201
Views
1
CrossRef citations to date
0
Altmetric
Review

Small but powerful: will nanoparticles be the future state‐of‐the‐art therapy for IBD?

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 235-245 | Received 04 Aug 2021, Accepted 15 Feb 2022, Published online: 03 Mar 2022

References

  • Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380(9853):1590–1605.
  • Podolsky DK. Inflammatory bowel disease (1). N Engl J Med. 1991;325(13):928–937.
  • Podolsky DK. Inflammatory bowel disease (2). N Engl J Med. 1991;325(14):1008–1016.
  • Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14(5):269–278.
  • Actis GC, Pellicano R, and Fagoonee S, et al. History of inflammatory bowel diseases. J Clin Med. 2019;8(11):1970.
  • Neurath MF, Chiriac MT. Targeting immune cell wiring in ulcerative colitis. Immunity. 2019;51(5):791–793.
  • Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol. 2019;20(8):970–979.
  • Feagan BG, Rutgeerts P, Sands BE, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710.
  • Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362(15):1383–1395.
  • Edsbäcker S, Andersson T. Pharmacokinetics of budesonide (Entocort™ EC) capsules for Crohn’s disease. Clin Pharmacokinet. 2004;43(12):803–821.
  • Yano H, Hirayama F, Kamada M, et al. Colon-specific delivery of prednisolone-appended alpha-cyclodextrin conjugate: alleviation of systemic side effect after oral administration. J Control Release. 2002;79(1–3):103–112. DOI:https://doi.org/10.1016/S0168-3659(01)00532-6.
  • Leopold CS, Eikeler D. Eudragit E as coating material for the pH-controlled drug release in the topical treatment of inflammatory bowel disease (IBD). J Drug Target. 1998;6(2):85–94.
  • Munkholm P, Langholz E, Davidsen M, et al. Frequency of glucocorticoid resistance and dependency in Crohn’s disease. Gut. 1994;35(3):360–362. DOI:https://doi.org/10.1136/gut.35.3.360.
  • Lofberg R. New steroids for inflammatory bowel disease. Inflamm Bowel Dis. 1995;1(2):135–141.
  • Zhou S, Fleisher D, Pao L, et al. Intestinal metabolism and transport of 5-aminosalicylate. Drug Metab Dispos. 1999;27(4):479–485.
  • MacDermott RP, Kane MG, Steele LL, et al. Inhibition of cytotoxicity by sulfasalazine. I. Sulfasalazine inhibits spontaneous cell-mediated cytotoxicity by peripheral blood and intestinal mononuclear cells from control and inflammatory bowel disease patients. Immunopharmacology. 1986;11(2):101–109. DOI:https://doi.org/10.1016/0162-3109(86)90030-5.
  • Head K, Jurenka J. Inflammatory bowel disease part II: crohn’s disease–pathophysiology and conventional and alternative treatment options. Altern Med Review. 2004;9(4):360–402.
  • Segars LW, Gales BJ. Mesalamine and olsalazine: 5-aminosalicylic acid agents for the treatment of inflammatory bowel disease. Clin Pharm. 1992;11(6):514–528.
  • Nugent SG, Kumar D, Rampton DS, et al. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48(4):571–577. DOI:https://doi.org/10.1136/gut.48.4.571.
  • Bernstein CN, Fried M, Krabshuis J, et al. World gastroenterology organization practice guidelines for the diagnosis and management of IBD in 2010. Inflamm Bowel Dis. 2010;16(1):112–124. DOI:https://doi.org/10.1002/ibd.21048.
  • Atreya I, Neurath MF. Understanding the delayed onset of action of azathioprine in IBD: are we there yet? Gut. 2009;58(3):325–326.
  • Sandborn WJ. Azathioprine: state of the art in inflammatory bowel disease. Scand J Gastroenterol Suppl. 1998;225:92–99.
  • Steiner S, Daniel C, Fischer A, et al. Cyclosporine A regulates pro-inflammatory cytokine production in ulcerative colitis. Arch Immunol Ther Exp (Warsz). 2015;63(1):53–63. DOI:https://doi.org/10.1007/s00005-014-0309-7.
