426
Views
13
CrossRef citations to date
0
Altmetric
Review

Revisiting techniques to evaluate drug permeation through skin

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1829-1842 | Received 09 Feb 2021, Accepted 22 Nov 2021, Published online: 31 Dec 2021

References

  • Mohammed D, Matts PJ, Hadgraft J, et al. In vitro-in vivo correlation in skin permeation. Pharm Res. 2014;31(2):394–400.
  • Leveque N, Makki S, Hadgraft J, et al. Comparison of Franz cells and microdialysis for assessing salicylic acid penetration through human skin. Int J Pharm. 2004;269(2):323–328.
  • Dandamudi S. In vitro bioequivalence data for a topical product: bioequivalence review perspective fda public workshop topical dermatological generic drug products: overcoming barriers to development and improving patient Access. 2017; Accessed 11 July 2021. www.fda.gov
  • Mahmood A, Rapalli VK, Gorantla S, et al. Dermatokinetic assessment of luliconazole-loaded nanostructured lipid carriers (NLCs) for topical delivery: qbD-driven design, optimization, and in vitro and ex vivo evaluations. Drug Deliv Transl Res. 2021;24:1–8.
  • Ilić T, Pantelić I, Savić S. The implications of regulatory framework for topical semisolid drug products: from critical quality and performance attributes towards establishing bioequivalence. Pharmaceutics. 2021;13(5):710.
  • Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101–114.
  • Luís A, Ruela M, Perissinato AG, et al. Evaluation of skin absorption of drugs from topical and transdermal formulations. Brazilian J Pharm Sci. 2016;52:527–544.
  • Santos LL, Swofford NJ, Santiago BG. In vitro permeation test (IVPT) for pharmacokinetic assessment of topical dermatological formulations. Curr Protoc Pharmacol. 2020;91(1):e79.
  • Oh L, Yi S, Zhang D, et al. In vitro skin permeation methodology for over-the-counter topical dermatologic products. Ther Innov Regul Sci. 2020;693–700. Springer Science and Business Media Deutschland GmbH. DOI:https://doi.org/10.1007/s43441-019-00104-3.
  • Patel P, Schmieder S, Krishnamurthy K. Research techniques made simple: drug delivery techniques, part 2: commonly used techniques to assess topical drug bioavailability. J Invest Dermatol. 2016;136(5):e43–e49.
  • Sharma G, Devi N, Thakur K, et al. Lanolin-based organogel of salicylic acid: evidences of better dermatokinetic profile in imiquimod-induced keratolytic therapy in BALB/c mice model. Drug Deliv Transl Res. 2018;8(2):398–413.
  • Medawar PB. Sheets of pure epidermal epithelium from human skin. Nature. 1941;148(3765):783.
  • Felsher Z. Studies on the adherence of the epidermis to the corium. Proc Soc Exp Biol Med. 1946;62(2):213–215.
  • Van Scott EJ. Mechanical separation of the epidermis from the corium. J Invest Dermatol. 1952;18(5):377–379.
  • Blank IH, Miller OG. A method for the separation of the epidermis from the dermis. J Invest Dermatol. 1950;15(1):9–10.
  • Roberts D, Marks R. The determination of regional and age variations in the rate of desquamation: a comparison of four techniques. J Invest Dermatol. 1980;74(1):13–16.
  • Snorradóttir BS, Gudnason PI, Thorsteinsson F, et al. Experimental design for optimizing drug release from silicone elastomer matrix and investigation of transdermal drug delivery. Eur J Pharm Sci. 2011;42(5):559–567.
  • McAuley WJ, Chavda-Sitaram S, Mader KT, et al. The effects of esterified solvents on the diffusion of a model compound across human skin: an ATR-FTIR spectroscopic study. Int J Pharm. 2013;447(1–2):1–6.
  • Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–1161.
  • Jasti BR, Abraham W, Ghosh TK. Transdermal and topical drug delivery systems. Theory Pract Contemp Pharm. 2021:423–454. CRC Press.
