2,696
Views
2
CrossRef citations to date
0
Altmetric
Review

Bacteria and cells as alternative nano-carriers for biomedical applications

&
Pages 103-118 | Received 12 Oct 2021, Accepted 12 Jan 2022, Published online: 25 Jan 2022

References

  • Hua S, Wu SY . Advances and Challenges in Nanomedicine. Vol. 9. Belgium: Frontiers in Pharmacology. 2019.
  • Kim BYS, Rutka JT, Chan WCW. Nanomedicine. N Engl J Med. 2010;363:10.
  • Vallet-Regí M, Rámila A, Del Real RP, et al. A New Property of MCM-41: drug Delivery System. Chem Mater. 2001;13:4.
  • Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem. 2007;46(4010):7548.
  • Sau TK, Goia DV. Biomedical Applications of Gold Nanoparticles. United States: Springer; 2012.
  • Vallet-Regí M. Our Contributions to Applications of Mesoporous Silica Nanoparticles. United States: Acta Biomaterialia, 2021; In Press.
  • Bellah M, Christensen SM, Iqbal SM. Nanostructures for Medical Diagnosis. J Nanomater. 2012;1:21.
  • Castillo RR, Colilla M, Vallet-Regí M. Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin Drug Deliv. 2017;14(2):14.
  • Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as Promising Alternative in the Infection Treatment. Int J Mol Sci. 2019;20(15):18.
  • Baeza A, Vallet-Regí M. Mesoporous Silica Nanoparticles as Theranostic Antitumoral Nanomedicines. Pharmaceutics. 2020;12(10):16.
  • Zhao P, Li N, Astruc D. State of the art in gold nanoparticle synthesis. Coord Chem Rev. 2013;257:28.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.
  • Vallet-Regí M, Colilla M, Izquierdo-Barba I, et al. Mesoporous Silica Nanoparticles for Drug Delivery: current Insights. Molecules. 2017;23(1):47.
  • Álvarez E, Estévez M, Jiménez-Jiménez C, et al. A versatile multicomponent mesoporous silica nanosystem with dual antimicrobial and osteogenic effects. Acta Biomater. 2021;136:570–581.
  • Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein Corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences (PNAS). 2007. 104: p. 6.
  • Ke PC, Lin S, Parak WJ, et al. A Decade of the Protein Corona. ACS Nano. 2017;11(12):4.
  • Monopoli M, Aberg C, Salvati A, et al. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:8.
  • Ahsan SA, Rao CM, Ahmad MF. Nanoparticle-Protein Interaction: the Significance and Role of Protein Corona. Cellular and Molecular Toxicology of Nanoparticles - Advances. 2018;1:24.
  • Nguyen VH, Lee B-J. Protein Corona: a new approach for nanomedicine design. Int J Nanomedicine. 2017;12:15.
  • Zanganeh S, Spitler R, Erfanzadeh M, et al. Protein Corona. Opportunities and Challlenges. Int J Biochem Cell Biol. 2016;75:5.
  • Lundqvist M, Stigler J, Elia G, et al. Nanoparticle size and surface properties determine the protein Corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences (PNAS). 2008. 105( 38): p. 6.
  • Liu W, Rose J, Plantevin S, et al. Protein Corona formation for nanomaterials and proteins of a similar size: hard or soft Corona? Nanoscale. 2013;5:11.
  • Caracciolo G, Pozzi D, Capriotti AL, et al. Lipid composition: a “key” factor for the rational manipulation of the liposome-protein Corona by liposome design. The Royal Society of Chemistry Advances. 2015;5. 9.
  • Caracciolo G. Clinically approved liposomal nanomedicines: lessons learned from the biomolecular Corona. Nanoscale. 2018;10:6.
  • Charbgoo F, Nejabat M, Abnous K, et al. Gold nanoparticle should understand protein Corona for being a clinical nanomaterial. J Control Release. 2018;272:15.
  • Hadjdemetriou M, McAdam, S, Garner, G, et al. The Human In Vivo Biomolecule Corona onto PEGylated Liposomes: a Proof-of-Concept Clinical Study. Adv Mater. 2019;31(4):e1803335.
  • Pérez JMM; María Vallet-Regí. GIBI. Bacteria and cells as ”cabs” for drug-loaded nanoparticles. 2021. https://www.youtube.com/watch?v=Wsbcpt-cE3E
  • Yoo J-W, Irvine DJ, Discher DE, et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521–535.