  • Feagan BG. Standard immunosuppression in IBD: current practice. Acta Gastroenterol Belg. 2001;64(2):182–188.
  • Triantafillidis JK. Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther. 2011;5(5):185–210.
  • Dassopoulos T, Sultan S, Falck–Ytter YT, et al. American gastroenterological association institute technical review on the use of thiopurines, methotrexate, and Anti–TNF-α biologic drugs for the induction and maintenance of remission in inflammatory crohn’s disease. Gastroenterology. 2013;145(6):1464–1478. e1465. DOI:https://doi.org/10.1053/j.gastro.2013.10.046.
  • Fuss IJ, Marth T, Neurath MF, et al. Anti–interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology. 1999;117(5):1078–1088. DOI:https://doi.org/10.1016/S0016-5085(99)70392-6.
  • Neurath MF, Fuss I, Kelsall BL, et al. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182(5):1281–1290. DOI:https://doi.org/10.1084/jem.182.5.1281.
  • Binder M-T, Becker E, Wiendl M, et al. Similar inhibition of dynamic adhesion of lymphocytes from ibd patients to MAdCAM-1 by vedolizumab and etrolizumab-s. Inflamm Bowel Dis. 2018;24(6):1237–1250. DOI:https://doi.org/10.1093/ibd/izy077.
  • Alessandri AL, Sousa LP, Lucas CD, et al. Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol Ther. 2013;139(2):189–212. DOI:https://doi.org/10.1016/j.pharmthera.2013.04.006.
  • Farokhzad OC, Langer R. Nanomedicine. developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58(14):1456–1459.
  • Ordas I, Eckmann L, Talamini M, et al. Ulcerative colitis. Lancet. 2012;380(9853):1606–1619. DOI:https://doi.org/10.1016/S0140-6736(12)60150-0.
  • Peer D, Karp JM, Hong S, et al., Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12): 751–760. DOI:https://doi.org/10.1038/nnano.2007.387. .
  • Kamaly N, Xiao Z, Valencia PM, et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010. DOI:https://doi.org/10.1039/c2cs15344k.
  • Galindo-Rodriguez SA, Allemann E, Fessi H, et al. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst. 2005;22(5):419–464. DOI:https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i5.10.
  • Cherwinski HM, Schumacher JH, Brown KD, et al. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987;166(5):1229–1244. DOI:https://doi.org/10.1084/jem.166.5.1229.
  • Ho I-C, Tai T-S, Pai S-Y. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol. 2009;9(2):125–135.
  • Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100(6):655–669. DOI:https://doi.org/10.1016/S0092-8674(00)80702-3.
  • Szabo SJ, Sullivan BM, Stemmann C, et al. Distinct effects of T-bet in T H 1 lineage commitment and IFN-γ production in CD4 and CD8 T Cells. Science. 2002;295(5553):338–342. DOI:https://doi.org/10.1126/science.1065543.
  • Yang XO, Angkasekwinai P, Zhu J, et al. Requirement for the basic helix-loop-helix transcription factor Dec2 in initial TH2 lineage commitment. Nat Immunol. 2009;10(12):1260–1266.
  • Finotto S, Neurath MF, and Glickman JN, et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science. 2002;295(5553):336–338.
  • Kamada N, Hisamatsu T, Okamoto S, et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J Immunol. 2005;175(10):6900–6908.
  • Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117(3):514–521.
  • Neurath MF, Weigmann B, Finotto S, et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med. 2002;195(9):1129–1143.
  • Rosen MJ, Karns R, Vallance JE, et al. Mucosal expression of type 2 and type 17 immune response genes distinguishes ulcerative colitis from colon-only crohn’s disease in treatment-naive pediatric patients. Gastroenterology. 2017;152(6):1345–1357 e1347.
  • Kobayashi T, Okamoto S, Hisamatsu T, et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut. 2008;57(12):1682–1689.
  • Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–342.
  • Veldhoen M, Uyttenhove C, van Snick J, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341–1346.
  • Gerlach K, Hwang Y, Nikolaev A, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15(7):676–686.
  • Nalleweg N, Chiriac MT, Podstawa E, et al. IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut. 2015;64(5):743–755.