  • Nair A, Jacob S, Al-Dhubiab B, et al. Basic considerations in the dermatokinetics of topical formulations. Brazilian J Pharm Sci. 2013;49(3):423–434.
  • Kielhorn J, Melching-Kollmuß S, Mangelsdorf I. Dermal absorption− environmental health criteria 235. 2006
  • Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: theory and invitro experimental measurement. AIChE J. 1975;21(5):985–996.
  • Azarmi S, Roa W, Löbenberg R. Current perspectives in dissolution testing of conventional and novel dosage forms. Int J Pharm. 2007;328(1):12–21.
  • Waters L. Recent developments in skin mimic systems to predict transdermal permeation. Curr Pharm Des. 2015;21(20):2725–2732.
  • Joshi V, Brewster D, Colonero P. In vitro diffusion studies in transdermal research: a synthetic membrane model in place of human skin. Drug Dev Deliv. 2012;12:40–42.
  • Vizserálek G, Berkó S, Tóth G, et al. Permeability test for transdermal and local therapeutic patches using Skin PAMPA method. Eur J Pharm Sci. 2015;76:165–172.
  • Bermejo M, Avdeef A, Ruiz A, et al. PAMPA - A drug absorption in vitro model: 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. Eur J Pharm Sci. 2004;21(4):429–441.
  • Neupane R, Boddu SHS, Renukuntla J, et al. Alternatives to biological skin in permeation studies: current trends and possibilities. Pharmaceutics. 2020;12(2):152.
  • Chi CT, Lee MH, Weng CF, et al. In silico prediction of PAMPA effective permeability using a two-QSAR approach. Int J Mol Sci. 2019;20:1–24.
  • Ottaviani G, Martel S. Chemistry PC-J of medicinal, et al. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem. 2006;49:3948–3954.
  • Sinkó B, Garrigues TM, Balogh GT, et al. Skin–PAMPA: a new method for fast prediction of skin penetration. Eur J Pharm Sci. 2012;45(5):698–707.
  • Luo L, Patel A, Sinko B, et al. A comparative study of the in vitro permeation of ibuprofen in mammalian skin, the PAMPA model and silicone membrane. Int J Pharm. 2016;505(1–2):14–19.
  • Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening:  parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry. 1998;41(7):1007–1010.
  • Schaefer UF, Hansen S, Schneider M, et al. Models for skin absorption and skin toxicity testing. Drug Absorpt Stud. 2007:3–33. Springer US.
  • Flaten GE, Palac Z, Engesland A, et al. In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci. 2015;75:10–24.
  • Götz C, Pfeiffer R, Tigges J, et al. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I). Exp Dermatol. 2012;21(5):358–363.
  • Thotakura N, Kumar P, Wadhwa S, et al. Dermatokinetics as an important tool to assess the bioavailability of drugs by topical nanocarriers. Curr Drug Metab. 2017;18(5): 404–411.
  • Larsson CI. The use of an “internal standard” for control of the recovery in microdialysis. Life Sci. 1991;49(13):73–78.
  • Kanfer I. Strategies for the bioequivalence assessment of topical dermatological dosage forms. JBB, an Open Access J. 2010;2010(2):110.
  • Stoughton RB. The vasoconstrictor assay in bioequivalence testing: practical concerns and recent developments. Int J Dermatol. 1992;31(s1):26–28.
  • Herkenne C, Alberti I, Naik A, et al. In vivo methods for the assessment of topical drug bioavailability. Pharm Res. 2008;25(1):87–103. Springer.
  • Erdo F, Hashimoto N, Karvaly G, et al. Critical evaluation and methodological positioning of the transdermal microdialysis technique. A review. J Control Release. 2016;233:147–161.
  • Ståhle L, Segersvärd S, Ungerstedt U. A comparison between three methods for estimation of extracellular concentrations of exogenous and endogenous compounds by microdialysis. J Pharmacol Methods. 1991;25(1):41–52.
