263
Views
2
CrossRef citations to date
0
Altmetric
Review

Overcoming hydrolytic degradation challenges in topical delivery: non-aqueous nano-emulsions

, , , , , , , , , , , & show all
Pages 23-45 | Received 02 Apr 2021, Accepted 13 Dec 2021, Published online: 27 Dec 2021

References

  • Peterson R, Hamill RD. Studies on non aqueous emulsions. J Soc Cosmet Chem. 1968;19:627–640.
  • Sakthivel T, Wan K, Florence A. Formulation of nonaqueous emulsions. Pharm Sci. 1999;1(Suppl 1):681–685.
  • Suitthimeathegorn O, Jaitely V, Florence AT. Novel anhydrous emulsions: formulation as controlled release vehicles. Int J Pharm. 2005;298(2):367–371.
  • Suitthimeathegorn O, Turton JA, Mizuuchi H, et al. Intramuscular absorption and biodistribution of dexamethasone from non-aqueous emulsions in the rat. Int J Pharm. 2007;331(2):204–210.
  • LinVerma S, Vaishnav Y, K Verma S, et al. Anhydrous nanoemulsion: an advanced drug delivery system for poorly aqueous soluble drugs. Current Nanomedicine (Formerly: Recent Patents on Nanomedicine). 2017;7(1):36–46.
  • Chevalier Y, Bolzinger M-A. Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf A Physicochem Eng Asp. 2013;439:23–34.
  • Tikekar RV, Pan Y, Nitin N. Fate of curcumin encapsulated in silica nanoparticle stabilized Pickering emulsion during storage and simulated digestion. Food Res Int. 2013;51(1):370–377.
  • Binks BP. Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci. 2002;7(1–2):21–41.
  • Garg V, Gupta R, Kapoor B, et al. Application of self-emulsifying delivery systems for effective delivery of nutraceuticals. Emulsions: Elsevier; 2016. p. 479–518.
  • Payghan SA. Effect of formulation variables on physicochemical properties of cholecalciferol non-aqueous nanoemulsion. Asian J Pharm (AJP). 2016;10(3):S357–S372.
  • Shirke S, Kate V, Tamboli Z, et al. Nonaqueous emulsion based anti wrinkle preparation restrain vitamin C. Literati J Pharm Drug Deliv Technol. 2015;1:37–50.
  • Sun R, Xia N, Xia Q. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin. J Dispers Sci Technol. 2019;41(12):1777–1788.
  • Lin CC, Yang CH, Chang NF, et al. Study on the stability of deoxyArbutin in an anhydrous emulsion system. Int J Mol Sci. 2011;12(9):5946–5954.
  • Rottke M, Lunter DJ, Daniels R. In vitro studies on release and skin permeation of nonivamide from novel oil-in-oil-emulsions. Eur J Pharm Biopharm. 2014;86(2):260–266.
  • Jadhav C, Kate V, Payghan SA. Investigation of effect of non-ionic surfactant on preparation of griseofulvin non-aqueous nanoemulsion. J Nanostruct Chem. 2015;5(1):107–113.
  • Campos FF, Campmany ACC, Delgado GR, et al. Development and characterization of a novel nystatin‐loaded nanoemulsion for the buccal treatment of candidosis: ultrastructural effects and release studies. J Pharm Sci. 2012;101(10):3739–3752.
  • Carvalho VF, de Lemos DP, Vieira CS, et al. Potential of non-aqueous microemulsions to improve the delivery of lipophilic drugs to the skin. AAPS PharmSciTech. 2017;18(5):1739–1749.
  • Malten K, Den Arend J. Topical toxicity of various concentrations of DMSO recorded with impedance measurements and water vapour loss measurements recording of skin’s adaptation to repeated DMSO irritation. Contact Dermatitis. 1978;4(2):80–92.
  • Chen JL, Fayerweather WE, Pell S. Cancer incidence of workers exposed to dimethylformamide and/or acrylonitrile. Journal of Occupational Medicine: Official Publication of the Industrial Medical Association. 1988;30(10):813–818.
  • Cameron NR, Sherrington DC. Non-aqueous high internal phase emulsions. Preparation and stability. J Chem Soc Faraday Trans. 1996;92(9):1543–1547.
  • Ha J-W, Yang S-M. Rheological responses of oil-in-oil emulsions in an electric field. J Rheol. 2000;44(2):235–256.