  • Shende P, Basarkar V. Recent trends and advances in microbe-based drug delivery systems. Daru. 2019;27(2):799–809.
  • Hosseinidoust Z, Mostaghaci B, Yasa O, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016;106:27–44. Pt A.
  • Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;18:2–4.
  • The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214.
  • Sowa Y, Rowe AD, Leake MC, et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature. 2005;437(7060):916–919.
  • Martel S. Bacterial microsystems and microrobots. Biomed Microdevices. 2012;14(6):1033–1045.
  • Storz G, Hengge R. Bacterial Stress Responses. 2nd ed. A.S.f.M. United States: ASM Press; 2010.
  • Lim D, Song M. Development of bacteria as diagnostics and therapeutics by genetic engineering. J Microbiol. 2019;57(8):637–643.
  • Lutz H, Hu S, Dinh P-U, et al. Cells and cell derivatives as drug carriers for targeted delivery. Medicine in Drug Discovery. 2019;3. 100014.
  • Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev. 2012;64(8):739–748.
  • Hu YL, Fu Y-H, Tabata Y, et al. Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release. 2010;147(2):154–162.
  • Wu GD, Lewis JD. Analysis of the Human Gut Microbiome and Association With Disease. Clin Gastroenterol Hepatol. 2013;11(7):774–777.
  • Belkaid Y, Hand TW. Role of the Microbiota in Immunity and Inflammation. Cell. 2014;157(1):121–141.
  • Islam SU. Clinical Uses of Probiotics. Medicine (Baltimore). 2016;95(5):e2658.
  • Wieërs G, Belkhir L, Enaud R, et al. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol. 2019;9:454.
  • Sharifi-Rad J, Rodrigues CF. Probiotics: versatile Bioactive Components in Promoting Human Health. Medicina (Kaunas). 2020; 56(9):43.
  • Dimidi E, Christodoulides S, Scott SM, et al. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv Nutr. 2017;8(3):484–494.
  • Valdés-Varela L, Gueimonde M, Ruas-Madiedo P. Probiotics for Prevention and Treatment of Clostridium difficile Infection. Adv Exp Med Biol. 2018;1050:161–176.
  • Allen SJ, Martinez EG, Gregorio GV, et al. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev. 2010;11(11): Cd003048.
  • Metchnikoff E. The prolongation of life: optimistic studies. United Kingdom: Heinemann. 1908.
  • Podolsky SH. Metchnikoff and the microbiome. Lancet. 2012;380(9856):1810–1811.
  • Mackowiak P. Recycling Metchnikoff: probiotics, the Intestinal Microbiome and the Quest for Long Life. Front Public Health. 2013;1: 1–3.
  • Prescott SL. History of medicine: origin of the term microbiome and why it matters. Human Microbiome Journal. 2017;4:24–25.
  • Ozen M, Dinleyici EC. The history of probiotics: the untold story. Benef Microbes. 2015;6(2):159–165.
  • Guandalini S, Pensabene L, Zikri MA, et al. Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: a multicenter European trial. J Pediatr Gastroenterol Nutr. 2000;30(1):54–60.
  • Guandalini S. Probiotics for prevention and treatment of diarrhea. J Clin Gastroenterol. 2011;1(45 Suppl):S149–53.
  • Bizzini B, Pizzo G, Scapagnini G, et al. Probiotics and oral health. Curr Pharm Des. 2012;18(34):5522–5531.
  • Yari M, Ghoshoon MB, Vakili B, et al. Therapeutic Enzymes: applications and Approaches to Pharmacological Improvement. Curr Pharm Biotechnol. 2017;18(7):531–540.
  • Drăgănescu M, Carmocan C. Hormone Therapy in Breast Cancer. Chirurgia (Bucur). 2017;112(4):413–417.
  • Casarini L, Crépieux P, Reiter E, et al. FSH for the Treatment of Male Infertility. Int J Mol Sci. 2020;21(7):2270.
  • Roland KL, Brenneman KE. Salmonella as a vaccine delivery vehicle. Expert Rev Vaccines. 2013;12(9):1033–1045.
  • Bruhn KW, Craft N, Miller JF. Listeria as a vaccine vector. Microbes Infect. 2007;9(10):1226–1235.
  • Somerville JE Jr., Cassiano L, Bainbridge B, et al. A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide. J Clin Invest. 1996;97(2):359–365.
  • Low KB, Ittensohn M, Le T, et al. Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol. 1999;17(1):37–41.
  • Mohr KI. History of Antibiotics Research. Curr Top Microbiol Immunol. 2016;398:237–272.
