213
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in ophthalmic drug delivery technology for postoperative management after cataract surgery

, , &
Pages 945-964 | Received 17 Apr 2022, Accepted 01 Aug 2022, Published online: 09 Aug 2022

References

  • Wang W, Yan W, Fotis K, et al. Cataract surgical rate and socioeconomics: a global study. Invest Ophthalmol Vis Sci. 2017 Nov 1;57(14):5872–5881.
  • Martin AI, Sutton G, Hodge C The evolution of cataract surgery: controversies through the ages. Asia Pac J Ophthalmol (Phila). 2013 Jul-Aug;2(4):213–216.
  • Davis G The evolution of cataract surgery. Mo Med. 2016 Jan-Feb;113(1):58–62.
  • Callegan MC, Engelbert M, Parke DW,2, et al. Bacterial endophthalmitis: epidemiology, therapeutics, and bacterium-host interactions. Clin Microbiol Rev. 2002 Jan;15(1):111–124.
  • Haripriya A Antibiotic prophylaxis in cataract surgery - an evidence-based approach. Indian J Ophthalmol. 2017 Dec;65(12):1390–1395.
  • Lai SW, Lin CL, Liao KF, et al. Increased risk of parkinson’s disease in cataract patients: a population-based cohort study. Parkinsonism Relat Disord. 2015 Jan;21(1):68–71.
  • Park JH, Kim DH, Kwon DY, et al. Trends in the incidence and prevalence of parkinson’s disease in Korea: a nationwide, population-based study. BMC Geriatr. 2019 Nov 21;19(1):320.
  • Marras C, Beck JC, Bower JH, et al. Prevalence of parkinson’s disease across North America. NPJ Parkinsons Dis. 2018;4:21. 1
  • Schwartz GF, Hollander DA, Williams JM Evaluation of eye drop administration technique in patients with glaucoma or ocular hypertension. Curr Med Res Opin. 2013 Nov;29(11):1515–1522.
  • Hermann MM, Ustundag C, Diestelhorst M Electronic compliance monitoring of topical treatment after ophthalmic surgery. Int Ophthalmol. 2010 Aug;30(4):385–390.
  • Han KE, Chung WS, Kim TI, et al. Epithelial wound healing after cataract surgery comparing two different topical fluoroquinolones. Yonsei Med J. 2014 Jan;55(1):197–202.
  • Matossian C, Makari S, Potvin R Cataract surgery and methods of wound closure: a review. Clin Ophthalmol. 2015;9:50–56.
  • Chee SP Clear corneal incision leakage after phacoemulsification–detection using povidone iodine 5%. Int Ophthalmol. 2007 Aug-Oct;26(4–5):175–179.
  • Sarayba MA, Taban M, Ignacio TS, et al. Inflow of ocular surface fluid through clear corneal cataract incisions: a laboratory model. Am J Ophthalmol. 2004 Aug;138(2):206–210.
  • Slettedal JK, Bragadottir R Total iris expulsion through a sutureless cataract incision due to vomiting. Acta Ophthalmol Scand. 2005 Feb;83(1):111–112.
  • Masket S, Hovanesian J, Raizman M, et al. Use of a calibrated force gauge in clear corneal cataract surgery to quantify point-pressure manipulation. J Cataract Refract Surg. 2013 Apr;39(4):511–518.
  • Lam AC, Xu FY Intraocular pressure change from ocular compression: a study of aqueous outflow facility investigative ophthalmology & Visual Sci. 2020;61:4627.
  • Wallin T, Parker J, Jin Y, et al. Cohort study of 27 cases of endophthalmitis at a single institution. J Cataract Refract Surg. 2005 Apr;31(4):735–741.
  • Carrim ZI, Mackie G, Gallacher G, et al. The efficacy of 5% povidone-iodine for 3 minutes prior to cataract surgery. Eur J Ophthalmol. 2009 Jul-Aug;19(4):560–564.
  • Balestrazzi A, Malandrini A, Montagnani F, et al. Phacoemulsificator and sterile drapes contamination during cataract surgery: a microbiological study. Eur J Ophthalmol. 2012 Mar-Apr;22(2):188–194.
  • Gentilini E, Denamiel G, Llorente P, et al. Antimicrobial susceptibility of Staphylococcus aureus isolated from bovine mastitis in Argentina. J Dairy Sci. 2000 Jun;83(6):1224–1227.
  • Yoshimura H, Ishimaru M, Kojima A Minimum inhibitory concentrations of 20 antimicrobial agents against staphylococcus aureus isolated from bovine intramammary infections in Japan. J Vet Med B Infect Dis Vet Public Health. 2002 Nov;49(9):457–460.
  • Nam HM, Lee AL, Jung SC, et al. Antimicrobial susceptibility of staphylococcus aureus and characterization of methicillin-resistant staphylococcus aureus isolated from bovine mastitis in korea. Foodborne Pathog Dis. 2011 Feb;8(2):231–238.
  • Monistero V, Barberio A, Biscarini F, et al. Different distribution of antimicrobial resistance genes and virulence profiles of staphylococcus aureus strains isolated from clinical mastitis in six countries. J Dairy Sci. 2020 Apr;103(4):3431–3446.
  • Skovgaard S, Nielsen LN, Larsen MH, et al. Staphylococcus epidermidis isolated in 1965 are more susceptible to triclosan than current isolates. PLoS One. 2013;8(4):e62197.
  • Raspanti CG, Bonetto CC, Vissio C, et al. Prevalence and antibiotic susceptibility of coagulase-negative staphylococcus species from bovine subclinical mastitis in dairy herds in the central region of Argentina. Rev Argent Microbiol. 2016 Jan-Mar;48(1):50–56.
