674
Views
0
CrossRef citations to date
0
Altmetric
Review

Biopredictive tools for the development of injectable drug products

, & ORCID Icon
Pages 671-684 | Received 10 Feb 2022, Accepted 20 May 2022, Published online: 01 Jun 2022

References

  • Edwards LJ. The dissolution and diffusion of aspirin in aqueous media. Trans Faraday Soc. 1951;47:1191–1210.
  • Nelson E. Solution rate of theophylline salts and effects from oral administration. J Am Pharm Assoc Am Pharm Assoc. 1957 Oct;46(10): 607–614.
  • Lindenbaum J, Mellow MH, Blackstone MO, et al. Variation in biologic availability of digoxin from four preparations. N Engl J Med. 1971;285(24):1344–1347.
  • Marroum PJ. History and evolution of the dissolution test. Dissolution Technol. 2014;21(3):11–16.
  • Zhong H, Chan G, Hu Y, et al. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics. 2018;10(4):263.
  • Gao GF, Thurn M, Wendt B, et al. A sensitive in vitro performance assay reveals the in vivo drug release mechanisms of long-acting medroxyprogesterone acetate microparticles. Int J Pharm. 2020 [cited 2020 Aug 30];586:119540.
  • Li D, Chow PY, Lin TP, et al. Simulate SubQ: the methods and the media. J Pharm Sci. [2021 Oct 30]; DOI:https://doi.org/10.1016/j.xphs.2021.10.031
  • Zou P, Wang F, Wang J, et al. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J Control Release. 2021 Aug 10;336:310–321.
  • Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017;11(9):821–834.
  • Turner JR. Intestinal mucosal barrier function in health and disease.Nat Rev Immunol. 2009 Nov 01;9(11):799–809.
  • Dimitrov DS. Therapeutic proteins. Methods Mol Biol. 2012;899:1–26.
  • fUsmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12(7):e0181748.
  • Mast MP, Modh H, Champanhac C, et al. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev. 2021 Dec;179:113829.
  • Marques MRC, Choo Q, Ashtikar M, et al. Nanomedicines - Tiny particles and big challenges. Adv Drug Deliv Rev. 2019 Nov - Dec;151-152:23–43.
  • Elgundi Z, Reslan M, Cruz E, et al. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. 2017 Dec 1;122:2–19.
  • Sánchez-Félix M, Burke M, Chen HH, et al. Predicting bioavailability of monoclonal antibodies after subcutaneous administration: open innovation challenge. Adv Drug Deliv Rev. 2020 Dec;167:66–77.
  • Nothnagel L, Wacker MG. How to measure release from nanosized carriers? Eur J Pharm Sci. 2018 Jul 30;120:199–211.
  • Abend A, Heimbach T, Cohen M, et al. Dissolution and translational modeling strategies enabling patient-centric drug product development: the M-CERSI workshop summary report. Aaps j. 2018 Apr 9 20(3):60.
  • Smith JS, Mochel JP, Soto-Gonzalez WM, et al. Pharmacokinetics of pantoprazole and pantoprazole sulfone in goats after intravenous administration: a preliminary report [Original research]. Front Vet Sci. 2021;8:744813.
  • Le Merdy M, Mullin J, Lukacova V. Development of PBPK model for intra-articular injection in human: methotrexate solution and rheumatoid arthritis case study. J Pharmacokinet Pharmacodyn. 2021 Dec;48(6):909–922.
  • Vardhan H, Mittal P, Adena SKR, et al. Development of long-circulating docetaxel loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles: optimization, pharmacokinetic, cytotoxicity and in vivo assessments. Int J Biol Macromol. 2017 Oct;103:791–801.
  • He H, Yuan D, Wu Y, et al. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs. Pharmaceutics. 2019;11(3):110.
  • Yuan D, He H, Wu Y, et al. Physiologically based pharmacokinetic modeling of nanoparticles. J Pharm Sci. 2019;108(1): 58–72.
  • Jamei M, Marciniak S, Feng K, et al. The Simcyp® population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009 Feb 01;5(2):211–223.
  • Krause A, Lowe PJ. Visualization and communication of pharmacometric models with Berkeley Madonna. CPT Pharmacometrics Syst Pharmacol. 2014;3(5):e116–e116.