  • Duong MT, Qin Y, You S-H, et al. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51(12):1–15.
  • Duan FF, Liu JH, March JC. Engineered Commensal Bacteria Reprogram Intestinal Cells Into Glucose-Responsive Insulin-Secreting Cells for the Treatment of Diabetes. Diabetes. 2015;64(5):1794–1803.
  • Kearns DB. A field guide to bacterial swarming motility. Nature Rev Microbiol. 2010;8(9):634–644.
  • Proft T, Baker EN. Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease. Cell Mol Life Sci. 2009;66(4):613–635.
  • Danne C, Dramsi S. Pili of gram-positive bacteria: roles in host colonization. Res Microbiol. 2012;163(9–10):645–658.
  • Goldstein RA, Soyer OS. Evolution of Taxis Responses in Virtual Bacteria: non-Adaptive Dynamics. PLoS Comput Biol. 2008;4(5):e1000084.
  • Krell T, Lacal J, Muñoz-Martinez F, et al. Diversity at its best: bacterial taxis. Environ Microbiol. 2011;13(5):1115–1124.
  • Gu H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr Microbiol. 2017;74(7):863–869.
  • Taniguchi SI, Shimatani Y, Fujimori M. Tumor-Targeting Therapy Using Gene-Engineered Anaerobic-NonpathogenicBifidobacterium longum. In: Hoffman RM, editor. Bacterial Therapy of Cancer: methods and Protocols. New York: Springer New York; 2016. p. 49–60.
  • Pastrana E. Optogenetics: controlling cell function with light. Nat Methods. 2011;8(1):24–25.
  • Motta-Mena LB, Reade A, Mallory MJ, et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol. 2014;10(3):196–202.
  • Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol. 2015;11(3):198–200.
  • Olson EJ, Tabor JJ. Optogenetic characterization methods overcome key challenges in synthetic and systems biology. Nat Chem Biol. 2014;10(7):502–511.
  • Faivre D, Schüler D. Magnetotactic Bacteria and Magnetosomes. Chem Rev. 2008;108(11):4875–4898.
  • Felfoul O, Martel S. Assessment of navigation control strategy for magnetotactic bacteria in microchannel: toward targeting solid tumors. Biomed Microdevices. 2013;15(6):1015–1024.
  • Martel S. Towards MRI-controlled ferromagnetic and MC-1 magnetotactic bacterial carriers for targeted therapies in arteriolocapillar networks stimulated by tumoral angiogenesis. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:3399–3402.
  • Tang YS, Wang D, Zhou C, et al. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther. 2012;19(12):1187–1195.
  • Carlsen RW, Edwards MR, Zhuang J, et al. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip. 2014;14(19):3850–3859.
  • Zhang X, Lin Y, Gillies RJ. Tumor pH and Its Measurement. J Nucl Med. 2010;51(8):1167–1170.
  • Zhuang J, Wright Carlsen R, Sitti M. pH-Taxis of Biohybrid Microsystems. Sci Rep. 2015;5(1):11403.
  • Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–447.
  • Villegas MR, Baeza A, Noureddine A, et al. Multifunctional Protocells for Enhanced Penetration in 3D Extracellular Tumoral Matrices. Chem Mater. 2018;30(1):112–120.
  • Chen CY, Chen C-F, Yi Y, et al. Construction of a microrobot system using magnetotactic bacteria for the separation of Staphylococcus aureus. Biomed Microdevices. 2014;16(5):761–770.
  • Anderson JC, Clarke EJ, Arkin AP, et al. Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria. J Mol Biol. 2006;355(4):619–627.
  • Stritzker J, Weibel S, Hill PJ, et al. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int J Med Microbiol. 2007;297(3):151–162.
  • Xiang S, Fruehauf J, Li CJ. Short hairpin RNA–expressing bacteria elicit RNA interference in mammals. Nat Biotechnol. 2006;24(6):697–702.
  • Seavey MM, Pan Z-K, Maciag PC, et al. A novel human Her-2/neu chimeric molecule expressed by Listeria monocytogenes can elicit potent HLA-A2 restricted CD8-positive T cell responses and impact the growth and spread of Her-2/neu-positive breast tumors. Clin Cancer Res. 2009;15(3):924–932.
  • Du ZQ, Wang JY. A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein. Genet Mol Res. 2015;14(4):13084–13095.
  • Barbé S, Mellaert LV, Theys J, et al. Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment. FEMS Microbiol Lett. 2005;246(1):67–73.
