299
Views
1
CrossRef citations to date
0
Altmetric
Review

Anti-tuberculosis drug delivery for tuberculous bone defects

ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Pages 1815-1827 | Received 23 Aug 2021, Accepted 09 Nov 2021, Published online: 03 Jan 2022

References

  • Furin J, Cox H, Pai M. Tuberculosis. Lancet. 2019;393(10181):1642–1656.
  • Fan J, An J, Shu W, et al. Epidemiology of skeletal tuberculosis in Beijing, China: a 10-year retrospective analysis of data. Eur J Clin Microbiol Infect Dis. 2020;39(11):2019–2025.
  • Dheda K, Barry CE 3rd, Maartens G. Tuberculosis. Lancet. 2016;387(10024):1211–1226.
  • Kaniga K, Cirillo DM, Hoffner S, et al. A multilaboratory, multicountry study to determine mic quality control ranges for phenotypic drug susceptibility testing of selected first-line antituberculosis drugs, second-line injectables, fluoroquinolones, clofazimine, and linezolid. J Clin Microbiol. 2016;54(12):2963–2968.
  • Nagarajan S, Whitaker P. Management of adverse reactions to first-line tuberculosis antibiotics. Curr Opin Allergy Clin Immunol. 2018;18(4):333–341.
  • Khan J, Alexander A, Ajazuddin, et al. Exploring the role of polymeric conjugates toward anti-cancer drug delivery: current trends and future projections. Int J Pharm. 2018;548(1):500–514.
  • Ito F, Fujimori H, Honnami H, et al. Effect of polyethylene glycol on preparation of rifampicin-loaded PLGA microspheres with membrane emulsification technique. Colloids Surf B Biointerfaces. 2008;66(1): 65–70.
  • Shaikh RP, Kumar P, Choonara YE, et al. Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition. Biofabrication. 2012;4(2):025002.
  • Dong J, Zhang S, Ma J, et al. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant. PLoS One. 2014;9(4):e94937.
  • Xu WK, Wei X, Wei K, et al. A mesoporous silicon/poly-(DL-lactic-co-glycolic) acid microsphere for long time anti-tuberculosis drug delivery. Int J Pharm. 2014;476(1–2):116–123.
  • Li D, Li L, Ma Y, et al. Dopamine-assisted fixation of drug-loaded polymeric multilayers to osteoarticular implants for tuberculosis therapy. Biomater Sci. 2017;5(4): 730–740.
  • Lemmer Y, Kalombo L, Pietersen R-D, et al. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release. 2015;211:94–104.
  • Vieira S, Vial S, Reis RL, et al. Nanoparticles for bone tissue engineering. Biotechnol Prog. 2017;33(3):590–611.
  • Rothe R, Hauser S, Neuber C, et al. Adjuvant drug-assisted bone healing: advances and challenges in drug delivery approaches. Pharmaceutics. 2020;12(5):428.
  • Praphakar RA, Sumathra M, Ebenezer RS, et al. Fabrication of bioactive rifampicin loaded kappa-Car-MA-INH/Nano hydroxyapatite composite for tuberculosis osteomyelitis infected tissue regeneration. Int J Pharm. 2019;565:543–556.
  • Piersimoni C, Scarparo C. Extrapulmonary infections associated with nontuberculous mycobacteria in immunocompetent persons. Emerg Infect Dis. 2009;15(9):1351–1358. quiz 1544.
  • Babhulkar S, Pande S. Tuberculosis of the hip. Clin Orthop Relat Res. 2002;398:93–99.
  • Pande KC, Babhulkar SS. Atypical spinal tuberculosis. Clin Orthop Relat Res. 2002;398:67–74.
  • Rajasekaran S, Khandelwal G. Drug therapy in spinal tuberculosis. Eur Spine J. 2013;22(Suppl 4):587–593.
  • Yew WW, Chang KC, Chan DP. Oxidative stress and first-line antituberculosis drug-induced hepatotoxicity. Antimicrob Agents Chemother. 2018;62(8):e02637–17.
  • Garcia-Prats AJ, Schaaf HS, Hesseling AC. The safety and tolerability of the second-line injectable antituberculosis drugs in children. Expert Opin Drug Saf. 2016;15(11):1491–1500.