  • Jablonka L, Ashtikar M, Gao GF, et al. Predicting human pharmacokinetics of liposomal temoporfin using a hybrid in silico model. Eur J Pharm Biopharm. 2020 Apr;149:121–134.
  • Modh H, Fang DJ, Ou YH, et al. Injectable drug delivery systems of doxorubicin revisited: in vitro-in vivo relationships using human clinical data. Int J Pharm. 2021 Oct 25;608:121073.
  • Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev. 2014;69-70:1–18.
  • Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning [Review]. Front Pharmacol. 2018;9(6). DOI:https://doi.org/10.3389/fphar.2018.00006
  • Jardet C, David A, Braun E, et al. Development and characterization of a human Th17-driven ex vivo skin inflammation model. Exp Dermatol. 2020;29(10):993–1003.
  • Alwawi EA, Mehlis SL, Gordon KB. Treating psoriasis with Adalimumab. Ther Clin Risk Manag. 2008;4(2):345–351.
  • Torres-Terán I, Venczel M, Klein S. Prediction of subcutaneous drug absorption - do we have reliable data to design a simulated interstitial fluid? Int J Pharm. 2021 Dec 15; 610:121257
  • Jablonka L, Ashtikar M, Gao G, et al. Advanced in silico modeling explains pharmacokinetics and biodistribution of temoporfin nanocrystals in humans. J Control Release. 2019 Aug 28;308:57–70.
  • Gao GF, Ashtikar M, Kojima R, et al. Predicting drug release and degradation kinetics of long-acting microsphere formulations of tacrolimus for subcutaneous injection. J Control Release. 2021 Jan 10;329:372–384.
  • Bhowmik S, Bhowmick S, Maiti K, et al. Two multicenter phase I randomized trials to compare the bioequivalence and safety of a generic doxorubicin hydrochloride liposome injection with Doxil(®) or Caelyx(®) in advanced ovarian cancer. Cancer Chemother Pharmacol. 2018 Sep;82(3):521–532.
  • Janagam DR, Wang L, Ananthula S, et al. An accelerated release study to evaluate long-acting contraceptive Levonorgestrel-containing in Situ forming depot systems. Pharmaceutics. 2016;8(3):28.
  • Galia E, Nicolaides E, Hörter D, et al. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 1998;15(5):698–705.
  • Nicolaides E, Galia E, Efthymiopoulos C, et al. Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharm Res. 1999;16(12):1876–1882.
  • Kovshova T, Osipova N, Alekseeva A, et al. Exploring the interplay between drug release and targeting of Lipid-like polymer nanoparticles loaded with Doxorubicin. Molecules. 2021 Feb 5;26(4):831.
  • Bock F, Lin E, Larsen C, et al. Towards in vitro in vivo correlation for modified release subcutaneously administered insulins. Eur J Pharm Sci. 2020 Mar 30;145:105239.
  • Jacob S, Nair AB. An updated overview with simple and practical approach for developing in vitro-in vivo correlation. Drug Dev Res. 2018 May;79(3):97–110.
  • Lee WH, Fujiwara M. Pharmacometrics of Guinea-pig’s gallbladder in vitro*. Taiwan Yi Xue Hui Za Zhi. 1971 Dec 28;70(12):687–696.
  • Mitra A, Suarez-Sharp S, Pepin XJH, et al. Applications of Physiologically Based Biopharmaceutics Modeling (PBBM) to support drug product quality: a workshop summary report. J Pharm Sci. 2021 Feb;110(2):594–609.
  • Villa Nova M, Lin TP, Shanehsazzadeh S, et al. Nanomedicine Ex Machina: between model-informed development and artificial intelligence. Front Digital Health. 2022 ( Accepted for publication;4. DOI:https://doi.org/10.3389/fdgth.2022.799341.
  • Offman E, Phipps C, Edginton AN. Population physiologically-based pharmacokinetic model incorporating lymphatic uptake for a subcutaneously administered pegylated peptide. Silico Pharmacol. 2016;4(1):3.
  • Nagoshi N, Tsuji O, Kitamura K, et al. Phase I/II study of intrathecal administration of recombinant human hepatocyte growth factor in patients with acute spinal cord injury: a double-blind, randomized clinical trial of safety and efficacy. J Neurotrauma. 2020Aug 1;37(15):1752–1758.