  • Feltis BA, Miller JS, Sahar DE, et al. Liver and Circulating NK1.1+CD3− Cells Are Increased in Infection with Attenuated Salmonella typhimurium and Are Associated with Reduced Tumor in Murine Liver Cancer. J Surg Res. 2002;107(1):101–107.
  • Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5(172):1–17.
  • Pálffy R, Gardlik R, Hodosy J, et al. Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther. 2006;13(2):101–105.
  • Schaffner W. Direct transfer of cloned genes from bacteria to mammalian cells Proceedings of the National Academy of Sciences. 77( 4): p. 2163–2167.
  • Yazawa K, Fujimori M, Nakamura T, et al. Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat. 2001;66(2):165–170.
  • Okuda K, Wada Y, Shimada M. Recent Developments in Preclinical DNA Vaccination. Vaccines (Basel). 2014;2(1):89–106.
  • Sciaranghella G, Lakhashe S, Ayash-Rashkovsky S, et al. A live attenuated Listeria monocytogenes vaccine vector expressing SIV Gag is safe and immunogenic in macaques and can be administered repeatedly. Vaccine. 2011;29(3):476–486.
  • Montanaro J, Inic-Kanada A, Ladurner A, et al. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface. Drug Des Devel Ther. 2015;9:3741–3754.
  • Kudela P, Koller VJ, Lubitz W. Bacterial ghosts (BGs)—Advanced antigen and drug delivery system. Vaccine. 2010;28(36):5760–5767.
  • Langemann T, Koller VJ, Muhammad A, et al. The bacterial ghost platform system. Bioengineered Bugs. 2010;1(5):326–336.
  • Tabrizi CA, Walcher P, Mayr UB, et al. Bacterial ghosts – biological particles as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol. 2004;15(6):530–537.
  • Huter V, Szostak MP, Gampfer J, et al. Bacterial ghosts as drug carrier and targeting vehicles. J Control Release. 1999;61(1):51–63.
  • Paukner S, Kohl G, Jalava K, et al. Sealed bacterial ghosts–novel targeting vehicles for advanced drug delivery of water-soluble substances. J Drug Target. 2003;11(3):151–161.
  • Lin W-C, Lien C-C, Yeh H-J, et al. Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym. 2013;94(1):603–611.
  • Claesen J, Fischbach MA. Synthetic Microbes As Drug Delivery Systems. ACS Synth Biol. 2015;4(4):358–364.
  • Dong Z-M, Jin X, Zhao G-C. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide. Biosens Bioelectron. 2018;106:111–116.
  • Suh S, Jo A, Traore MA, et al. Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) Enhances Intratumoral Transport of Nanomedicine. Advance Science (Weinh). 2019;6(3):1801309.
  • Moreno VM, Álvarez E, Izquierdo-Barba I, et al. Bacteria as Nanoparticles Carrier for Enhancing Penetration in a Tumoral Matrix Model. Adv Mater Interfaces. 2020;7(11):1901942.
  • Zargar SM, Hafshejani DK, Eskandarinia A, et al. A Review of Controlled Drug Delivery Systems Based on Cells and Cell Membranes. J Med Signals Sens. 2019;9(3):181–189.
  • Hart GD. Descriptions of blood and blood disorders before the advent of laboratory studies. Br J Haematol. 2001;115(4):719–728.
  • Hook R. Micrographia. United Kingdom: Echo Library. 1665.
  • Becker AJ, Mc CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–454.
  • McCulloch EA, Till JE. Perspectives on the properties of stem cells. Nat Med. 2005;11(10):1026–1028.
  • Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126(4):663–676.
  • Hamidi M, Zarrin A, Foroozesh M, et al. Applications of carrier erythrocytes in delivery of biopharmaceuticals. J Control Release. 2007;118(2):145–160.
  • Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv. 2010;7(4):403–427.
  • Gopal V, Kumar AR, Usha AN, et al. Effective drug targeting by Erythrocytes as Carrier Systems. Current Trends in Biotechnology and Pharmacy. 2007;1. 18–33.
  • Chambers E, Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release. 2004;100(1):111–119.
  • Domenech C, Thomas X, Chabaud S, et al. l-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005-01 randomized trial. Br J Haematol. 2011;153(1):58–65.
  • Chambers E, Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp Biol Med (Maywood). 2007;232(7):958–966.
  • Sun Y, Su J, Liu G, et al. Advances of blood cell-based drug delivery systems. Eur J Pharm Sci. 2017;96:115–128.