  • Stanley M, Walt H, Joseph BJ. In vivo calibration of microdialysis probes for exogenous compounds. Anal Chem. 1992;64:577–583.
  • Stenken JA. Methods and issues in microdialysis calibration. Anal Chim Acta. 1999;379(3):337–358.
  • Brunner M, Langer O. Microdialysis versus other techniques for the clinical assessment of in vivo tissue drug distribution. AAPS J. 2006;8(2):E263–E271.
  • Casamonti M, Piazzini V, Bilia AR, et al. Evaluation of skin permeability of resveratrol loaded liposomes and nanostructured lipid carriers using a skin mimic artificial membrane (skin-PAMPA). Drug Deliv Lett. 2019;9(2):134–145.
  • Dobričić V, Marković B, Nikolic K, et al. 17β-carboxamide steroids – in vitro prediction of human skin permeability and retention using PAMPA technique. Eur J Pharm Sci. 2014;52:95–108.
  • Campani V, Scotti L, Silvestri T, et al. Skin permeation and thermodynamic features of curcumin-loaded liposomes. J Mater Sci Mater Med. 2020;31(2):1–8.
  • Alalaiwe A, Lin C-F, Hsiao C-Y, et al. Development of flavanone and its derivatives as topical agents against psoriasis: the prediction of therapeutic efficiency through skin permeation evaluation and cell-based assay. Int J Pharm. 2020;581:119256.
  • Jiang Y, Murnane KS, Blough BE, et al. Transdermal delivery of the free base of 3-fluoroamphetamine: in vitro skin permeation and irritation potential. AAPS PharmSciTech. 2020;21(3):1–8.
  • Dadwal A, Mishra N, Rawal RK, et al. Development and characterisation of clobetasol propionate loaded Squarticles as a lipid nanocarrier for treatment of plaque psoriasis. J Microencapsul. 2020;51(7):1037-1043.
  • Lin H, Lin L, Choi Y, et al. Development and in-vitro evaluation of co-loaded berberine chloride and evodiamine ethosomes for treatment of melanoma. Int J Pharm. 2020;581:119278.
  • Soriano-Ruiz JL, Suñer-Carbó J, Calpena-Campmany AC, et al. Clotrimazole multiple W/O/W emulsion as anticandidal agent: characterization and evaluation on skin and mucosae. Colloids and Surfaces B: Biointerfaces. 2019;175:166–174.
  • Barbosa AI, Costa Lima SA, Reis S. Development of methotrexate loaded fucoidan/chitosan nanoparticles with anti-inflammatory potential and enhanced skin permeation. Int J Biol Macromol. 2019;124:1115–1122.
  • Lai F, Sinico C, De Logu A, et al. SLN as a topical delivery system for Artemisia arborescens essential oil: in vitro antiviral activity and skin permeation study. Int J Nanomedicine. 2007;2(3):419–425.
  • Au WL, Skinner M, Kanfer I. Bioequivalence assessment of topical clobetasol propionate products using visual and chromametric assessment of skin blanching. J Pharm Pharm Sci. 2008;11(1):160–166.
  • Benfeldt, Serup, Menne. Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Br J Dermatol. 1999;140:739–748.
  • Ault JM, Lunte CE, Meltzer NM, et al. Microdialysis sampling for the investigation of dermal drug transport. Pharm Res An Off J Am Assoc Pharm Sci. 1992;9:1256–1261.
  • Nii R, Tettey-Amlalo O, Kanfer I, et al. Application of dermal microdialysis for the evaluation of bioequivalence of a ketoprofen topical gel. Eur J Pharm Sci. 2009;36:219–225.
  • Sharma G, Dhankar G, Thakur K, et al. Benzyl benzoate-loaded microemulsion for topical applications: enhanced dermatokinetic profile and better delivery promises. AAPS PharmSciTech. 2016;17(5):1221–1231.