  • Ochs G, Penn RD, York M, et al. A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2000Jan 01;1(3):201–206.
  • Í Dali C, Sevin C, Krägeloh-Mann I, et al. Safety of intrathecal delivery of recombinant human arylsulfatase A in children with metachromatic leukodystrophy: results from a phase 1/2 clinical trial. Mol Genet Metab. 2020 Sep 01;131(1):235–244.
  • Amanat M, Majmaa A, Zarrabi M, et al. Clinical and imaging outcomes after intrathecal injection of umbilical cord tissue mesenchymal stem cells in cerebral palsy: a randomized double-blind sham-controlled clinical trial. Stem Cell Res Ther. 2021 Aug 06;12(1):439.
  • Larsen SW, Østergaard J, Yaghmur A, et al. Use of in vitro release models in the design of sustained and localized drug delivery systems for subcutaneous and intra-articular administration. J Drug Delivery Sci Technol. 2013;23(4):315–324.
  • Bane K, Charpentier E, Bronnec F, et al. Randomized clinical trial of intraosseous methylprednisolone injection for acute pulpitis pain. J Endod. 2016 Jan;42(1):2–7.
  • Hernandez C, Exner AA. Predicting in vivo behavior of injectable, in situ-forming drug-delivery systems. Ther Deliv. 2017 Jul;8(7):479–483.
  • Ovacik M, Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 2018;11(6):540–552.
  • Chen X, Hickling T, Kraynov E, et al. A mathematical model of the effect of immunogenicity on therapeutic protein pharmacokinetics. AAPS J. 2013;15(4):1141–1154.
  • Pratt KP. Anti-drug antibodies: emerging approaches to predict, reduce or reverse biotherapeutic immunogenicity. Antibodies (Basel). 2018;7(2):19.
  • Moriya Y, Kogame A, Tagawa Y, et al. The enhancement of subcutaneous first-pass metabolism causes nonlinear pharmacokinetics of TAK-448 after a single subcutaneous administration to rats. Drug Metab Dispos. 2019 Sep;47(9):1004–1012.
  • Gupta R, Chen Y, Xie H. In vitro dissolution considerations associated with nano drug delivery systems. WIREs Nanomed Nanobiotechnol. 2021;13(6). DOI:https://doi.org/10.1002/wnan.1732.
  • Larsen C, Larsen SW, Jensen H, et al. Role of in vitro release models in formulation development and quality control of parenteral depots. Expert Opin Drug Deliv. 2009;6(12):1283–1295.
  • de León–Ortega R D, D’Arcy DM, Lamprou DA, et al. In vitro - in vivo relations for the parenteral liposomal formulation of Amphotericin B: a clinically relevant approach with PBPK modeling. Eur J Pharm Biopharm. 2021 Feb 01;159:177–187.
  • Lombardo SM, Gunday Tureli N, Koch M, et al. Reliable release testing for nanoparticles with the NanoDis System, an innovative sample and separate technique. Int J Pharm. 2021 Nov 20;609:121215.
  • Mast MP, Modh H, Knoll J, et al. An update to dialysis-based drug release testing-data analysis and validation using the pharma test dispersion releaser. Pharmaceutics. 2021 Nov 25;13(12):2007.
  • Kinnunen HM, Sharma V, Contreras-Rojas LR, et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J Control Release. 2015 Sep 28;214:94–102.
  • United States Pharmacopeia. Dissolution. Rockville, USA. 2016.
  • Kinnunen HM, Mrsny RJ. Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical and physiological properties of the subcutaneous injection site. J Control Release. 2014;182:22–32.
  • Song JY, Larson NR, Thati S, et al. Glatiramer acetate persists at the injection site and draining lymph nodes via electrostatically-induced aggregation. J Control Release. 2019 Jan 10;293:36–47.
  • Roberge C, Cros J-M, Serindoux J, et al. BEPO®: bioresorbable diblock mPEG-PDLLA and triblock PDLLA-PEG-PDLLA based in situ forming depots with flexible drug delivery kinetics modulation. J Control Release. 2020 Mar 10;319:416–427.
  • Probst M, Schmidt M, Tietz K, et al. In vitro dissolution testing of parenteral aqueous solutions and oily suspensions of paracetamol and prednisolone. Int J Pharm. 2017 Oct 30 532(1):519–527.