  • Tiberi S, Scardigli A, Centis R, et al. Classifying new anti-tuberculosis drugs: rationale and future perspectives. Int J Infect Dis. 2017;56:181–184.
  • Zenner D, Beer N, Harris RJ, et al. Treatment of latent tuberculosis infection: an updated network meta-analysis. Ann Intern Med. 2017;167(4):248–255.
  • Mitchison DA. The search for new sterilizing anti-tuberculosis drugs. Front Biosci. 2004;9(1–3):1059–1072.
  • Graham SM, Daley HM, Banerjee A, et al. Ethambutol in tuberculosis: time to reconsider? Arch Dis Child. 1998;79(3):274–278.
  • Centers for Disease Control and Prevention. Provisional CDC guidelines for the use and safety monitoring of bedaquiline fumarate (Sirturo) for the treatment of multidrug-resistant tuberculosis. MMWR Recomm Rep. 2013;62(Rr–09):1–12.
  • Galli L, Lancella L, Garazzino S, et al. Recommendations for treating children with drug-resistant tuberculosis. Pharmacol Res. 2016;105:176–182.
  • Chen XN, Gu X, Lee JH, et al. Multifunctional surfaces with biomimetic nanofibres and drug-eluting micro-patterns for infection control and bone tissue formation. Eur Cell Mater. 2012;24:237–248.
  • Huang D, Li D, Wang T, et al. Isoniazid conjugated poly(lactide-co-glycolide): long-term controlled drug release and tissue regeneration for bone tuberculosis therapy. Biomaterials. 2015;52:417–425.
  • Müllner M. Functional natural and synthetic polymers. Macromol Rapid Commun. 2019;40(10):e1900151.
  • Catoira MC, Fusaro L, Di Francesco D, et al. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10): 115.
  • Zulkiflee I, Fauzi MB. Gelatin-polyvinyl alcohol film for tissue engineering: a concise review. Biomedicines. 2021;9(8):979.
  • Wilharm N, Bertmer M, Knolle W, et al. Biomimetic crosslinking of collagen gels by energetic electrons: the role of L-lysine. Acta Biomater. 2021. DOI:https://doi.org/10.1016/j.actbio.2021.09.025
  • Yang S, Zhu J, Lu C, et al. Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. Bioact Mater. 2022;8:529–544.
  • Li W, Zhao X, Huang T, et al. Preparation of sodium hyaluronate/dopamine/AgNPs hydrogel based on the natural eutetic solvent as an antibaterial wound dressing. Int J Biol Macromol. 2021;191:60–70.
  • Ma W, Zhou M, Dong W, et al. A bi-layered scaffold of a poly(lactic-co-glycolic acid) nanofiber mat and an alginate-gelatin hydrogel for wound healing. J Mater Chem B. 2021;9(36):7492–7505.
  • Dong Y, Li S, Li X, et al. Smart MXene/agarose hydrogel with photothermal property for controlled drug release. Int J Biol Macromol. 2021;190:693–699.
  • Zhang J, Tan WQ, Li Q, et al. Preparation of cross-linked chitosan quaternary ammonium salt hydrogel films loading drug of gentamicin sulfate for antibacterial wound dressing. Mar Drugs. 2021;19(9):479.
  • Li K, Zhu M, Xu P, et al. Three-dimensionally plotted MBG/PHBHHx composite scaffold for antitubercular drug delivery and tissue regeneration. J Mater Sci Mater Med. 2015;26(2):102.
  • Zhu M, Li K, Zhu Y, et al. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomater. 2015;16:145–155.
  • Mori M, Asahi R, Yamamoto Y, et al. Sodium alginate as a potential therapeutic filler: an in vivo study in rats. Mar Drugs. 2020;18(10):520.
  • Sanz-Ruiz P, Carbó-Laso E, Real-Romero JCDet al. Microencapsulation of rifampicin: a technique to preserve the mechanical properties of bone cement. J Orthop Res. 2018;36(1):459–466.
  • Muxika A, Etxabide A, Uranga J, et al. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105(Pt 2):1358–1368.
