592
Views
11
CrossRef citations to date
0
Altmetric
Review

Novel formulations of metal-organic frameworks for controlled drug delivery

, , , , , , & show all
Pages 1183-1202 | Received 18 Jan 2022, Accepted 06 Apr 2022, Published online: 24 Apr 2022

References

  • Horcajada P, Chalati T, Serre C, et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 9(2): 172–178. 2010.
  • Horcajada P, Gref R, Baati T, et al., Metal–organic frameworks in biomedicine. Chem Rev. 112(2): 1232–1268. 2012.
  • Yang QZ, Wen YJ, Zhong AG. An HBT-based fluorescent probe for nitroreductase determination and its application in Escherichia coli cell imaging. New J Chem. 2020;44(38):16265–16268.
  • Liu SY, Liu WQ, Yuan CX, et al. Diketopyrrolopyrrole-based oligomers accessed via sequential C-H activated coupling for fullerene-free organic photovoltaics. Dyes Pigm. 2016;134:139–147.
  • Yao WB, He LL, Han DM, et al. Sodium triethylborohydride-Catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J Org Chem. 2019;84(22):14627–14635.
  • Yao WB, Wang JL, Zhong AG, et al. Combined KOH/BEt 3 catalyst for selective deaminative hydroboration of aromatic carboxamides for construction of luminophores. Org Lett. 2020;22(20):8086–8090.
  • Yao WB, Wang JL, Lou YP, et al. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org Chem Front. 2021;8(16):4554–4559.
  • Zhu X, Liu Y, Yuan G, et al. In situ fabrication of MS@MnO2 hybrid as nanozymes for enhancing ROS-mediated breast cancer therapy. Nanoscale. 2020;12(43):22317–22329.
  • Zhu W, Dong Z, Fu T, et al. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv Funct Mater. 2016;26(30):5490–5498.
  • Lee MH, Yang Z, Lim CW, et al. Disulfide-cleavage-triggered chemosensors and their biological applications. Chem Rev. 2013;113(7):5071–5109.
  • Y LJ, K FO, Roberts J, et al. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38(5):1450–1459.
  • Liu J, Zhao Y, Dang L, et al. Highly stable 3D porous HMOF with enhanced catalysis and fine color regulation by the combination of d- and p-ions when compared with those of its monometallic MOFs. Chem Commun. 2020;56:8758–8761.
  • Zheng HQ, Zhang YN, Liu LF, et al. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc. 2016;138(3):962–968.
  • Y ZY, Chen C, Liu S, et al. A new a new magnetic adsorbent of eggshell-zeolitic imidazolate framework for highly efficient removal of norfloxacin. Dalton Trans. 2021;50(48):18016–18026.
  • Sun YM, Jiang XD, Liu YW, et al. Recent advances in Cu(II)/Cu(I)-MOFs based nano-platforms for developing new nano-medicines. J Inorg Biochem. 2021;225:111599. 1 0.1 016/j.jin orgbio.20 21.11 1599.
  • Qiu YZ, Tan GJ, Fang Y. Fang Y Q, et al.biomedical applications of metal–organic framework (MOF)-based nano-enzymes. New J Chem. 2021;45(45):20987–21000.
  • Li H, Eddaoudi M, O’Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999;402(6759):276–279 .
  • Horcajada P, Serre C, Vallet‐Regí M, et al. Metal–organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed. 2006;118(36):6120–6124.
  • Rieter WJ, Taylor KML, Lin W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J Am Chem Soc. 2007;129(32):9852–9853.
  • Yu J, Cui Y, Xu H, et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat Commun. 2013;4(1):1–7.
  • Deng K, Hou Z, Li X, et al. Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Sci Rep. 2015;5(1):1–7.
  • W ZD, Lei Q, Y ZJ, et al. Switching apoptosis to ferroptosis: metal–organic network for high-efficiency anticancer therapy. Nano Lett. 2017;17(1):284–291.
  • J RW, L TKM, An H, et al. Nanoscale metal− organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc. 2006;128(28):9024–9025.
  • Taylor KML, Jin A, Lin W. Surfactant‐assisted synthesis of nanoscale gadolinium metal–Organic frameworks for potential multimodal imaging. Angew Chem Int Ed. 2008;47(40):7722–7725.
  • E DK, Xie Z, Cao G, et al. Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography. Angew Chem Int Edit. 2009;121(52):10085–10088.