  • Shakiba S, Astete CE, Cueto R, et al. Asymmetric flow field-flow fractionation (AF4) with fluorescence and multi-detector analysis for direct, real-time, size-resolved measurements of drug release from polymeric nanoparticles. J Control Release. 2021 Oct 10;338:410–421.
  • Skupin-Mrugalska P, Elvang PA, Brandl M. Application of asymmetrical flow field-flow fractionation for characterizing the size and drug release kinetics of theranostic lipid nanovesicles. Int J Mol Sci. 2021 Sep 28; 22(19):10456.
  • Caputo F, Mehn D, Clogston JD, et al. Asymmetric-flow field-flow fractionation for measuring particle size, drug loading and (in)stability of nanopharmaceuticals. The joint view of European Union nanomedicine characterization laboratory and national cancer institute - nanotechnology characterization laboratory. J Chromatogr A. 2021 Jan 4;1635:461767.
  • Patel D, Zhang Y, Dong Y, et al. Adaptive perfusion: an in vitro release test (IVRT) for complex drug products. J Control Release. 2021 May 10;333:65–75.
  • Wallenwein CM, Nova MV, Janas C, et al. A dialysis-based in vitro drug release assay to study dynamics of the drug-protein transfer of temoporfin liposomes. Eur J Pharm Biopharm. 2019 Oct;143:44–50.
  • Bown HK, Bonn C, Yohe S, et al. In vitro model for predicting bioavailability of subcutaneously injected monoclonal antibodies. J Control Release. 2018 Mar 10;273:13–20.
  • Beyer S, Xie L, Schmidt M, et al. Optimizing novel implant formulations for the prolonged release of biopharmaceuticals using in vitro and in vivo imaging techniques. J Control Release. 2016 Aug 10;235:352–364.
  • Esposito S, de Leonibus ML, Ingenito R, et al. A liquid chromatography high-resolution mass spectrometry in vitro assay to assess metabolism at the injection site of subcutaneously administered therapeutic peptides. J Pharm Biomed Anal. 2018;159:449–458.
  • Park TG, Yong Lee H, Sung Nam Y. A new preparation method for protein loaded poly(D, L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J Control Release. 1998 Nov 13; 55(2–3):181–191.
  • Y-SLC-K F, S-BYY-J L, Chen C-F, et al. An in vivo study on the biocompatibility of a bioresorbable poly (l-lactide-co-glycolide) pin for bone fixation. J Med Biol Eng. 2001;21(4):233–242.
  • Mosca M, Ceglie A, Ambrosone L. Effect of membrane composition on lipid oxidation in liposomes. Chem Phys Lipids. 2011 Feb;164(2):158–165.
  • Mumtaz Virk M, Reimhult E. Phospholipase A2-induced degradation and release from lipid-containing polymersomes.Langmuir. 2018 2018 Jan 09;34(1):395–405.
  • Holme MN, Rashid MH, Thomas MR, et al. Fate of liposomes in the presence of phospholipase c and d: from atomic to supramolecular lipid arrangement. ACS Cent Sci. 2018 Aug 22;4(8):1023–1030.
  • Díaz de León–Ortega R, D’Arcy DM, Fotaki N. In vitro conditions for performance evaluation of products for intravascular administration: developing appropriate test media using Amphotericin B as a model drug. Eur J Pharm Sci. 2020 Feb 15;143:105174. https://doi.org/10.1016/j.ejps.2019.105174.
  • Al-Ahmady ZS, Hadjidemetriou M, Gubbins J, et al. Formation of protein Corona in vivo affects drug release from temperature-sensitive liposomes. J Control Release. 2018 Apr 28;276:157–167.
  • Peetla C, Stine A, Labhasetwar V. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm. 2009 Sep-Oct;6(5):1264–1276.
  • Smith WC, Bae J, Zhang Y, et al. Impact of particle flocculation on the dissolution and bioavailability of injectable suspensions. Int J Pharm. 2021;604:120767.
  • Mui B, Cullis P, Pritchard P, et al. Influence of plasma on the osmotic sensitivity of large unilamellar vesicles prepared by extrusion. J Biol Chem. 1994;269(10):7364–7370.
  • Tomic I, Vidis-Millward A, Mueller-Zsigmondy M, et al. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism. Int J Pharm. 2016 May 30; 505(1–2):42–51.