  • Negi P, Singh B, Sharma G, et al. Biocompatible lidocaine and prilocaine loaded-nanoemulsion system for enhanced percutaneous absorption: qbD-based optimisation, dermatokinetics and in vivo evaluation. J Microencapsul. 2015;32(5):419–431.
  • Zhang Y, Lane ME, Hadgraft J, et al. A comparison of the in vitro permeation of niacinamide in mammalian skin and in the Parallel Artificial Membrane Permeation Assay (PAMPA) model. Int J Pharm. 2019;556:142–149.
  • Bock U, Krause W, Otto J, et al. Vergleichende In-vitro- und In-vivo-Studien zur Permeation und Penetration von Ketoprofen und Ibuprofen an humaner Haut. Arzneimittelforschung. 2011;54:522–529.
  • Stahl J, Blume B, Bienas S, et al. The comparability of in vitro and ex vivo studies on the percutaneous permeation of topical formulations containing ibuprofen. Altern to Lab Anim. 2012;40(2):91–98.
  • Klang V, Schwarz J, Lenobel B, et al. In vitro vs. in vivo tape stripping: validation of the porcine ear model and penetration assessment of novel sucrose stearate emulsions. Eur J Pharm Biopharm. 2012;80(3):604–614.
  • Waghule T, Patil S, Rapalli VK, et al. Improved skin-permeated diclofenac-loaded lyotropic liquid crystal nanoparticles: qbD-driven industrial feasible process and assessment of skin deposition. Liq Cryst. 2020;0:1–19.
  • Rapalli VK, Kaul V, Waghule T, et al. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur J Pharm Sci. 2020;152:105438.
  • Alsheddi L, Ananthapadmanabhan K, Li SK. Influence of skin furrows on tape stripping in characterizing the depth of skin penetration. Int J Pharm. 2020;576:118903.
  • Hafeez F, Chiang A, Hui X, et al. Stratum corneum reservoir as a predictive method for in vitro percutaneous absorption. J Appl Toxicol. 2016;36(8):1003–1010.
  • Lademann J, Jacobi U, Surber C, et al. The tape stripping procedure – evaluation of some critical parameters. Eur J Pharm Biopharm. 2009;72(2):317–323.
  • Escobar-Chávez JJ, Merino-Sanjuán V, López-Cervantes M, et al. The tape-stripping technique as a method for drug quantification in skin. J Pharm Pharm Sci. 2008;11(1):104–130.
  • Moser K, Kriwet K, Naik A, et al. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm. 2001;52:103–112.
  • Gupta R, Jain S, Varshney M, et al. AOT water-in-oil microemulsions as a penetration enhancer in transdermal drug delivery of 5-fluorouracil. Colloids and Surfaces B: Biointerfaces. 2005;41(1):25–32.
  • Wolf M, Halper M, Pribyl R, et al. Distribution of phospholipid based formulations in the skin investigated by combined ATR-FTIR and tape stripping experiments. Int J Pharm. 2017;519(1–2):198–205.
  • Binder L, Valenta C, Lunter D. Determination of skin penetration profiles by confocal Raman microspectroscopy: evaluation of interindividual variability and interlab comparability. J Raman Spectrosc. 2020 51 7 ;1037–1043.
  • Franzen L, Selzer D, Fluhr JW, et al. Towards drug quantification in human skin with confocal Raman microscopy. Eur J Pharm Biopharm. 2013;84(2):437–444.
  • Tfayli A, Piot O, Pitre F, et al. Follow-up of drug permeation through excised human skin with confocal Raman microspectroscopy. Eur Biophys J. 2007;36(8):1049–1058.
  • Caspers PJ, Bruining HA, Puppels GJ, et al. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Invest Dermatol. 2001;116(3):434–442.
  • Rajadhyaksha M, Grossman M, Esterowitz D, et al. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol. 1995;104(6):946–952.