  • Jaitely V, Sakthivel T, Magee G, et al. Formulation of oil in oil emulsions: potential drug reservoirs for slow release. J Drug Delivery Sci Technol. 2004;14(2):113–117.
  • Maszewska M, Florowska A, Dluzewska E, et al. oxidative stability of selected edible oils. Molecules. 2018;23(7):1746.
  • Hamill RD, Olson FA, Petersen RV. Some interfacial properties of a nonaqueous emulsion. J Pharm Sci. 1965;54(4):537–540.
  • Hamill RD, Petersen RV. Effect of surfactant concentration on the interfacial viscosity of a nonaqueous system. J Pharm Sci. 1966;55(11):1274–1277.
  • Hamill RD, Petersen RV. Effects of aging and surfactant concentration on the rheology and droplet size distribution of a nonaqueous emulsion. J Pharm Sci. 1966;55(11):1268–1274.
  • Payghan S, Kate V, Purohit S, et al. Effect of aging conditions on the dissolution and diffusion stability of non aqueous emulsion. Inventi Rapid: Pharm Tech. 2012;191–196.
  • Tou KAS, Rehman K, Ishak WMW, et al. Influence of omega fatty acids on skin permeation of a coenzyme Q10 nanoemulsion cream formulation: characterization, in silico and ex vivo determination. Drug Dev Ind Pharm. 2019;45(9):1451–1458.
  • Petry T, Bury D, Fautz R, et al. Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications. Toxicol Lett. 2017;280:70–78.
  • Atanase LI, Riess G. PEG 400/Paraffin oil non‐aqueous emulsions stabilized by P But‐Block‐P 2 VP block copolymers. J Appl Polym Sci. 2015;132(5). https://doi.org/10.1002/app.41390
  • Punto L, Potini C, Duque P, et al. 1996. Topical application emulsions. United States. US5587149A.
  • Gattefossé. Pharmaceuticals Lyon, France 2008 [ updated 2020; cited 2020 Jul 4]. Available from: https://www.gattefosse.com/pharmaceuticals-product-finder/product-finder-pharmaceutical
  • Das SS, Verma P, Singh SK. Screening and preparation of quercetin doped nanoemulsion: characterizations, antioxidant and anti-bacterial activities. LWT. 2020;124:109141.
  • Urmaliya H, Gupta M, Agrawal A, et al. Formulation development and evaluation of microemulsion gel of Ketoconazole as an antifungal agent. Pharmacia: An Int J of Pharm Sci. 2016;2:120–130.
  • ABITEC. abitec personal care products–A perfect balance between science and nature. p. 1–13.
  • Pandey V, Kohli S. Lipids and surfactants: the inside story of lipid-based drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2018;35(2):99–155.
  • Patel N, Nakrani H, Raval M, et al. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv. 2016;23(9):3712–3723.
  • Heurtault B, Saulnier P, Benoit J-P, et al. 200. Lipid nanocapsules, preparation process and use as medicine, United States US8057823B2.
  • Modi JD, Patel JK. Nanoemulsion-based gel formulation of aceclofenac for topical delivery. International Journal of Pharmacy and Pharmaceutical Science Research. 2011;1(1):6–12.
  • Gattefossé. Labrafac™ PG Lyon, France 2008 [ updated 2020; cited 2020 Jul 20]; Propylene glycol dicaprolate/dicaprate]. Available from: https://www.gattefosse.com/pharmaceuticals-products/labrafac-pg
  • Gattefossé. Labrafil® M 1944 CS Lyon, France 2008 [ updated 2020; cited 2020 Jul 20]; Oleoyl polyoxyl-6 glycerides]. Available from: https://www.gattefosse.com/pharmaceuticals-products/labrafil-m-1944-cs
  • Gattefossé. Labrafil® M 2130 CS Lyon,France 2008 [ updated 2020; cited 2020 July 20]; Lauroyl polyoxyl-6 glycerides]. Available from: https://www.gattefosse.com/pharmaceuticals-products/labrafil-m-2130-cs
  • Sosnowska K, Szymanska E, Winnicka K. Nanoemulsion with clotrimazole ñ design and optimalization of mean droplet size using microfluidization technique. Acta poloniae pharmaceutica. 2017;74(2):519–526.