  • Li S, Doyle P, Metz S, et al. Effect of chloride ion on dissolution of different salt forms of haloperidol, a model basic drug. J Pharm Sci. 2005 Oct;94(10):2224–2231.
  • Del Castillo-Santaella T, Yang Y, Martínez-González I, et al. Effect of hyaluronic acid and pluronic-f68 on the surface properties of foam as a delivery system for polidocanol in sclerotherapy. Pharmaceutics. 2020;12(11):1039.
  • Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008;97(7):2395–2404.
  • Park TG, Lu W, Crotts G. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly (D, L-lactic acid-co-glycolic acid) microspheres. J Control Release. 1995;33(2):211–222.
  • United States Pharmacopeia. In vitro release test methods for parenteral drug preparations. Rockville, USA. 2022.
  • Hu X, Zhang J, Tang X, et al. An accelerated release method of risperidone loaded PLGA Microspheres with good IVIVC. Curr Drug Deliv. 2018;15(1):87–96.
  • Iyer SS, Barr WH, Karnes HT. A ‘biorelevant’ approach to accelerated in vitro drug release testing of a biodegradable, naltrexone implant. Int J Pharm. 2007 Aug 1; 340(1–2):119–125.
  • Xie X, Li Z, Zhang L, et al. A novel accelerated in vitro release method to evaluate the release of thymopentin from PLGA microspheres. Pharm Dev Technol. 2015 Jul 04;20(5):633–640.
  • Ding AG, Schwendeman SP. Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm Res. 2008 Sep;25(9):2041–2052.
  • Garner J, Skidmore S, Park H, et al. Beyond Q1/Q2: the impact of manufacturing conditions and test methods on drug release from PLGA-based microparticle depot formulations. J Pharm Sci. 2018 Jan;107(1):353–361.
  • Anderson M, Omri A. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations.Drug Deliv. 2004 Jan 01;11(1):33–39.
  • Phillips DJ, Pygall SR, Cooper VB, et al. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64(11):1549–1559.
  • Siepmann J, Siepmann F. Sink conditions do not guarantee the absence of saturation effects. Int J Pharm. 2020Mar 15;577:119009.
  • Klose D, Delplace C, Siepmann J. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles. Int J Pharm. 2011 Feb 14; 404(1–2):75–82.
  • Bao Q, Zou Y, Wang Y, et al. Impact of product design parameters on in vitro release from intrauterine systems. Int J Pharm. 2020 Mar 30;578:119135.
  • Yu M, Yuan W, Li D, et al. Predicting drug release kinetics from nanocarriers inside dialysis bags. J Control Release. 2019;315:23–30.
  • Veseli A, Zakelj S, Kristl A. A review of methods for solubility determination in biopharmaceutical drug characterization. Drug Dev Ind Pharm. 2019 Nov;45(11):1717–1724.
  • United States Pharmacopeia. Solubility measurements. Rockville, USA. 2020.
  • Volgyi G, Csicsak D, Takacs-Novak K. Right filter-selection for phase separation in equilibrium solubility measurement. Eur J Pharm Sci. 2018 Oct 15; 123:98–105
  • Semmling B, Nagel S, Sternberg K, et al. Development of hydrophobized alginate hydrogels for the vessel-simulating flow-through cell and their usage for biorelevant drug-eluting stent testing. AAPS PharmSciTech. 2013;14(3):1209–1218.
  • Li Z, Mu H, Larsen SW, et al. Initial Leuprolide Acetate Release from Poly(d,l-lactide-co-glycolide) in Situ Forming Implants as Studied by Ultraviolet-Visible Imaging. Mol Pharm. 2020 Dec 7 17(12):4522–4532.
  • Li Z, Mu H, Weng Larsen S, et al. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants. Int J Pharm. 2021 Nov 20;609:121183.
  • Ho MJ, Jeong MY, Jeong HT, et al. Effect of particle size on in vivo performances of long-acting injectable drug suspension. J Control Release. 2022 Jan;341:533–547.
  • Yuan W, Kuai R, Dai Z, et al. Development of a flow-through USP-4 apparatus drug release assay to evaluate doxorubicin liposomes. AAPS J. 2017 Aug 02;19(1):150–160.
