Rev. 2015;90:69–80.
  • Hu CM, Fang RH, Copp J, et al. A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol. 2013;8(5):336–340.
  • Zhang Y, Chen Y, Lo C, et al. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew Chem Int Ed Engl. 2019;58(33):11404–11408.
  • Wang F, Fang RH, Luk BT, et al. Nanoparticle-based antivirulence vaccine for the management of methicillin-resistant staphylococcus aureus skin infection. Adv Funct Mater. 2016;26(10):1628–1635.
  • Wei X, Gao J, Wang F, et al. In situ capture of bacterial toxins for antivirulence vaccination. Adv Mater. 2017;29(33).
  • Hu CM, Fang RH, Luk BT, et al. Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol. 2013;8(12):933–938.
  • Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: an update. J Control Release. 2020;323:253–268.
  • Gao F, Xu L, Yang B, et al. Kill the real with the fake: eliminate intracellular staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier. ACS Infect Dis. 2019;5(2):218–227.
  • Li Y, Liu Y, Ren Y, et al. Coating of a novel antimicrobial nanoparticle with a macrophage membrane for the selective entry into infected macrophages and killing of intracellular staphylococci. Adv Funct Mater. 2020;30(48):2004942.
  • Wei X, Ran D, Campeau A, et al. Multiantigenic nanotoxoids for antivirulence vaccination against antibiotic-resistant gram-negative bacteria. Nano Lett. 2019;19(7):4760–4769.
  • Shi M, Shen K, Yang B, et al. An electroporation strategy to synthesize the membrane-coated nanoparticles for enhanced anti-inflammation therapy in bone infection. Theranostics. 2021;11(5):2349–2363.
  • Thamphiwatana S, Angsantikul P, Escajadillo T, et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci U S A. 2017;114(43):11488–11493.
  • Wei X, Zhang G, Ran D, et al. T-cell-mimicking nanoparticles can neutralize HIV infectivity. Adv Mater. 2018;30(45):e1802233.
  • Liu X, Yuan L, Zhang L, et al. Bioinspired Artificial nanodecoys for hepatitis B virus. Angew Chem Int Ed Engl. 2018;57(38):12499–12503.
  • Zhang G, Campbell G, Zhang Q, et al. CD4(+) T cell-mimicking nanoparticles broadly neutralize HIV-1 and suppress viral replication through autophagy. mBio. 2020;11(5):e00903-20.
  • Zhang C, Zhang P-Q, Guo S, et al. Application of biomimetic cell-derived nanoparticles with mannose modification as a novel vaccine delivery platform against teleost fish viral disease. ACS Biomater Sci Eng. 2020;6(12):6770–6777.
  • Yan H, Shao D, Lao Y-H, et al. Engineering cell membrane-based nanotherapeutics to target inflammation. Adv Sci. 2019;6(15):1900605.
  • Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers (Basel). 2019;11(12)
  • Pereira-Silva M, Santos AC, Conde J, et al. Biomimetic cancer cell membrane-coated nanosystems as next-generation cancer therapies. Expert Opin Drug Deliv. 2020;17(11):1515–1518.
  • Cao H, Dan Z, He X, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano. 2016;10(8):7738–7748.
  • Pitchaimani A, Nguyen TDT, Aryal S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials. 2018;160:124–137.
  • Ma W, Zhu D, Li J, et al. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics. 2020;10(3):1281–1295.
  • Oroojalian F, Beygi M, Baradaran B, et al. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small. 2021;17(12):e2006484.
  • Corbo C, Parodi A, Evangelopoulos M, et al. Proteomic profiling of a biomimetic drug delivery platform. Curr Drug Targets. 2015;16(13):1540–1547.
  • Molinaro R, Pastò A, Corbo C, et al. Macrophage-derived nanovesicles exert intrinsic anti-inflammatory properties and prolong survival in sepsis through a direct interaction with macrophages. Nanoscale. 2019;11(28):13576–13586.
  • Wang K, Lei Y, Xia D, et al. Neutrophil membranes coated, antibiotic agent loaded nanoparticles targeting to the lung inflammation. Colloids Surf B Biointerfaces. 2020;188:110755.
  • Xia Q, Zhang Y, Li Z, et al. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B. 2019;9(4):675–689.
  • Xiao P, Wang J, Zhao Z, et al. Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy. Nano Lett. 2021;21(5):2094–2103.
  • Kunde SS, Wairkar S. Platelet membrane camouflaged nanoparticles: biomimetic architecture for targeted therapy. Int J Pharm. 2021;598:120395.
  • Bahmani B, Gong H, Luk BT, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat Commun. 2021;12(1):1999.
  • Molinaro R, Pasto A, Taraballi F, et al. Biomimetic nanoparticles potentiate the anti-inflammatory properties of dexamethasone and reduce the cytokine storm syndrome: an additional weapon against COVID-19?. Nanomaterials (Basel). 2020;10(11):2301.
  • Wang C, Wang S, Chen Y, et al. Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 infection. ACS Nano. 2021. doi:https://doi.org/10.1021/acsnano.0c06836.
  • Wang C, Wang S, Chen Y, et al. Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 infection. bioRxiv. 2020; 247338
  • Lei C, Qian K, Li T, et al. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun. 2020;11(1):2070.
  • Richtering W, Alberg I, Zentel R. Nanoparticles in the biological context: surface morphology and protein corona formation. Small. 2020;16(39):e2002162.
  • Mosselhy DA, Virtanen J, Kant R, et al. COVID-19 pandemic: what about the safety of anti-coronavirus nanoparticles? Nanomaterials. 2021;11(3):796.
  • Yang X, Yu T, Zeng Y, et al. pH-Responsive biomimetic polymeric micelles as lymph node-targeting vaccines for enhanced antitumor immune responses. Biomacromolecules. 2020;21(7):2818–2828.
  • Wang R, Yan H, Yu A, et al. Cancer targeted biomimetic drug delivery system. J Drug Delivery Sci Technol. 2021;102530. doi:https://doi.org/10.1016/j.jddst.2021.102530
  • Nel AE, Miller JF. Nano-enabled COVID-19 vaccines: meeting the challenges of durable antibody plus cellular immunity and immune escape. ACS Nano. 2021. doi:https://doi.org/10.1021/acsnano.1c01845

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.