  • Lin W, Nie S, Zhong Q, et al. Amphiphilic miktoarm star copolymer (PCL) 3-(PDEAEMA-b-PPEGMA)3 as pH-sensitive micelles in the delivery of anticancer drug. J Mater Chem B. 2014;2(25):4008–4020.
  • Wang Y, Yang T, Ke H, et al. Smart albumin‐biomineralized nanocomposites for multimodal imaging and photothermal tumor ablation. Adv Mater. 2015;27(26):3874–3882.
  • Y LS, Cheng H, R XB, et al. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS nano. 2017;11(7):7006–7018.
  • Ni K, Lan G, Chan C, et al., Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Commun. 9(1): 1–12. 2018.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
  • Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–2663.
  • Zhao MX, Zhu BJ. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res Let. 2016;11(1):1–9.
  • Sayed E, Alyassin Y, Zaman A, et al. Porous inorganic nanomaterials for drug delivery. Handbook of Materials for Nanomedicine 2020;295–348.
  • Zhou Z, Wang Y, Peng F. Intercalation-Activated layered MoO 3 nanobelts as biodegradable nanozymes for Tumor-Specific Photo-Enhanced catalytic therapy. Angew Chem Int Ed. 2022;61(16):e202115939 .
  • Luo Z, Fan S, Gu C, et al. Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Curr Med Chem. 2019;26(18):3341–3369.
  • Han Y, Liu W, Huang, et al. Cyclodextrin-based metal-organic frameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics. 2018;10(4):271.
  • Pan Y, Ding Q, Xu H, et al. A new Zn(ii)-based 3D metal–organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes. CrystEngComm. 2019;21(31):4578–4585. 1 0.1 039/C 9CE00 759H.
  • Ding Q, Pan Y, Luo Y, et al. Photocatalytic and ferric ion sensing properties of a new three-dimensional metal–organic framework based on cuboctahedral secondary building units. ACS Omega. 2019;4(6):10775–10783.
  • Ma A, Wu J, Han Y, et al. Rational synthesis of a luminescent uncommon (3,4,6)-c connected Zn(ii) MOF: a dual channel sensor for the detection of nitroaromatics and ferric ions. Dalton Trans. 2018;47(29):9627–9633. 1 0.1 039/C8 DT019 23A.
  • Jin J-C, Wu J, Liu W-C, et al. A new Zn(ii) metal–organic framework having 3D CdSO 4 topology as luminescent sensor and photocatalyst for degradation of organic dyes. New J Chem. 2018;42(4):2767–2775.
  • Pan X, Bai L, Wang H, et al. Metal–organic‐framework‐derived carbon nanostructure augmented sonodynamic cancer therapy. Adv Mater. 2018;30(23):1800180.
  • Singh A, Singh AK, Liu JQ, et al. Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes, catal. Sci Technol. 2021;11:3946–3989.
  • Wang J, Zhou LY, Rao CY, et al. Two 3D supramolecular isomeric Zn(II)-MOFs as photocatalysts for photodegradation of methyl violet dye. Dyes Pigm. 2021;190:109285.
  • Zhong YY, Li XS, Chen JH, et al. Recent advances in MOF-based nanoplatforms generating reactive species for chemodynamic therapy. Dalton Trans. 2020;49(32):11045–11058.
  • Rao CY, Zhou LY, Pan Y, et al. The extra-large calixarene-based MOFs-derived hierarchical composites for photocatalysis of dye: facile syntheses and contribution of carbon species. J Alloy Compd. 2022;897:163178.
  • Wang J, Rao CY, Lu L, et al. Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers. CrystEngComm. 2021;23(3):741–747.
  • Zhou SH, Lu L, Liu D, et al. Series of highly stable Cd(ii)-based MOFs as sensitive and selective sensors for detection of nitrofuran antibiotic. CrystEngComm. 2021;23(46):8043–8052.
  • Zhang W, Guo T, Wang C, et al. MOF capacitates cyclodextrin to mega-load mode for high-efficient delivery of valsartan. Pharm Res. 2019;36(8):1–13.
  • C LW, Pan Y, T ZY, et al. A multifunctional aminated UiO-67 metal-organic framework for enhancing antitumor cytotoxicity through bimodal drug delivery. Chem Eng J. 2021;412:127899.