  • Thakur K, Sharma G, Singh B, et al. Cationic-bilayered nanoemulsion of fusidic acid: an investigation on eradication of methicillin-resistant Staphylococcus aureus 33591 infection in burn wound. Nanomedicine (Lond). 2018;13(8):825–847.
  • Gattefossé. Lauroglycol™ FCC Lyon, France 2008 [ updated 2020; cited 2020 Jul 20]; Propylene glycol monolaurate (type I)]. Available from: https://www.gattefosse.com/pharmaceuticals-products/lauroglycol-fcc
  • Soliman M, Salah M, Fadel M, et al. Contrasting the efficacy of pulsed dye laser and photodynamic methylene blue nanoemulgel therapy in treating acne vulgaris. Arch Dermatol Res. 2021;313(3):173–180.
  • Gattefossé. Maisine® CC Lyon, France 2008 [cited 2020 Jul 20]; Glyceryl monolinoleate]. Available from: https://www.gattefosse.com/pharmaceuticals-products/maisine-cc
  • Jakab G, Fulop V, Bozo T, et al. Optimization of quality attributes and atomic force microscopy imaging of reconstituted nanodroplets in baicalin loaded self-nanoemulsifying formulations. Pharmaceutics. 2018;10(4):275.
  • Gattefossé. Peceol™ 2008 [ updated 2020; cited 2020 Jul 20]; Glyceryl monooleate (Type 40)]. Available from: https://www.gattefosse.com/pharmaceuticals-products/peceol
  • Kim DS, Cho JH, Park JH, et al. Self-microemulsifying drug delivery system (SMEDDS) for improved oral delivery and photostability of methotrexate. Int J Nanomedicine. 2019;14:4949–4960.
  • Janković J, Djekic L, Dobričić V, et al. Evaluation of critical formulation parameters in design and differentiation of self-microemulsifying drug delivery systems (SMEDDSs) for oral delivery of aciclovir. Int J Pharm. 2016;497(1–2):301–311.
  • Gattefossé. Plurol® Oleique CC 497 Lyon, France 2008 [cited 2020 Jul 20]; Polyglyceryl-3 dioleate]. Available from: https://www.gattefosse.com/pharmaceuticals-products/plurol-oleique-cc-497
  • Geyer RP, Tuliani V. 1992. Non-aqueous microemulsions for drug delivery, United States. US5110606A.
  • Dominguez-Villegas V, Clares-Naveros B, Garcia-Lopez ML, et al. Development and characterization of two nano-structured systems for topical application of flavanones isolated from Eysenhardtia platycarpa. Colloids Surf B Biointerfaces. 2014;116:183–192.
  • Powell VVV, Kasson A-E. 2001. Emulsions of silicones with non-aqueous hydroxylic solvents. European Patent Office. EP0940423A3.
  • Sakthivel T, Jaitely V, Patel NV, et al. Non-aqueous emulsions: hydrocarbon–formamide systems. Int J Pharm. 2001;214(1–2):43–48.
  • Imhof A, Pine D. Ordered macroporous materials by emulsion templating. Nature. 1997;389(6654):948–951.
  • Wang Q, Hu C, Zhang H, et al. Evaluation of a new solid non-aqueous self-double-emulsifying drug-delivery system for topical application of quercetin. J Microencapsul. 2016;33(8):785–794.
  • Zheng Y, Zheng M, Ma Z, et al. Sugar fatty acid esters Ahmad, Moghis Uoghis, and Xu, Xuebing eds. . Polar Lipids. Amsterdam: Elsevier. 2015;215–243.
  • McMahon J, Hamill R, Petersen R. Emulsifying effects of several ionic surfactants on a nonaqueous immiscible system. J Pharm Sci. 1963;52(12):1163–1168.
  • Verma S, Vaishnav Y, K Verma S, et al. Anhydrous nanoemulsion: an advanced drug delivery system for poorly aqueous soluble drugs. Current Nanomedicine (Formerly: Recent Patents on Nanomedicine). 2017;7(1):36–46. https://doi.org/10.2174/2468187306666160926124713.
  • Payghan S, Purohit S, Shrivastava D. Non-aqueous emulsion: versatile vehicle for drug delivery. Pharm Rev. 2008;6(1):1–19.
  • Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: a review. Systematic Reviews in Pharmacy. 2017;8(1):39.
  • Chen S, Hanning S, Falconer J, et al. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18–39.