  • Xu P, Zuo H, Chen B, et al. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Sci Rep. 2017;7:42632.
  • Xu P, Zuo H, Zhou R, et al. Doxorubicin-Loaded Platelets Conjugated with Anti-CD22 Mabs: a Novel Targeted Delivery System for B-Cell Lymphoma Treatment with Cardiac Avoidance. Blood. 2017;130:1535.
  • Modery-Pawlowski CL, Master AM, Pan V, et al. A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms. Biomacromolecules. 2013;14(3):910–919.
  • Dou H, Destache CJ, Morehad JR, et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood. 2006;108(8):2827–2835.
  • Klyachko NL, Polak R, Haney MJ, et al. Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials. 2017;140:79–87.
  • Zhang W, Wang M, Tang W, et al. Nanoparticle-Laden Macrophages for Tumor-Tropic Drug Delivery. Advanced Materials. 2018;35:e1805557.
  • Dong X, Chu D, Wang Z. Leukocyte-mediated Delivery of Nanotherapeutics in Inflammatory and Tumor Sites. Theranostics. 2017;7(3):751–763.
  • Mitchell MJ, King MR. Leukocytes as carriers for targeted cancer drug delivery. Expert Opin Drug Deliv. 2015;12(3):375–392.
  • Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16(7):431–446.
  • Chu D, Dhong X, Shi X, et al. Neutrophil-Based Drug Delivery Systems. Advanced Materials. 2018;322:e1706245
  • Amulic B, Cazalet C, Hayes GL, et al. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–489.
  • Xue J, Zhao Z, Zhang L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017;12(7):692–700.
  • Ju C, Wen Y, Zhang L, et al. Neoadjuvant Chemotherapy Based on Abraxane/Human Neutrophils Cytopharmaceuticals with Radiotherapy for Gastric Cancer. Small. 2019;15(5):e1804191.
  • Yu H, Yang Z, Li F, et al. Cell-mediated targeting drugs delivery systems. Drug Deliv. 2020;27(1):1425–1437.
  • Stephan MT, Moon JJ, Um SH, et al. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med. 2010;16(9):1035–1041.
  • Huang B, Abraham WD, Zheng Y, et al. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med. 2015;7(291):291ra94.
  • Mahla RS. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol. 2016;2016:6940283.
  • Stuckey DW, Shah K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer. 2014;14(10):683–691.
  • Dembinski JL, Wilson SM, Spaeth EL, et al. Tumor stroma engraftment of gene-modified mesenchymal stem cells as anti-tumor therapy against ovarian cancer. Cytotherapy. 2013;15(1):20–32.
  • Sasportas LS, Kasmieh R, Wakimoto H, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A. 2009;106(12):4822–4827.
  • Roger M, Clavreul A, Venier-Julienne M-C, et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials. 2010;31(32):8393–8401.
  • Miller DM, Gulbis JM. Engineering protocells: prospects for self-assembly and nanoscale production-lines. Life (Basel). 2015;5(2):1019–1053.
  • Butler KS, Durfee PN, Theron C, et al. Protocells: modular Mesoporous Silica Nanoparticle-Supported Lipid Bilayers for Drug Delivery. Small. 2016;12(16):2173–2185.
  • Luchini A, Vitiello G. Understanding the Nano-bio Interfaces: lipid-Coatings for Inorganic Nanoparticles as Promising Strategy for Biomedical Applications. Front Chem. 2019;7(343):1–16.
  • Durfee PN, Lin Y-S, Dunphy DR, et al. Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells. ACS Nano. 2016;10(9):8325–8345.
  • Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1):24–46.
  • Zhang H. Erythrocytes in nanomedicine: an optimal blend of natural and synthetic materials. Biomater Sci. 2016;4(7):1024–1031.
  • Marczak A, Kowalczyk A, Wrzesien-Kus A, et al. Interaction of doxorubicin and idarubicin with red blood cells from acute myeloid leukaemia patients. Cell Biol Int. 2006;30(2):127–132.
  • Fang RH, Hu C-M, Luk BT, et al. Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Lett. 2014;14(4):2181–2188.
  • Xuan M, Shao J, Dai L, et al. Macrophage Cell Membrane Camouflaged Mesoporous Silica Nanocapsules for In Vivo Cancer Therapy. Adv Healthc Mater. 2015;4(11):1645–1652.
  • Paris JL, De la Torre P, Manzano M, et al. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors. Acta Biomater. 2016;33:275–282.
  • Tang L, Zheng Y, Bandeira Melo M, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018;36(8):707–716.