  • Yin X, Yang C, Wang Z, et al. Alginate/chitosan modified immunomodulatory titanium implants for promoting osteogenesis in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2021;124:112087.
  • Shaabani A, Sedghi R. Preparation of chitosan biguanidine/PANI-containing self-healing semi-conductive waterborne scaffolds for bone tissue engineering. Carbohydr Polym. 2021;264:118045.
  • Osmond MJ, Krebs MD. Tunable chitosan-calcium phosphate composites as cell-instructive dental pulp capping agents. J Biomater Sci Polym Ed. 2021;32(11):1450–1465.
  • Liu T, Li Y, Zhang Y, et al. A biodegradable, mechanically tunable micro-arc oxidation AZ91D-based composite implant with calcium phosphate/chitosan coating promotes long-term bone tissue regeneration. Biotechnol J. 2021;16(10):e2000653.
  • Li Y, Liu C, Liu W, et al. Apatite formation induced by chitosan/gelatin hydrogel coating anchored on poly(aryl ether nitrile ketone) substrates to promote osteoblastic differentiation. Macromol Biosci. 2021;e2100262. DOI:https://doi.org/10.1002/mabi.202100262
  • Kim HS, Lee JW, Mandakhbayar N, et al. Therapeutic tissue regenerative nanohybrids self-assembled from bioactive inorganic core/chitosan shell nanounits. Biomaterials. 2021;274:120857.
  • Divband B, Aghazadeh M, Al-qaim ZH, et al. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells. Carbohydr Polym. 2021;273:118589.
  • Brun P, Zamuner A, Battocchio C, et al. Bio-functionalized chitosan for bone tissue engineering. Int J Mol Sci. 2021;22(11):5916.
  • Chen G, Wu Y, Yu D, et al. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound healing of bone tuberculosis. J Biomater Appl. 2019;33(7):989–996.
  • Osmalek T, Froelich A, Tasarek S. Application of gellan gum in pharmacy and medicine. Int J Pharm. 2014;466(1–2):328–340.
  • Mehnath S, Ayisha Sithika MA, Arjama M, et al. Sericin-chitosan doped maleate gellan gum nanocomposites for effective cell damage in mycobacterium tuberculosis. Int J Biol Macromol. 2019;122:174–184.
  • Ding H, Nie D, Cui N, et al., Catalytic reduction of organic dyes by multilayered graphene platelets and silver nanoparticles in polyacrylic acid hydrogel. Materials (Basel). 2021;14(9): 2274.
  • Pal N, Banerjee S, Roy P, et al. Cellulose nanocrystals‑silver nanoparticles-reduced graphene oxide based hybrid PVA nanocomposites and its antimicrobial properties. Int J Biol Macromol. 2021;191:445–456.
  • Chen H, Zhang H, Shen Y, et al. Instant in-situ tissue repair by biodegradable PLA/gelatin nanofibrous membrane using a 3D printed handheld electrospinning device. Front Bioeng Biotechnol. 2021;9:684105.
  • Li G, Zhao M, Xu F, et al. Synthesis and biological application of polylactic acid. Molecules. 2020;25(21):5023.
  • Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C Mater Biol Appl. 2018;92:1041–1060.
  • Wu G, Chen L, Li H, et al. Comparing microspheres with different internal phase of polyelectrolyte as local drug delivery system for bone tuberculosis therapy. Biomed Res Int. 2014;297808.
  • Zhao P, Li D, Yang F, et al. In vitro and in vivo drug release behavior and osteogenic potential of a composite scaffold based on poly(epsilon-caprolactone)-block-poly(lactic-co-glycolic acid) and beta-tricalcium phosphate. J Mat Chem B. 2015;3(34):6885–6896.
  • Liu P, Jiang H, Li S, et al. Determination of anti-tuberculosis drug concentration and distribution from sustained release microspheres in the vertebrae of a spinal tuberculosis rabbit model. J Orthop Res. 2017;35(1):200–208.
  • Liang Q, Song X, She S, et al. Development of dual delivery antituberculotic system containing rifapentine microspheres and adipose stem cells seeded in hydroxyapatite/tricalcium phosphate. Drug Des Devel Ther. 2019;13:373–384.