  • Laboratory Tpa C. Emulsion: preparation and stabilization Chapel Hill. North Carolina: UNC Eshelman College of Pharmacy; [ updated 2021; cited 2021 Oct 7]. Available from: https://pharmlabs.unc.edu/labs/emulsions/hlb.htm
  • (“Dow”) TDCC. technical data sheet TRITON™ X-100 surfactant California 1995 [ updated 2021; cited 2021 Oct 7]. Available from: https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/119/119-01882-01-triton-x100-surfactant-tds.pdf?iframe=true
  • Lem TK, H B. Selecting the perfect silicones for your formulation. Personal Care. 2014. [cited 2021 Apr 4]. Available from: https://www.personalcaremagazine.com/story/13149/selecting-the-perfect-silicone-for-your-formulation
  • Riess G, Cheymol A, Hoerner P, et al. Non-aqueous emulsions stabilized by block copolymers: application to liquid disinfectant-filled elastomeric films. Adv Colloid Interface Sci. 2004 May 20;108-109:43–48.
  • Amro K, Atta AM. Microgel-stabilised non-aqueous emulsions. RSC Adv. 2013;3(48):25662–25665.
  • Frelichowska J, Bolzinger MA, Valour JP, et al. Pickering w/o emulsions: drug release and topical delivery. Int J Pharm. 2009;368(1–2):7–15.
  • Tawfeek AM, Dyab AK, Al-Lohedan HA. Synergetic effect of reactive surfactants and clay particles on stabilization of nonaqueous oil-in-oil (o/o) emulsions. J Dispers Sci Technol. 2014;35(2):265–272.
  • Dyab AK, Al-Haque HN. Particle-stabilised non-aqueous systems. RSC Adv. 2013;3(32):13101–13105.
  • Friberg E, Podzimek M. A non-aqueous microemulsion. Colloid Polym Sci. 1984;262(3):252–253.
  • de Mattos CB, Argenta DF, de Lima Melchiades G, et al. Nanoemulsions containing a synthetic chalcone as an alternative for treating cutaneous leishmaniasis: optimization using a full factorial design. Int J Nanomedicine. 2015;10:5529.
  • Chime S, Kenechukwu F, Attama A. Nanoemulsions—advances in formulation, characterization and applications in drug delivery. Vol. 3. chapter 2014.
  • Mojsiewicz-Pieńkowska K, Jamrógiewicz M, Szymkowska K, et al. Direct human contact with siloxanes (silicones)–safety or risk part 1. Characteristics of siloxanes (silicones). Front Pharmacol. 2016;7:132.
  • Glamowska D, Szymkowska K, Mojsiewicz Pieńkowska K, et al., editors. Loss of the skin barrier after dermal application of the low molecular methyl siloxanes (volatile methyl siloxanes, VMs silicones). Proceedings of the XIII International Conference on Toxicology, London; 2015.
  • Pieńkowska KM. Safety and Toxicity Aspects of Polysiloxanes (Silicones) Applications. In: Tiwari, A, and Soucek, MD eds. Concise Encyclopedia of High Performance Silicones. USA: WILEY-Scrivener Publisher. 2014;pp 243–251.
  • Tran TM, Abualnaja KO, Asimakopoulos AG, et al. A survey of cyclic and linear siloxanes in indoor dust and their implications for human exposures in twelve countries. Environ Int. 2015;78:39–44.
  • Fruijtier-Pölloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 2005;214(1–2):1–38.
  • Bruns DE, Herold DA, Rodeheaver GT, et al. Polyethylene glycol intoxication in burn patients. Burns Incl Therm Inj. 1982;9(1):49–52.
  • Lémery E, Briançon S, Chevalier Y, et al. Skin toxicity of surfactants: structure/toxicity relationships. Colloids Surf A Physicochem Eng Asp. 2015;469:166–179.
  • Hamburger R. Autooxidation of polyoxyethylenic non-ionic surfactants and of polyethylene glycols. PharmActaHelv. 1975;50(1–2):10–17.
  • Tian Y, Chen L, Zhang W. Influence of ionic surfactants on the properties of nanoemulsions emulsified by nonionic surfactants span 80/tween 80. J Dispers Sci Technol. 2016;37(10):1511–1517.
  • Gloxhuber C, Klunstler K. Anionic surfactants: biochemistry, toxicology, dermatology. Vol. 43. New York: CRC Press; 1992.