  • Wang Z, Hu S, Yang J, et al. Nanoscale zr‐based MOFs with tailorable size and introduced mesopore for protein delivery. Adv Funct Mater. 2018;28(16):1707356.
  • Zhuang J, Young AP, Tsung CK. Integration of biomolecules with metal–organic frameworks. Small. 2017;13(32):1700880.
  • Luo Z, Jiang L, Yang S, et al. Light‐Induced redox‐responsive smart drug delivery system by using selenium‐containing polymer@ MOF shell/core nanocomposite. Adv Healthcare Mater. 2019;8(15):1900406.
  • Hu M-L, Mohammad YM, Morsali A. Template strategies with MOFs. Coord Chem Rev. 2019;387:415–435.
  • Hu M-L, Razavi SA, Piroozzadeh M, et al. Sensing organic analytes by metal-organic frameworks: a new way of considering the topic. Inorg Chem Front. 2020;7:1598–1632.
  • Esrafili L, Morsali A, Hu M-L, et al. Size-Selective Urea-Containing metal−organic frameworks as receptors for anions, inorg. Chem. 2020;59:16421–16429.
  • Esrafili L, Firuzabadi FD, Morsali A, et al. Reuse of predesigned Dual-Functional metal organic frameworks (DF-MOFs) after heavy metal removal. J Hazard Mater. 2021;403:123696.
  • Dutta A, Pan Y, Q LJ, et al. Multicomponent isoreticular metal-organic frameworks: principles, current status and challenges. Coord Chem Rev. 2021;445:214074.
  • Wuttke S, Lismont M, Escudero A, et al. Positioning metal-organic framework nanoparticles within the context of drug delivery–a comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials. 2017;123:172–183.
  • J.-h Q, Zhang H, Sun YD, et al. Ionic liquid induced highly dense assembly of porphyrin in mof nanosheets for photodynamic therapy. Dalton Trans. 2020;49(48):17772–17778.
  • Wang S-J, Alavi MA, Karizi FZ, et al. A pillar-layered metal-organic framework based on pinwheel trinuclear zinc-carboxylate clusters; synthesis and characterization. Mater Lett. 2021;287:12926.
  • Simon‐Yarza T, Mielcarek A, Couvreur P, et al. Nanoparticles of metal‐organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater. 2018;30(37):1707365.
  • Qin JH, Qin WJ, Xiao JK, et al. Efficient energy-transfer-induced high photoelectric conversion in a dye-encapsulated ionic pyrene-based metal–organic framework. Inorg Chem. 2021;60(24):18593–18597.
  • Zhao Y, Wang L, N FN, et al. Porous Zn(II)-Based Metal–Organic frameworks decorated with carboxylate groups exhibiting high gas adsorption and separation of organic dyes. Cryst Growth Des. 2018;18(11):7114–7121.
  • Hu M-LJ, Razavi M, A S, et al. Phenolic nitroaromatics detection by fluorinated metal-organic frameworks: barrier elimination for selective sensing of specific group of nitroaromatics. J Hazard Mater. 2021;406:124501.
  • Bellido E, Hidalgo T, V LM, et al. Heparin‐engineered mesoporous iron metal‐organic framework nanoparticles: toward stealth drug nanocarriers. Adv Healthc Mater. 2015;4(8):1246–1257.
  • Agostoni V, Horcajada P, Noiray M, et al. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci Rep. 2015;5(1):1–7.
  • Leng X, Huang H, Wang W, et al. Zirconium-porphyrin PCN-222: pH-responsive controlled anticancer drug Oridonin. Evid Based Complement Alternat Med. 2018;2018:1–12.
  • H QJ, D HY, Zhao Y, et al. Highly dense packing of chromophoric linkers achievable in a pyrene-based metal–organic framework for photoelectric response. Inorg Chem. 2019;58(22):15013–15016.
  • Wen T, Quan G, Niu B, et al. Versatile Nanoscale Metal–Organic Frameworks (nMOFs): an emerging 3D nanoplatform for drug delivery and therapeutic applications. Small. 2021;17(8):2005064.
  • Hu M-L, Safarifard V, Doustkhah E, et al. Taking organic reactions over metal-organic frameworks as heterogeneous catalysis, micropor. Mespor Mat. 2018;256:111–127.
  • He H, Hashemi L, Hu M-L, et al. The role of the counter-ion in metal-organic frameworks’ chemistry and applications. Coord Chem Rev. 2018;376:319–347.