  • Liu P, Guo B, Wang S, et al. A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug carrier for localized bone tuberculosis therapy. Int J Pharm. 2019;558:101–109.
  • Wang Z, Song X, Yang H, et al. Development and in vitro characterization of rifapentine microsphere-loaded bone implants: a sustained drug delivery system. Ann Palliat Med. 2020;9(2):375–387.
  • Zeng H, Pang, XY, Wang, S, et al. The preparation of core/shell structured microsphere of multi first-line anti-tuberculosis drugs and evaluation of biological safety. Int J Clin Exp Med. 2015;8(6):8398–8414.
  • Li DW, Li C, Wang X, et al. Facile fabrication of composite scaffolds for long-term controlled dual drug release. Adv Polym Technol. 2020;2020:1–10.
  • Ailincai D, Gavril G, Marin L. Polyvinyl alcohol boric acid - A promising tool for the development of sustained release drug delivery systems. Mater Sci Eng C Mater Biol Appl. 2020;107:110316.
  • Sequeira RS, Miguel SP, Cabral CSD, et al. Development of a poly(vinyl alcohol)/lysine electrospun membrane-based drug delivery system for improved skin regeneration. Int J Pharm. 2019;570:118640.
  • Zhou CX, Li, L, Ma, YG, et al. A bioactive implant in situ and long-term releases combined drugs for treatment of osteoarticular tuberculosis. Biomaterials. 2018;176:50–59.
  • Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci. 2017;249:321–330.
  • Zhang B, Chai Y, Huang K, et al. Vancomycin hydrochloride loaded hydroxyapatite mesoporous microspheres with micro/nano surface structure to increase osteogenic differentiation and antibacterial ability. J Biomed Nanotechnol. 2021;17(8):1668–1678.
  • Yu X, Shen G, Shang Q, et al. A naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Int J Biol Macromol. 2021;193(Pt A):510–518.
  • Wenzhi S, Dezhou W, Min G, et al. Assessment of nano-hydroxyapatite and poly (lactide-co-glycolide) nanocomposite microspheres fabricated by novel airflow shearing technique for in vivo bone repair. Mater Sci Eng C Mater Biol Appl. 2021;128:112299.
  • Wang X, Mei, L, Jiang, X, et al. Hydroxyapatite-coated titanium by micro-arc oxidation and steam-hydrothermal treatment promotes osseointegration. Front Bioeng Biotechnol. 2021;9:625877.
  • Wang B, Yuan S, Xin W, et al. Synergic adhesive chemistry-based fabrication of BMP-2 immobilized silk fibroin hydrogel functionalized with hybrid nanomaterial to augment osteogenic differentiation of rBMSCs for bone defect repair. Int J Biol Macromol. 2021;192:407–416.
  • Zhu S, Zhang X, Chen X, et al. Nano-hydroxyapatite scaffold based on recombinant human bone morphogenetic protein 2 and its application in bone defect repair. J Biomed Nanotechnol. 2021;17(7):1330–1338.
  • Kim SS, Gwak SJ, Kim BS. Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2. J Biomed Mater Res A. 2008;87(1):245–253.
  • Curtin CM, Tierney EG, McSorley K, et al. Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater. 2015;4(2):223–227.
  • Su J, Xu H, Sun J, et al. Dual delivery of BMP-2 and bFGF from a new nano-composite scaffold, loaded with vascular stents for large-size mandibular defect regeneration. Int J Mol Sci. 2013;14(6):12714–12728.
  • Zhang L, Mu W, Chen S, et al. The enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide coated mineralized collagen composite in the treatment of the mandibular defects. Biomed Mater Eng. 2016;27(5):495–505.
  • Raina DB, Glencross A, Chaher N, et al. Synthesis and characterization of a biocomposite bone bandage for controlled delivery of bone-active drugs in fracture nonunions. ACS Biomater Sci Eng. 2020;6(5):2867–2878.
  • Liu Y, Zhu J, Jiang D. Release characteristics of bonelike hydroxyapatite/poly amino acid loaded with rifapentine microspheres in vivo. Mol Med Rep. 2017;16(2):1425–1430.