  • Nokhodchi A, Shokri J, Dashbolaghi A, et al. The enhancement effect of surfactants on the penetration of lorazepam through rat skin. Int J Pharm. 2003;250(2):359–369.
  • Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci. 2012;4(1):2.
  • He C-X, He Z-G, Gao J-Q. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Deliv. 2010;7(4):445–460.
  • McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr. 2011;51(4):285–330.
  • Manchanda S, Chandra A, Bandopadhyay S, et al. Formulation additives used in pharmaceutical products: emphasis on regulatory perspectives and GRAS Tekade, Rakesh ed . In: Dosage form design considerations 1 1 . Netherlands: Elsevier, 2018. 773–831.
  • Jafari SM, Paximada P, Mandala I, et al. Encapsulation by nanoemulsions Jafari, Seid ed. . Nanoencapsulation technologies for the food and nutraceutical industries 1 . Netherlands: Elsevier; 2017. 36–73. **This article deals with mechanism of encapsulation of drug within the nanoemulsion
  • Yang Y, Fang Z, Chen X, et al. An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications. Front Pharmacol. 2017;8:287.
  • Tadros T, Izquierdo P, Esquena J, et al. Formation and stability of nano-emulsions. Adv Colloid Interface Sci. 2004;108-109:303–318.
  • Jasmina H, Džana O, Alisa E, et al. Preparation of Nanoemulsions by High-energy and low energy emulsification methods. CMBEBIH: International Conference on Medical and Biological Engineering. March 16 to 18 ,2017 Sarajevo, Bosnia and Herzegovina. Badnjevic, A editor. Singapore: Springer Nature, 2017. 317–322.
  • Chen L, Ao F, Ge X, et al. Food-grade Pickering emulsions: Preparation, stabilization and applications. Molecules. 2020;25(14):3202.
  • Patel RP, Joshi JR. An overview on nanoemulsion: a novel approach. Int J Pharm Sci Res. 2012;3(12):4640.
  • Cinar K. A review on nanoemulsions: preparation methods and stability. Trakya Univ J Eng Sci. 2017;18:73–83.
  • Canselier J, Delmas H, Wilhelm A, et al. Ultrasound emulsification—an overview. J Dispers Sci Technol. 2002;23(1–3):333–349.
  • Kumar M, Bishnoi RS, Shukla AK, et al. Techniques for formulation of nanoemulsion drug delivery system: a review. Prev Nutr Food Sci. 2019;24(3):225.
  • Feng J, Rodríguez‐Abreu C, Esquena J, et al. A concise review on nano‐emulsion formation by the phase inversion composition (pic) method. J Surfactants Deterg. 2020;23(4):677–685.
  • Ren G, Sun Z, Wang Z, et al. Nanoemulsion formation by the phase inversion temperature method using polyoxypropylene surfactants. J Colloid Interface Sci. 2019;540:177–184.
  • Borthakur P, Boruah PK, Sharma B, et al. Nanoemulsion: preparation and its application in food industry. Emulsions: Elsevier; 2016. p. 153–191.
  • Charcosset C, Fessi H. Membrane emulsification and microchannel emulsification processes. Reviews in Chemical Engineering. 2005;21(1):1–32.
  • Lambrich U, Schubert H. Emulsification using microporous systems. J Membr Sci. 2005;257(1–2):76–84.
  • Khalid N, Kobayashi I, Neves MA, et al. Microchannel emulsification: a promising technique towards encapsulation of functional compounds. Crit Rev Food Sci Nutr. 2018;58(14):2364–2385.
  • Gurpreet K, Singh S. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018;80(5):781–789.
  • Davis S. The stability of fat emulsions for intravenous administration.Dordrecht.: Springer; 1983. Proceedings of the 2nd International Symposium May 16-18,1982. Bermuda . p. 213–239.
  • Eid AM, Elmarzugi NA, El-Enshasy HA. Development of avocado oil nanoemulsion hydrogel using sucrose ester stearate. J Appl Pharm Sci. 2013;3(12):145.
  • Imhof A, Pine DJ. Stability of nonaqueous emulsions. J Colloid Interface Sci. 1997;192(2):368–374.
  • Pawignya H, Kusworo TD, Pramudono B. kinetic modeling of flocculation and coalescence in the system emulsion of water-xylene-terbutyl oleyl glycosides. Bulletin of Chemical Reaction Engineering & Catalysis. 2019;14(1):60–68.