  • Liu JQ, Luo Z-D, Pan Y, et al. Recent developments in luminescent coordination polymers: designing strategies, sensing application and theoretical evidences. Coord Chem Rev. 2020;406:213145.
  • Haque E, Jeong JH, Jhung SH. Synthesis of isostructural porous metal-benzenedicarboxylates: effect of metal ions on the kinetics of synthesis. CrystEngComm. 2010;12(10):2749–2754.
  • Dutta A, Singh A, Wang XX, et al. Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm. 2020;22(45):7736–7781.
  • Pachfule P, Das R, Poddar P, et al. Structural, magnetic, and gas adsorption study of a series of partially fluorinated metal− organic frameworks (HF-MOFs). Inor Chem. 2011;50(9):3855–3865.
  • Li G, Wang T, H ZS, et al. New highly luminescent 3D Tb(III)-MOF as selective sensor for antibiotics Inorg. Chem Commum. 2021;130:108756.
  • Khan NA, Haque E, Jhung SH. Rapid syntheses of a metal–organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses. Phys Chem Chem Phys. 2010;12(11):2625–2631.
  • Yuan W, L GA, Pichon A, et al. Study of the mechanochemical formation and resulting properties of an archetypal MOF: cu3(BTC)2 (BTC = 1, 3, 5-benzenetricarboxylate). CrystEngComm. 2010;12(12):4063–4065.
  • K AE, Mokhtari J, R N-JM, et al. Zn-MOF: an efficient drug delivery platform for the encapsulation and releasing of imatinib mesylate. J Porous Mater. 2021;28(2):641–649.
  • Q LZ, G QL, Xu T, et al. Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater Lett. 2009;63(1):78–80.
  • Jin C, Bigdeli F, Liu K–G, et al. Sonochemical effect on two new Ruthenium(II) complexes with ligand (E)-N-((6-bromopyridin-2-yl)methylene)-4-(methylthio)aniline precursors for synthesis of RuO2 nanoparticles, Ultrason. SonoChem. 2017;39:565–576.
  • X.-x C, Hojaghani S, M.-l H, et al. Sonochemical synthesis and characterization of new nanostructures cobalt(II) metal-organic complexes derived from the azo-coupling reaction of 4-amino benzoic acid with anthranilic acid, salicylaldehyde and 2-naphtol, Ultrason. SonoChem. 2017;37:614–622.
  • N.-n Z, Bigdeli F, Miao Q, et al. Ultrasonic-assisted synthesis, characterization and DNA binding studies of Ru(II) complexes with the chelating N-donor ligand and preparing of RuO2 nanoparticles by the easy method of calcination. J Organomet Chem. 2018;878:11–18.
  • Campagnol N, Van Assche T, Boudewijns T, et al. High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies. J Mater Chem A. 2013;1(19):5827–5830.
  • Shen J, Ma M, Zhang H, et al. Microfluidics-Assisted surface trifunctionalization of a zeolitic imidazolate framework nanocarrier for targeted and controllable multitherapies of tumors. ACS Appl Mater & Interf. 2020;12(41):45838–45849.
  • Furukawa H, E CK, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444.
  • C LW, W YQ, Xia C, et al. Recent advances in cell membrane coated metal-organic frameworks (MOFs) for tumor therapy. J Mat Chem B. 2021;9:4459–4474.
  • Wang J, Y RC, Lu L, et al. Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers. CrystEngComm. 2021;23:741–747. 1 0.1 039/D0C E0163 2B.
  • Q LJ, D LZ, K SA, et al. Recent developments in luminescent coordination polymers: designing strategies, sensing application and theoretical evidences. Coord Chem Rev. 2020;406:213245.
  • Pan Y, Luo Z, Wang X, et al. A versatile and multifunctional metal–organic framework nanocomposite toward chemo-photodynamic therapy. Dalton Trans. 2020;49(16):5291–5301.
  • Nirosha Yalamandala B, T SW, H MS, et al. Advances in functional metal‐organic frameworks based on‐demand drug delivery systems for tumor therapeutics. Adv NanoBiomed Res. 2021;1(8):2100014.
  • Wu B, Fu J, Zhou Y, et al. Tailored core‒shell dual metal–organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy. Acta Pharm Sin B. 2020;10(11):2198–2211.
  • Lin W, Hu Q, Jiang K, et al. A porous zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release. Micropor Mesopor Mater. 2017;249:55–60.