  • Lalzawmliana V, Anand A, Roy M, et al. Mesoporous bioactive glasses for bone healing and biomolecules delivery. Mater Sci Eng C Mater Biol Appl. 2020;106:110180.
  • Hlaka L, Rosslee M-J, Ozturk M, et al. Evaluation of minor groove binders (MGBs) as novel anti-mycobacterial agents and the effect of using non-ionic surfactant vesicles as a delivery system to improve their efficacy. J Antimicrob Chemother. 2017;72(12):3334–3341.
  • Gisbert-Garzarán M, Lozano D, Vallet-Regí M. Mesoporous silica nanoparticles for targeting subcellular organelles. Int J Mol Sci. 2020;21(24):9696.
  • Unsoy G, Gunduz U. Smart drug delivery systems in cancer therapy. Curr Drug Targets. 2018;19(3):202–212.
  • Filipczak N, Pan J, Yalamarty SSK, et al. Recent advancements in liposome technology. Adv Drug Deliv Rev. 2020;156:4–22.
  • Soto E, Kim YS, Lee J, et al. Glucan particle encapsulated rifampicin for targeted delivery to macrophages. Polymers. 2010;2(4):681–689.
  • Vieira ACC, Magalhães J, Rocha S, et al. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine. 2017;12(24):2721–2736.
  • Lawlor C, O’Connor G, O’Leary S, et al. Treatment of mycobacterium tuberculosis-infected macrophages with poly(lactic-co-glycolic acid) microparticles drives NFκB and autophagy dependent bacillary killing. Plos One. 2016;11(2):e0149167.
  • Wu D, Isaksson P, Ferguson SJ, et al. Young’s modulus of trabecular bone at the tissue level: a review. Acta Biomater. 2018;78:1–12.
  • Park BK, Um IC. Effect of molecular weight on electro-spinning performance of regenerated silk. Int J Biol Macromol. 2018;106:1166–1172.
  • Aragon J, Feoli S, Irusta S, et al. Composite scaffold obtained by electro-hydrodynamic technique for infection prevention and treatment in bone repair. Int J Pharm. 2019;557:162–169.
  • Pei P, Tian ZF, Zhu YF. 3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery. Microporous Mesoporous Mater. 2018;272:24–30.
  • Wu WG, Zheng Q, Guo X, et al., A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater. 2009;4(6): 065005.
  • Wang B, Li Y, Wang S, et al. Electrodeposited dopamine/strontium-doped hydroxyapatite composite coating on pure zinc for anti-corrosion, antimicrobial and osteogenesis. Mater Sci Eng C Mater Biol Appl. 2021;129:112387.
  • Shaban NZ, Kenawy MY, Taha NA, et al. Synthesized nanorods hydroxyapatite by microwave-assisted technology for in vitro osteoporotic bone regeneration through Wnt/β-catenin pathway. Materials (Basel). 2021;14(19):5823.
  • Li J, Cao F, Wu B, et al. Immobilization of bioactive vascular endothelial growth factor onto Ca-deficient hydroxyapatite-coated Mg by covalent bonding using polydopamine. J Orthop Translat. 2021;30:82–92.
  • Li C, Chu D, Jin L, et al. Synergistic effect of the photothermal performance and osteogenic properties of MXene and hydroxyapatite nanoparticle composite nanofibers for osteogenic application. J Biomed Nanotechnol. 2021;17(10):2014–2020.
  • Li B, Lei Y, Hu Q, et al. Porous copper- and lithium-doped nano-hydroxyapatite composite scaffold promotes angiogenesis and bone regeneration in the repair of glucocorticoids-induced osteonecrosis of the femoral head. Biomed Mater. 2021;16(6):065012.
  • Cao Z, Li L, Yang L, et al. Osteoinduction evaluation of fluorinated hydroxyapatite and tantalum composite coatings on magnesium alloys. Front Chem. 2021;9:727356.
  • Bastos AR, Raquel Maia F, Miguel Oliveira J, et al. Influence of gellan gum-hydroxyapatite spongy-like hydrogels on human osteoblasts under long-term osteogenic differentiation conditions. Mater Sci Eng C Mater Biol Appl. 2021;129:112413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.