  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49.
  • Nazarzadeh E, Anthonypillai T, Sajjadi S. On the growth mechanisms of nanoemulsions. J Colloid Interface Sci. 2013;397:154–162.
  • Maphosa Y, Jideani VA, Karakuş S, et al . Factors affecting the stability of emulsions stabilised by biopolymers. Science and Technology behind Nanoemulsions: IntechOpen. 2018;65–81.
  • Chen H, Jin X, Li Y, et al. Investigation into the physical stability of a eugenol nanoemulsion in the presence of a high content of triglyceride. RSC Adv. 2016;6(93):91060–91067.
  • McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8(6):1719–1729.
  • Ramanunny AK, Wadhwa S, Gulati M, et al. Nanocarriers for treatment of dermatological diseases: principle, perspective and practices. Eur J Pharmacol. 2021;890:173691.
  • Fagir W, Hathout RM, Sammour OA, et al. Self-microemulsifying systems of finasteride with enhanced oral bioavailability: multivariate statistical evaluation, characterization, spray-drying and in vivo studies in human volunteers. Nanomedicine (Lond). 2015;10(22):3373–3389.
  • Shafiq S, Shakeel F, Talegaonkar S, et al. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66(2):227–243.
  • Muthu MS, Feng SS. Pharmaceutical stability aspects of nanomedicines. Nanomedicine (Lond). 2009;4(8):857–860.
  • de Oca-ávalos JMM, Candal RJ, Herrera ML. Nanoemulsions: stability and physical properties. Curr Opin Food Sci. 2017;16:1–6.
  • Hathout RM, Woodman TJ. Applications of NMR in the characterization of pharmaceutical microemulsions. J Control Release. 2012;161(1):62–72.
  • Chung C, McClements DJ. Characterization of physicochemical properties of nanoemulsions: appearance, stability, and rheology. Nanoemulsions: Elsevier; 2018. p. 547–576.
  • Tosi MM, Ramos AP, Esposto BS, et al. Characterization of Nanoencapsulated Food Ingredients. In: Dynamic light scattering (DLS) of nanoencapsulated food ingredients Jafari, Seid ed. . Netherlands: Elsevier, 2020. 191–211.
  • Sun R, Xia N, Xia Q. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin. J Dispers Sci Technol. 2020;41(12);1777–1788.
  • Fielding LA, Lane JA, Derry MJ, et al. Thermo-responsive diblock copolymer worm gels in non-polar solvents. J Am Chem Soc. 2014 Apr 16 136(15):5790–5798.
  • Liu Q, Huang H, Chen H, et al., Food-Grade Nanoemulsions: preparation, stability and application in encapsulation of bioactive compounds. Molecules. 24(23): 4242. 2019.
  • López-Rubio A, Martínez-Sanz M, Gilbert EP Small angle scattering (SAS) techniques for analysis of nanoencapsulated food ingredients. Jafari, Seid Mahdi editor In: Characterization of nanoencapsulated food ingredients. Vol. 4. Netherlands: Elsevier; 2020. p. 459–502.
  • Thompson KL, Lane JA, Derry MJ, et al. Non-aqueous isorefractive Pickering emulsions. Langmuir. 2015;31(15):4373–4376.
  • Nothnagel L, Wacker MG. How to measure release from nanosized carriers? Eur J Pharm Sci. 2018;120:199–211.
  • Dyab AK, Mohamed LA, Taha F. Non-aqueous olive oil-in-glycerin (o/o) Pickering emulsions: preparation, characterization and in vitro aspirin release. J Dispers Sci Technol. 2018;39(6):890–900.
  • Klang V, Matsko NB, Valenta C, et al., Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron. 43(2–3): 85–103. 2012.
  • Helvig S, Azmi ID, Moghimi SM, et al. Recent advances in cryo-TEM imaging of soft lipid nanoparticles. Aims Biophysics. 2015;2(2):116–130.
  • Smith JR, Olusanya TO, Lamprou DA. Characterization of drug delivery vehicles using atomic force microscopy: current status. Expert Opin Drug Deliv. 2018;15(12):1211–1221.
  • Ho TM, Abik F, Mikkonen KS. An overview of nanoemulsion characterization via atomic force microscopy. Crit Rev Food Sci Nutr. 2021;1–21.