  • Li H, Chen C, An Q, et al. Photo-responsive nanoparticles for β-lapachone delivery in vitro. Chinese Chem Lett. 2018;29(9):1347–1349.
  • H HS, Y LT, M LD, et al. Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field. Macromolecules. 2007;40(19):6786–6788.
  • Mo R, Jiang T, Sun W, et al. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials. 2015;50:67–74.
  • Jiang Y, M FJ, D PC, et al. Nanoformulation of brain‐derived neurotrophic factor with target receptor‐triggered‐release in the central nervous system. Adv Funct Mater. 2018;28(6):1703982.
  • Carrillo-Carrión C. Nanoscale metal–organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Anal Bioanal Chem. 2020;412(1):37–54.
  • Lu K, Aung T, Guo N, et al. Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. 2018;30(37):1707634.
  • Zhao Y, Zhou Y, Yang D, et al. Intelligent and spatiotemporal drug release based on multifunctional nanoparticle-integrated dissolving microneedle system for synergetic chemo-photothermal therapy to eradicate melanoma. Acta Biomater. 2021;135:164–178.
  • Ebrahimi AK, Barani M, Sheikhshoaie I. Fabrication of a new superparamagnetic metal-organic framework with core-shell nanocomposite structures: characterization, biocompatibility, and drug release study. Mater Sci Eng: C. 2018;92:349–355.
  • Liang K, Ricco R, M DC, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun. 2015;6(1):1–8.
  • Chen G, Huang S, Kou X, et al. A convenient and versatile amino‐acid‐boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal–organic frameworks. Angew Chem Int Edit. 2019;58(5):1463–1467.
  • Wang Y, Yan J, Wen N, et al. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials. 2020;230:119619.
  • Chen Y, Wu H, Yang T, et al. Biomimetic nucleation of Metal–Organic frameworks on silk fibroin nanoparticles for designing Core–Shell-Structured pH-Responsive anticancer drug carriers. ACS Appl Mater & Interf. 2021;13(40):47371–47381.
  • M JB, Stillman Z, Attia L, et al. Evaluating UiO-66 metal–organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl Mater & Interf. 2020;12(35):38989–39004.
  • Y YS, Song G, Yang Y, et al. Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@ metal–organic frameworks for enhanced photodynamic therapy. Adv Funct Mate. 2019;29(25):1901417.
  • Chen X, Zhang M, Li S, et al. Facile synthesis of polypyrrole@ metal–organic framework core–shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J Mater Chem B. 2017;5(9):1772–1778.
  • Zhao J, Yang Y, Han X, et al. Redox-sensitive nanoscale coordination polymers for drug delivery and cancer theranostics. ACS Appl Mater & Interf. 2017;9(28):23555–23563.
  • Miao Y, Zhao X, Qiu Y, et al. Metal–organic framework-assisted nanoplatform with hydrogen peroxide/glutathione dual-sensitive on-demand drug release for targeting tumors and their microenvironment. ACS Appl Bio Mater. 2019;2(2):895–905.
  • Wang J, Huang N, Peng Q, et al. Temperature/pH dual-responsive and luminescent drug carrier based on PNIPAM-MAA/lanthanide-polyoxometalates for controlled drug delivery and imaging in HeLa cells. Mater Chem Phy. 2020;239:121994.
  • Ahmed A, Karami A, Sabouni R, et al. pH and ultrasound dual-responsive drug delivery system based on peg–folate-functionalized iron-based Metal–Organic framework for targeted doxorubicin delivery. Coll Surf A Physicochem Eng Aspect 2021 127062 10.1016/j.colsurfa.2021.127062
  • Jiang Z, Wang Y, Sun L, et al. Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomaterials. 2019;197:41–50.
  • Abazari R, Ataei F, Morsali A, et al. A luminescent amine-functionalized metal–organic framework conjugated with folic acid as a targeted biocompatible pH-responsive nanocarrier for apoptosis induction in breast cancer cells. ACS Appl Mater & Interf. 2019;11(49):45442–45454.
  • Liang Z, Yang Z, Yuan H, et al. A protein@ metal–organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalt Trans. 2018;47(30):10223–10228.
  • Abazari R, R MA, Ataei F, et al. Chitosan immobilization on bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inor Chem. 2018;57(21):13364–13379.