  • Tang J, Srinivasan S, Yuan W, et al. Development of a flow-through USP 4 apparatus drug release assay for the evaluation of amphotericin B liposome. Eur J Pharm Biopharm. 2019 Nov 01;134:107–116.
  • Janas C, Mast MP, Kirsamer L, et al. The dispersion releaser technology is an effective method for testing drug release from nanosized drug carriers. Eur J Pharm Biopharm. 2017 Jun;115:73–83.
  • Fugit KD, Jyoti A, Upreti M, et al. Insights into accelerated liposomal release of topotecan in plasma monitored by a non-invasive fluorescence spectroscopic method. J Control Release. 2015;197:10–19.
  • Weng J, Tong HHY, Chow SF. In vitro release study of the polymeric drug nanoparticles: development and validation of a novel method. Pharmaceutics. 2020;12(8):732.
  • Yamamoto E, Hyodo K, Ohnishi N, et al. Direct, simultaneous measurement of liposome-encapsulated and released drugs in plasma by on-line SPE-SPE-HPLC. J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Nov 15;879(30):3620–3625.
  • Mehn D, Iavicoli P, Cabaleiro N, et al. Analytical ultracentrifugation for analysis of doxorubicin loaded liposomes. Int J Pharm. 2017;523(1):320–326.
  • Wacker MG, Lu X, Burke M, et al. Testing the in-vitro product performance of nanomaterial-related drug products: view of the USP expert panel. Pharmacop Forum. 2021;47(6).
  • Jung F, Thurn M, Krollik K, et al. Predicting the environmental emissions arising from conventional and nanotechnology-related pharmaceutical drug products. Environ Res. 2020 Sep 24;192:110219.
  • Song W, Tweed JA, Visswanathan R, et al. Bioanalysis of targeted nanoparticles in monkey plasma via LC-MS/MS. Anal Chem. 2019 Nov 5 91(21):13874–13882.
  • Su C, Yang H, Sun H, et al. Bioanalysis of free and liposomal Amphotericin B in rat plasma using solid phase extraction and protein precipitation followed by LC-MS/MS. J Pharm Biomed Anal. 2018 Sep 5;158:288–293.
  • Xie Y, Shao N, Jin Y, et al. Determination of non-liposomal and liposomal doxorubicin in plasma by LC-MS/MS coupled with an effective solid phase extraction: in comparison with ultrafiltration technique and application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Jan 1;1072:149–160.
  • Halpern V, Combes SL, Dorflinger LJ, et al. Pharmacokinetics of subcutaneous depot medroxyprogesterone acetate injected in the upper arm. Contraception. 2014;89(1):31–35.
  • Li M, Zou P, Tyner K, et al. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. Aaps j. 2017 Jan;19(1):26–42.
  • Yakavets I, Yankovsky I, Bezdetnaya L, et al. Soret band shape indicates mTHPC distribution between β-cyclodextrins and serum proteins. Dyes Pigm. 2017;137:299–306.
  • Nagpal S, Braner S, Modh H, et al. A physiologically-based nanocarrier biopharmaceutics model to reverse-engineer the in vivo drug release. Eur J Pharm Biopharm. 2020 Aug;153:257–272.
  • Dressman JB, Reppas C. In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci. 2000;11:S73–S80.
  • Huang Y, Yu Q, Chen Z, et al. In vitro and in vivo correlation for lipid-based formulations: current status and future perspectives. Acta Pharm Sin B. 2021 Aug 01;11(8):2469–2487.
  • Wacker M. Nanocarriers for intravenous injection–the long hard road to the market. Int J Pharm. 2013 Nov 30; 457(1):50–62.
  • Mehanna MM, Mneimneh AT. Formulation and applications of lipid-based nanovehicles: spotlight on self-emulsifying systems. Adv Pharm Bull. 2021;11(1):56–67.
  • Jung F, Nothnagel L, Gao F, et al. A comparison of two biorelevant in vitro drug release methods for nanotherapeutics based on advanced physiologically-based pharmacokinetic modelling. Eur J Pharm Biopharm. 2018 Jun;127:462–470.
  • Nothnagel L, Jung F, Rossmanith T, et al. Predictive PBPK modeling as a tool in the formulation of the drug candidate TMP-001. Eur J Pharm Biopharm. 2019 Jan;134:144–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.