  • Meng F, Wang S, Wang Y, et al. Microencapsulation of oxalic acid via oil-in-oil (O/O) emulsion solvent evaporation. Powder Technol. 2017;320:405–411.
  • Payghan S, Mane Y, Kate V, et al. Anhydrous emulsion: vehicles for topical delivery of ketoconazole. Inventi Impact NDDS. 2015;1:43–53.
  • Furó I. NMR spectroscopy of micelles and related systems. J Mol Liq. 2005;117(1–3):117–137.
  • Shapiro YE. Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach. Prog Polym Sci. 2011;36(9):1184–1253.
  • Waysbort D, Ezrahi S, Aserin A, et al. 1H NMR Study of a U-Type nonionic microemulsion. J Colloid Interface Sci. 1997;188(2):282–295.
  • Zhang L, Zhang Z-Q, Dong W-C, et al. Accuracy assessment on the analysis of unbound drug in plasma by comparing traditional centrifugal ultrafiltration with hollow fiber centrifugal ultrafiltration and application in pharmacokinetic study. J Chromatogr A. 2013;1318:265–269.
  • Guillot A, Couffin A-C, Sejean X, et al. Solid phase extraction as an innovative separation method for measuring free and entrapped drug in lipid nanoparticles. Pharm Res. 2015;32(12):3999–4009.
  • Khatri P, Shao J. Separation of external aqueous phase from o/w nanoemulsions. Eur J Pharm Sci. 2017;96:171–175.
  • Imhof A, Pine DJ. Uniform macroporous ceramics and plastics by emulsion templating. Adv Mater. 1998;10(9):697–700.
  • Loudet J, Richard H, Sigaud G, et al. Nonaqueous liquid crystal emulsions. Langmuir. 2000;16(16):6724–6730.
  • Hasanpouri A, Lotfipour F, Ghanbarzadeh S, et al. Improvement of dermal delivery of tetracycline using vesicular nanostructures. Res Pharm Sci. 2018;13(5):385.
  • Rapalli VK, Kaul V, Waghule T, et al. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur J Pharm Sci. 2020;152:105438.
  • Chen Y, Zhang Z, Xin Y, et al. Functional transdermal nanoethosomes enhance photodynamic therapy of hypertrophic scars via self-generating oxygen. ACS Appl Mater Interfaces. 2021;13(7):7955–7965.
  • Rashid SA, Bashir S, Ullah H, et al. Development, characterization and optimization of methotrexate-olive oil nano-emulsion for topical application. Pak J Pharm Sci. 2021;34(1):205–215.
  • Kaur R, Sharma N, Tikoo K, et al. Development of mirtazapine loaded solid lipid nanoparticles for topical delivery: optimization, characterization and cytotoxicity evaluation. Int J Pharm. 2020;586:119439.
  • Azmi NAN, Elgharbawy AA, Motlagh SR, et al. Nanoemulsions: factory for food, pharmaceutical and cosmetics. Processes. 2019;7(9):617.
  • El-Leithy ES, Makky AM, Khattab AM, et al. Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiency. Drug Dev Ind Pharm. 2018;44(2):316–328.
  • Su R, Fan W, Yu Q, et al., Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget. 8(24): 38214. 2017.
  • Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. Journal of Biomaterials and Nanobiotechnology. 2011;2(5):626.
  • Shakeel F, Baboota S, Ahuja A, et al. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. Aaps Pharmscitech. 2007;8(4):191–199.
  • Rutvij J, Gunjan J, Bharadia P, et al. Nanoemulsion: an advanced concept of dosage form. Int J Pharm Cosmetol. 2011;1(5):122–133.
  • Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, et al. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev. 2020;153:109–136.
  • Yashpal S, Tanuj H, Harsh K. Nanoemulsions: a pharmaceutical review. Int J Pharma Prof Res. 2013;4(2):928–935.
  • Naseema A, Kovooru L, Behera AK, et al. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv Colloid Interface Sci. 2020;287:102318.
  • Aboalnaja KO, Yaghmoor S, Kumosani TA, et al., Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: nanoemulsion delivery systems and nanoemulsion excipient systems. Expert Opin Drug Deliv. 13(9): 1327–1336. 2016.
  • Martínez-Monteagudo SI, Yan B, Balasubramaniam V. Engineering process characterization of high-pressure homogenization—from laboratory to industrial scale. Food Eng Rev. 2017;9(3):143–169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.