  • Rosen MJ, Frey MR, Washington MK, et al. STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis. 2011;17(11):2224–2234.
  • Popp V, Gerlach K, and Mott S, et al. Rectal delivery of a DNAzyme that specifically blocks the transcription factor GATA3 reduces colitis in mice. Gastroenterology. 2016;152(1):176–192.e5.
  • Tomalia DA, Khanna SN. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive mendeleev-like nanoperiodic tables. Chem Rev. 2016;116(4):2705–2774.
  • Viscido A, Capannolo A, Latella G, et al. Nanotechnology in the treatment of inflammatory bowel diseases. J Crohns Colitis. 2014;8(9):903–918.
  • Zhang MZ, Yu Y, Yu RN, et al. Tracking the down-regulation of folate receptor-alpha in cancer cells through target specific delivery of quantum dots coupled with antisense oligonucleotide and targeted peptide. Small. 2013;9(24):4183–4193.
  • Molinaro R, Corbo C, Martinez JO, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater. 2016;15(9):1037–1046.
  • Zeeshan M, Ali H, Khan S, et al. Glycyrrhizic acid-loaded pH-sensitive poly-(lactic-co-glycolic acid) nanoparticles for the amelioration of inflammatory bowel disease. Nanomedicine. 2019;14(15):1945–1969.
  • Ali H, Weigmann B, Neurath MF, et al. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release. 2014;183:167–177.
  • Ruiz PA, Morón B, Becker HM, et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut. 2017;66(7):1216–1224.
  • Li J, Chen H, Wang B, et al. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci Rep. 2017;7(1):43126.
  • Abdelmegid AM, Abdo FK, Ahmed FE, et al. Therapeutic effect of gold nanoparticles on DSS-induced ulcerative colitis in mice with reference to interleukin-17 expression. Sci Rep. 2019;9(1):10176.
  • Guada M, Beloqui A, Alhouayek M, et al. Cyclosporine A-loaded lipid nanoparticles in inflammatory bowel disease. Int J Pharm. 2016;503(1):196–198.
  • Dianzani C, Foglietta F, Ferrara B, et al. Solid lipid nanoparticles delivering anti-inflammatory drugs to treat inflammatory bowel disease: effects in an in vivo model. World J Gastroenterol. 2017;23(23):4200.
  • Peñate-Medina T, Damoah C, Benezra M, et al. Alpha-MSH targeted liposomal nanoparticle for imaging in Inflammatory Bowel Disease (IBD). Curr Pharm Des. 2020;26(31):3840–3846.
  • Zhao L, Du X, and Tian J, et al. Berberine-Loaded carboxylmethyl chitosan nanoparticles ameliorate DSS-Induced colitis and remodel gut microbiota in mice. Front Pharmacol. 2021;12:644387.
  • Shen C, Zhao L, Du X, et al. Smart responsive quercetin-conjugated glycol chitosan prodrug micelles for treatment of inflammatory bowel diseases. Mol Pharm. 2021;18(3):1419–1430.
  • Knipe JM, Strong LE, Peppas. Enzyme- and pH-Responsive microencapsulated nanogels for oral delivery of siRNA to induce TNF-α knockdown in the intestine. Biomacromolecules. 2016;17(3):788–797.
  • Xiao B, Xu Z, Viennois E, et al. Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol Ther. 2017;25(7):1628–1640.
  • Zhang M, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–340.
  • Gou S, Chen Q, Liu Y, et al. Green fabrication of ovalbumin nanoparticles as natural polyphenol carriers for ulcerative colitis therapy. ACS Sustain Chem Eng. 2018;6(10):12658–12667.
  • Kriegel C, Amiji M. Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J Control Release. 2011;150(1):77–86.
  • Oshi MA, Lee J, Naeem M, et al. Curcumin nanocrystal/pH-Responsive polyelectrolyte multilayer core–shell nanoparticles for inflammation-targeted alleviation of ulcerative colitis. Biomacromolecules. 2020;21(9):3571–3581.
  • El-Naggar ME, Hussein J, El-sayed SM, et al. Protective effect of the functional yogurt based on Malva parviflora leaves extract nanoemulsion on acetic acid-induced ulcerative colitis in rats. J Mater Res Technol. 2020;9(6):14500–14508.