  • Rajadhyaksha M, González S, Zavislan JM, et al. In Vivo Confocal Scanning Laser Microscopy of Human Skin II: advances in Instrumentation and Comparison With Histology11The authors have declared conflict of interest. J Invest Dermatol. 1999;113(3):293–303.
  • Zheng L, Zhao Z, Yang Y, et al. Novel skin permeation enhancers based on amino acid ester ionic liquid: design and permeation mechanism. Int J Pharm. 2020;576:119031.
  • Liu Y, Lunter DJ. Systematic investigation of the effect of non-ionic emulsifiers on skin by confocal Raman spectroscopy—a comprehensive lipid analysis. Pharmaceutics. 2020;12(3):223.
  • Tippavajhala VK, de Oliveira Mendes T, Martin AA. In vivo human skin penetration study of sunscreens by confocal Raman spectroscopy. AAPS PharmSciTech. 2018;19(2):753–760.
  • Tfaili S, Josse G, Angiboust J-F, et al. Monitoring caffeine and resveratrol cutaneous permeation by confocal Raman microspectroscopy. J Biophotonics. 2014;7(9):676–681.
  • Zhao X, Schaffzin JK, Carson J, et al. Analysis of chlorhexidine gluconate in skin using tape stripping and ultrahigh-performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2020;183:113111.
  • Reddy MB, Stinchcomb AL, Guy RH, et al. Determining dermal absorption parameters in vivo from tape strip data. Pharm Res. 2002;19(3):292–298.
  • Brain KR, Green DM, Lalko J, et al. In-vitro human skin penetration of the fragrance material geranyl nitrile. Toxicol Vitr. 2007;21(1):133–138.
  • Pellanda C, Ottiker E, Strub C, et al. Topical bioavailability of triamcinolone acetonide: effect of dose and application frequency. Arch Dermatol Res. 2006;298(5):221–230.
  • Alberti I, Kalia YN, Naik A, et al. Effect of ethanol and isopropyl myristate on the availability of topical terbinafine in human stratum corneum, in vivo. Int J Pharm. 2001;219(1–2):11–19.
  • Pershing LK, Nelson JL, Corlett JL, et al. Assessment of dermatopharmacokinetic approach in the bioequivalence determination of topical tretinoin gel products. J Am Acad Dermatol. 2003;48(5):740–751.
  • Signor C, Woodworth M, Denoble L, et al. Macroscopic investigations of the human stratum corneum evaluating a method for heat separation of the epidermis from the dermis. Ann N Y Acad Sci. 1988;529:118–121.
  • Raza K, Singh B, Singla S, et al. Nanocolloidal Carriers of Isotretinoin: antimicrobial Activity against Propionibacterium acnes and Dermatokinetic Modeling. Mol Pharm. 2013;10(5):1958–1963.
  • Garg NK, Sharma G, Singh B, et al. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder(s). Int J Pharm. 2017;517(1–2):413–431.
  • Rapalli VK, Singhvi G. Dermato-pharmacokinetic: assessment tools for topically applied dosage forms. Expert Opin Drug Deliv. 2020;0:1–4.
  • Mahmood A, Rapalli VK, Waghule T, et al. Luliconazole loaded lyotropic liquid crystalline nanoparticles for topical delivery: qbD driven optimization, in-vitro characterization and dermatokinetic assessment. Chem Phys Lipids. 2021;234:105028.
  • Henning A, Schaefer UF, Neumann D. Potential pitfalls in skin permeation experiments: influence of experimental factors and subsequent data evaluation. Eur J Pharm Biopharm. 2009;72(2):324–331.
  • Rapalli VK, Waghule T, Gorantla S, et al. Psoriasis: pathological mechanisms, current pharmacological therapies, and emerging drug delivery systems. Drug Discov Today. 2020;25(12):2212–2226.
  • Brunner M, Derendorf H. Clinical microdialysis: current applications and potential use in drug development. Trends Anal Chem. 2006;25(7):674–680.
  • Brown MB, Martin GP, Jones SA, et al. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 2006;13(3):175–187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.