  • Z RS, Zhu D, H ZX, et al. Nanoscale Metal–Organic-Frameworks coated by biodegradable organosilica for ph and redox dual responsive drug release and High-Performance anticancer therapy. ACS Appl Mater & Interf. 2019;11(23):20678–20688.
  • X WM, J YH, Gao J, et al. Multifunctional supramolecular materials constructed from polypyrrole@ UiO-66 nanohybrids and pillararene nanovalves for targeted chemophotothermal therapy. ACS Appl Mater & Interf. 2018;10(40):34655–34663.
  • L LQ, Sun Y, Ren L, et al. Supramolecular nanosystem based on pillararene-capped CuS nanoparticles for targeted chemo-photothermal therapy. ACS Appl Mater & Interf. 2018;10(35):29314–29324.
  • Jiang K, Zhang L, Hu Q, et al. Thermal Stimuli‐triggered drug release from a biocompatible porous Metal–Organic framework. Chem–A Eur J. 2017;23(42):10215–10221.
  • Nagata S, Kokado K, Sada K. Metal–organic framework tethering pH-and thermo-responsive polymer for ON–OFF controlled release of guest molecules. CrystEngComm. 2020;22(6):1106–1111.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
  • Cabrera-García A, Checa-Chavarria E, Rivero-Buceta E, et al. Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin. J Colloid Interface Sci. 2019;541:163–174.
  • Kuang X, Chi D, Li J, et al. Disulfide bond based cascade reduction-responsive Pt (IV) nanoassemblies for improved anti-tumor efficiency and biosafety. Colloids Surf B Biointerfaces. 2021;203:111766.
  • Kim K, Lee S, Jin E, et al. MOF× biopolymer: collaborative combination of metal–organic framework and biopolymer for advanced anticancer therapy. ACS Appl Mater Interfaces. 2019;11(31):27512–27520.
  • Wang Y, Wu W, Liu J, et al. Cancer-cell-activated photodynamic therapy assisted by Cu (II)-based metal–organic framework. ACS nano. 2019;13(6):6879–6890.
  • Liu Y, S GC, Lin L, et al. Core-shell metal-organic frameworks with fluorescence switch to trigger an enhanced photodynamic therapy. Theranosics. 2019;9(10):2791.
  • S WS, Cheng Q, Zeng X, et al. A Mn (III)-sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics. ACS nano. 2019;13(6):6561–6571.
  • Zhang C, Hong S, D LM, et al. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J Control Release. 2020;320:159–167.
  • H CW, F LG, Vazquez-Gonzalez M, et al. Glucose-responsive metal–organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS nano. 2018;12(8):7538–7545.
  • Bai J, Peng C, Guo L, et al. Metal–Organic framework-Integrated enzymes as bioreactor for enhanced therapy against solid tumor via a cascade catalytic reaction. ACS Biomater Sci Eng. 2019;5(11):6207–6215.
  • Kay ER, Leigh DA, Zerbetto F. Synthetic molecular motors and mechanical machines. Angew Chem. 2007;46(1‐2):72–191.
  • Balzani V, Credi A, M RF, et al. Künstliche molekulare Maschinen. Angew Chem. 2000;112(19):3484–3530.
  • Ke C, L SN, Li H, et al. Pillar [5] arene as a co-factor in templating rotaxane formation. J Am Chem Soc. 2013;135(45):17019–17030.
  • B CH, Cui Y, Wang R, et al. The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy. Coord Chem Rev. 2019;392:237–254.
  • Song N, Y LX, Ma L, et al. Supramolecular nanotheranostics based on pillarenes. Theranostics. 2019;9(11):3075.
  • Sancenón F, Pascual L, Oroval M, et al. Gated silica mesoporous materials in sensing applications. ChemistryOpen. 2015;4(4):418–437.
  • Alberti S, Soler-Illia GJAA, Azzaroni O. Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chem Comm. 2015;51(28):6050–6075.
  • Erbas-Cakmak S, A LD, T MC, et al. Artificial molecular machines. Chem Rev. 2015;115(18):10081–10206.
  • Li Z, Song N, Yang YW. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter. 2019;1(2):345–368.
  • L TL, Li H, Zhou Y, et al. Zn2+‐triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates. Small. 2015;11(31):3807–3813.
  • Gao X, Zhai M, Guan W, et al. Controllable synthesis of a smart multifunctional nanoscale metal–organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl Mater Interfaces. 2017;9(4):3455–3462.