  • Date AA, Halpert G, Babu T, et al. Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials. 2018;185:97–105.
  • Fang B, Guo P, Yang M, et al. A novel fluorescent enhancing platform based on DNA-scaffolded silver nanoclusters for potential inflammatory bowel disease-associated microRNA detection. Talanta. 2020;218:121122.
  • Collnot EM, Ali H, Lehr CM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release. 2012;161(2):235–246. •• This paper provides an overview about the potential implication of nanotechnology for the treatment of IBD.
  • Zeeshan M, Ali H, Khan S, et al. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int J Pharm. 2019;558:201–214.
  • Carlson M, Raab Y, Peterson C, et al. Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion. Am J Gastroenterol. 1999;94(7):1876–1883.
  • Tirosh B, Khatib N, Barenholz Y, et al. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol Pharm. 2009;6(4):1083–1091.
  • Kshirsagar SJ, Bhalekar MR, Patel JN, et al. Preparation and characterization of nanocapsules for colon-targeted drug delivery system. Pharm Dev Technol. 2012;17(5):607–613.
  • Makhlof A, Tozuka Y, Takeuchi H. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm. 2009;72(1):1–8. • This research paper provides new aspects of about novel pH-sensitive PLGA nanospheres for the colon-specific delivery.
  • Xiao B, Merlin D. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv. 2012;9(11):1393–1407.
  • Liu M, Zhang J, Zhu X, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release. 2016;222:67–77.
  • Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106(Pt B):256–276.
  • Hua S, Marks E, Schneider JJ, et al. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine. 2015;11(5):1117–1132.
  • Lutter L, Hoytema van Konijnenburg DP, Brand EC, et al. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol. 2018;15(10):637–649.
  • Gonzalez-Mariscal L, Nava P, Hernandez S. Critical role of tight junctions in drug delivery across epithelial and endothelial cell layers. J Membr Biol. 2005;207(2):55–68.
  • Nakase H, Okazaki K, Tabata Y, et al. Biodegradable microspheres targeting mucosal immune-regulating cells: new approach for treatment of inflammatory bowel disease. J Gastroenterol. 2003;38(15):59–62.
  • Ho DK, Costa A, De Rossi C, et al. Polysaccharide submicrocarrier for improved pulmonary delivery of poorly soluble anti-infective ciprofloxacin: preparation, characterization, and influence of size on cellular uptake. Mol Pharm. 2018;15(3):1081–1096.
  • Loh G, Blaut M. Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes. 2012;3(6):544–555.
  • Stolzer I, Kaden-Volynets V, Ruder B, et al. Environmental microbial factors determine the pattern of inflammatory lesions in a murine model of crohn’s disease-like inflammation. Inflamm Bowel Dis. 2020;26(1):66–79.
  • Lamprecht A, Rodero Torres H, Schafer U, et al. Biodegradable microparticles as a two-drug controlled release formulation: a potential treatment of inflammatory bowel disease. J Control Release. 2000;69(3):445–454.
  • Thiele C, Loretz B, Lehr CM. Biodegradable starch derivatives with tunable charge density-synthesis, characterization, and transfection efficiency. Drug Deliv Transl Res. 2017;7(2):252–258.
  • Lamprecht A, Ubrich N, Yamamoto H, et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther. 2001;299(2):775–781. •This research paper gives an insight to the function of nanoparticles in use with experimental models of IBD
  • Meissner Y, Pellequer Y, Lamprecht A. Nanoparticles in inflammatory bowel disease: particle targeting versus pH-sensitive delivery. Int J Pharm. 2006;316(1–2):138–143. •This research paper studies the effect of pH-sensitive Eudagit-coated PLGA-nanoparticles in experimental IBD model.
  • Desai MP, Labhasetwar V, Amidon GL, et al. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838–1845.
  • Chen J, Wu C, Oupicky D. Bioreducible hyperbranched poly(amido amine)s for gene delivery. Biomacromolecules. 2009;10(10):2921–2927.
  • Lin C, Zhong ZY, Lok MC, et al. Novel bioreducible poly(amido amine)s for highly efficient gene delivery. Bioconjug Chem. 2007;18(1):138–145.
  • Parmar RG, Busuek M, Walsh ES, et al. Endosomolytic bioreducible poly(amido amine disulfide) polymer conjugates for the in vivo systemic delivery of siRNA therapeutics. Bioconjug Chem. 2013;24(4):640–647.
  • Xiao B, Laroui H, Ayyadurai S, et al. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy. Biomaterials. 2013;34(30):7471–7482.
  • Lamprecht A, Yamamoto H, Takeuchi H, et al. A pH-sensitive microsphere system for the colon delivery of tacrolimus containing nanoparticles. J Control Release. 2005;104(2):337–346. • This research paper provides results with pH-sensitive PLGA nanoparticles loaded with FK506 in experimental colitis model
  • Rodriguez M, Vila-Jato JL, Torres D. Design of a new multiparticulate system for potential site-specific and controlled drug delivery to the colonic region. J Control Release. 1998;55(1):67–77.
  • Rodriguez M, Antunez JA, Taboada C, et al. Colon-specific delivery of budesonide from microencapsulated cellulosic cores: evaluation of the efficacy against colonic inflammation in rats. J Pharm Pharmacol. 2001;53(9):1207–1215.
  • Ali H, Weigmann B, Collnot EM, et al. Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa–pharmaceutical characterization and fluorescence imaging. Pharm Res. 2016;33(5):1085–1092.
  • Schmidt C, Lautenschlaeger C, Collnot EM, et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: a first in vivo study in human patients. J Control Release. 2013;165(2):139–145. ••This paper gives a deeper understanding of the function of biological barriers in healthy and diseased state as well as in their interaction with nanoparticulate drug carriers
  • Lautenschlager C, Schmidt C, Lehr CM, et al. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur J Pharm Biopharm. 2013;85(3 Pt A):578–586. ••This interesting paper is the first to describe the effect of PLGA microparticles in a study in IBD patients with ulcerous lesions
  • Rhodes JM, Robinson R, Beales I, et al. Clinical trial: oral prednisolone metasulfobenzoate (Predocol) vs. oral prednisolone for active ulcerative colitis. Aliment Pharmacol Ther. 2008;27(3):228–240.
  • Lin M, Dong L, Chen Q, et al. Lentinan-Based oral nanoparticle loaded budesonide with macrophage-targeting ability for treatment of ulcerative colitis. Front Bioeng Biotechnol. 2021;9:702173.
  • Xiao B, Zhang Z, Viennois E, et al. Combination therapy for ulcerative colitis: orally targeted nanoparticles prevent mucosal damage and relieve inflammation. Theranostics. 2016;6(12):2250–2266.
  • Hu G, Guo M, Xu J, et al. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front Immunol. 2019;10:1998.
  • Zhang S, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today. 2017;16:82–96.
  • Xiao B, Ma L, Merlin D. Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. Expert Opin Drug Deliv. 2017;14(1):65–73.
  • Zhang M, Wang X, Han MK, et al. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine (Lond). 2017;12(16):1927–1943.
  • Charania MA, Laroui H, Liu H, et al. Intestinal epithelial CD98 directly modulates the innate host response to enteric bacterial pathogens. Infect Immun. 2013;81(3):923–934.
  • Lewis JD, Ruemmele FM, and Wu GD. Nutrition, gut microbiota and immunity: therapeutic targets for IBD. Concluding remarks. Nestle Nutr Inst Workshop Ser, New York. 2014, 79:161–162.
  • Schmitt H, Billmeier U, Dieterich W, et al. Expansion of IL-23 receptor bearing TNFR2+ T cells is associated with molecular resistance to anti-TNF therapy in Crohn’s disease. Gut. 2019;68(5):814–828.
  • Chakraborty S, Kubatzky KF, Mitra DK. An update on interleukin-9: from its cellular source and signal transduction to its role in immunopathogenesis. Int J Mol Sci. 2019;20(9):2113.
  • Knoops L, Renauld J-C. IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors. 2004;22(4):207–215.
  • Demoulin J-B, Louahed J, Dumoutier L, et al. MAP kinase activation by interleukin-9 in lymphoid and mast cell lines. Oncogene. 2003;22(12):1763–1770.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.