  • Hu J, Chen Y, Zhang H, et al. TEA-assistant synthesis of MOF-74 nanorods for drug delivery and in-vitro magnetic resonance imaging. Microporous Mesoporous Mater. 2021;315:110900.
  • Peller M, Böll K, Zimpel A, et al. Metal–organic framework nanoparticles for magnetic resonance imaging. Inorg Chem Front. 2018;5(8):1760–1779.
  • Robison L, Zhang L, J DR, et al. A bismuth metal–organic framework as a contrast agent for X-ray computed tomography. ACS Appl Bio Mater. 2019;2(3):1197–1203.
  • E DK, S BW, M BL, et al. Zr-and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. J Mater Chem. 2012;22(35):18139–18144.
  • Chen D, Yang D, A DC, et al. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal–organic frameworks nanomaterials. ACS nano. 2017;11(4):4315–4327.
  • Zhou G, S WY, Jin Z, et al. Porphyrin–palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy. Nanoscale Horiz. 2019;4(5):1185–1193.
  • Della Rocca J, Lin W. Nanoscale metal–organic frameworks: magnetic resonance imaging contrast agents and beyond. Eur J Inorg Chem. 2010;2010(24):3725–3734.
  • Cai W, Gao H, Chu C, et al. Engineering phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces. 2017;9(3):2040–2051.
  • Gulani V, Calamante F, G SF, et al. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol. 2017;16(7):564–570.
  • Ramalho J, Ramalho M, AlObaidy M, et al. Technical aspects of MRI signal change quantification after gadolinium-based contrast agents’ administration. Magn Reson Imaging. 2016;34(10):1355–1358.
  • Ramalho J, Ramalho M, Semelka RC. Gadolinium deposition and toxicity: a global concern. Curr Radiol Rep. 2016;4(11):1–7.
  • Choi JW, Moon WJ. Gadolinium deposition in the brain: current updates. Korean J Radiol. 2019;20(1):134–147.
  • Zhou Z, Lu ZR. Gadolinium‐based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):1–18.
  • Z YM, Yu J, L HY, et al. Magnetic nanoparticle-based cancer nanodiagnostics. Chin Phys B. 2013;22(5):058702.
  • Ramalho J, Ramalho M. Gadolinium deposition and chronic toxicity. Mag Reson Imag Clin. 2017;25(4):765–778.
  • Blumfield E, W SD, S IR, et al. Gadolinium-based contrast agents—review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol. 2019;49(4):448–457.
  • Bieniek A, P TA, Wiśniewski M, et al. MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: recent advances and perspectives. Pro Mater Sci. 2021;117:100743.
  • Duman FD, Forgan RS. Applications of nanoscale metal–organic frameworks as imaging agents in biology and medicine. J Mat Chem B. 2021;9(16):3423–3449.
  • E MS, H TM, Z MP, et al. Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus. 2016;6(4):20160027.
  • Liu Y, Zhang C, Xu C, et al. Controlled synthesis of up-conversion luminescent Gd/Tm-MOFs for pH-responsive drug delivery and UCL/MRI dual-modal imaging. Dalton Trans. 2018;47(32):11253–11263.
  • Zhu J, Wang G, S AC, et al. Multifunctional dendrimer-entrapped gold nanoparticles conjugated with doxorubicin for pH-responsive drug delivery and targeted computed tomography imaging. Langmuir. 2018;34(41):12428–12435.
  • Shang W, Zeng C, Du Y, et al. Core–shell gold Nanorod@ metal–organic framework nanoprobes for multimodality diagnosis of glioma. Adv Mater. 2017;29(3):1604381.
  • Beg S, Rahman M, Jain A, et al. Nanoporous metal organic frameworks as hybrid polymer–metal composites for drug delivery and biomedical applications. Drug Discov Today. 2017;22(4):625–637.
  • He S, Wu L, Li X, et al. Metal-organic frameworks for advanced drug delivery. Acta Pharma Sin B. 2021;11(8):2362–2395.
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6(1):12–21.
  • Verma A, Uzun O, Hu Y, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008;7(7):588–595.
  • Zhao F, Zhao Y, Liu Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7(10):1322–1337.
  • Ho TM, Howes T, Bhandari BR. Encapsulation of gases in powder solid matrices and their applications: a review. Powder Technol. 2014;259:87–108.
  • Cai W, C CC, Liu G, et al. Metal–organic framework‐based nanomedicine platforms for drug delivery and molecular imaging. Small. 2015;11(37):4806–4822.
  • Gulcay E, Erucar I. Metal-organic frameworks for biomedical applications[M]//Two-dimensional nanostructures for biomedical technology. Elsevier. 2020;173–210.
  • Kush P, Bajaj T, Kaur M, et al. Biodistribution and pharmacokinetic study of gemcitabine hydrochloride loaded biocompatible iron-based metal organic framework. J Inorg Organomet Polym Mater. 2019;88:1–15.
  • Rojas S, Baati T, Njim L, et al. Metal–organic frameworks as efficient oral detoxifying agents. J Am Chem Soc. 2018;140(30):9581–9586.
  • Ruyra À, Yazdi A, Espín J, et al. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal–organic framework nanoparticles. Chem–A Eur J. 2015;21(6):2508–2518.
  • Roger E, Lagarce F, Garcion E, et al. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine. 2010;5(2):287–306.
  • Thanki K, P GR, T SA, et al. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release. 2013;170(1):15–40.
  • Batista P, M CP, R MA, et al. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides. 2018;101:112–123.
  • Javanbakht S, Pooresmaeil M, Hashemi H, et al. Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. Int J Biol Macromol. 2018;119:588–596.
  • Li Y, Tang J, He L, et al. Core–shell upconversion nanoparticle@ metal–organic framework nanoprobes for luminescent/magnetic dual‐mode targeted imaging. Adv Mater. 2015;27(27):4075–4080.
  • Sun L, Xu Y, Gao Y, et al. Synergistic amplification of oxidative Stress–Mediated antitumor activity via liposomal dichloroacetic acid and MOF‐Fe2+. Small. 2019;15(24):1901156.
  • Xu X, Chen Y, Zhang Y, et al. Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe2+ induced ferroptosis in breast cancer cells. J Mat Chem B. 2020;8(39):9129–9138.
  • B PY, Wang S, He X, et al. A combination of glioma in vivo imaging and in vivo drug delivery by metal–organic framework based composite nanoparticles. J Mat Chem B. 2019;7(48):7683–7689.
  • Chowdhury M A. The controlled release of drugs and bioactive compounds from mesoporous silica nanoparticles. Curr Drug Deliv. 2016;13(6):839–856.
  • Chowdhury MA. The silica‐based formulations for drug delivery, bone treatment, and bone regeneration. Chem Bio Eng Rev. 2016;3(5):229–246.
  • Nanomaterials in drug delivery, imaging, and tissue engineering. John Wiley & Sons; 2013.
  • D RM, H TD, L KS, et al. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules. 2009;10(4):983–993.
  • Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc. 2008;130(21):6774–6780.
  • Huxford RC, Della Rocca J, Lin W. Metal–organic frameworks as potential drug carriers. Curr Opin Chem Biol. 2010;14(2):262–268.
  • C MA, E MR, Horcajada P, et al. BioMOFs: metal–organic frameworks for biological and medical applications. Angew Chem. 2010;49(36):6260–6266.
  • Hanke M, K AH, Bauer S, et al. The biocompatibility of metal–organic framework coatings: an investigation on the stability of SURMOFs with regard to water and selected cell culture media. Langmuir. 2012;28(17):6877–6884.
  • Chowdhury MA. The applications of metal-organic-frameworks in controlled release of drugs. Rev J Chem. 2017;7(1):1–22.
  • Chowdhury MA. M etal‐organic‐frameworks for biomedical applications in drug delivery, and as MRI contrast agents. J Biomed Mater Res A. 2017;105(4):1184–1194.
  • E MJ, Karagiaridi O, K FO, et al. Activation of metal–organic framework materials. CrystEngComm. 2013;15(45):9258–9264.
  • Chen J, Shen K, Li Y. Greening the processes of metal–organic framework synthesis and their use in sustainable catalysis. ChemSusChem. 2017;10(16):3165–3187.
  • C DA, Lammert M, Stock N, et al. Green synthesis of Zr-CAU-28: structure and properties of the first Zr-MOF based on 2, 5-furandicarboxylic acid. Inorg Chem. 2017;56(4):2270–2277.
  • Reinsch H. “Green” synthesis of metal‐organic frameworks. Eur J Inorg Chem. 2016;2016(27):4290–4299.
  • Lu K, He C, Guo N, et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat Biomed Eng. 2018;2(8):600–610.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.