  • Bergan T, Gaustad P, Hoiby EA, et al. Antibiotic resistance of pneumococci in Norway. Int J Antimicrob Agents. 1998 Apr;10(1):77–81.
  • Sener B, Tunckanat F, Ulusoy S, et al. A survey of antibiotic resistance in Streptococcus pneumoniae and Haemophilusinfluenzae in Turkey, 2004 2005. J Antimicrob Chemother. 2007 Sep;60(3):587–593.
  • Jia W, Li G, Wang W Prevalence and antimicrobial resistance of enterococcus species: a hospital-based study in China. Int J Environ Res Public Health. 2014 Mar 21;11(3):3424–3442.
  • Wang J, Da R, Tuo X, et al. Probiotic and safety properties screening of enterococcus faecalis from healthy Chinese infants. Probiotics Antimicrob Proteins. 2020 Sep;12(3):1115–1125.
  • Inacio HS, Bomfim MR, Franca RO, et al. Phenotypic and genotypic diversity of multidrug-resistant pseudomonas aeruginosa isolates from bloodstream infections recovered in the hospitals of belo horizonte, Brazil. Chemotherapy. 2014;60(1):54–62.
  • Barrio-Tofino E D, Lopez-Causape C, Cabot G, et al. Genomics and susceptibility profiles of extensively drug-resistant Pseudomonas aeruginosa Isolates from Spain. Antimicrob Agents Chemother. 2017 Nov;61(11):e01589-17.
  • Chang DF, Braga-Mele R, Henderson BA, et al. Antibiotic prophylaxis of postoperative endophthalmitis after cataract surgery: results of the 2014 ASCRS member survey. J Cataract Refract Surg. 2015 Jun;41(6):1300–1305.
  • Barry P, Seal DV, Gettinby G, et al. ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery: preliminary report of principal results from a European multicenter study. J Cataract Refract Surg. 2006 Mar;32(3):407–410.
  • Arshinoff SA, Modabber M Dose and administration of intracameral moxifloxacin for prophylaxis of postoperative endophthalmitis. J Cataract Refract Surg. 2016 Dec;42(12):1730–1741.
  • Haripriya A, Chang DF, Ravindran RD endophthalmitis reduction with intracameral moxifloxacin prophylaxis: analysis of 600 000 surgeries. Ophthalmology. 2017 Jun;124(6):768–775.
  • Matsuura K, Miyoshi T, Suto C, et al. Efficacy and safety of prophylactic intracameral moxifloxacin injection in Japan. J Cataract Refract Surg. 2013 Nov;39(11):350–356.
  • Chang DF, Rhee DJ Antibiotic prophylaxis of postoperative endophthalmitis after cataract surgery: results of the 2021 ASCRS member survey. J Cataract Refract Surg. 2022 Jan 1;48(1):3–7.
  • Colin J The role of NSAIDs in the management of postoperative ophthalmic inflammation. Drugs. 2007;67(9):1291–1308.
  • Park CY, Lee JK, Chuck RS Toxic anterior segment syndrome-an updated review. BMC Ophthalmol. 2018 Oct 25;18(1):276.
  • Taravati P, Lam DL, Leveque T, et al. Postcataract surgical inflammation. Curr Opin Ophthalmol. 2012 Jan;23(1):3–7.
  • Juthani VV, Clearfield E, Chuck RS Non-steroidal anti-inflammatory drugs versus corticosteroids for controlling inflammation after uncomplicated cataract surgery. Cochrane Database Syst Rev. 2017 Jul 3;7: CD010516. DOI:10.1002/14651858.CD010516.pub2
  • Barnes PJ How corticosteroids control inflammation: quintiles prize lecture 2005. Br J Pharmacol. 2006 Jun;148(3):245–254.
  • Fung AT, Tran T, Lim LL, et al. Local delivery of corticosteroids in clinical ophthalmology: a review. Clin Exp Ophthalmol. 2020 Apr;48(3):366–401.
  • Duan P, Liu Y, Li J The comparative efficacy and safety of topical non-steroidal anti-inflammatory drugs for the treatment of anterior chamber inflammation after cataract surgery: a systematic review and network meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2017 Apr;255(4):639–649.
  • Wilson DJ, Schutte SM, Abel SR Comparing the efficacy of ophthalmic NSAIDs in common indications: a literature review to support cost-effective Prescribing. Ann Pharmacother. 2015 Jun;49(6):727–734.
  • Bachu RD, Chowdhury P, Al-Saedi ZHF, et al. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018 Feb 27;10(1):28.
  • Sah AK, Suresh PK Recent advances in ocular drug delivery, with special emphasis on lipid Based Nanocarriers. Recent Pat Nanotechnol. 2015;9(2):94–105.
  • Lynch CR, Kondiah PPD, Choonara YE, et al. Hydrogel biomaterials for application in ocular drug delivery. Front Bioeng Biotechnol. 2020;8:228.
  • Gumbiner B Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol. 1987 Dec;253(6):C749–58.
  • Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016 Dec;6(6):735–754.
  • Prausnitz MR, Noonan JS Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998 Dec;87(12):1479–1488.
  • Solomon SD, Lindsley K, Vedula SS, et al. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2014 Aug 29(8):CD005139.
  • Leinonen S, Immonen I, Kotaniemi K Fluocinolone acetonide intravitreal implant (retisert((R))) in the treatment of sight threatening macular oedema of juvenile idiopathic arthritis-related uveitis. Acta Ophthalmol. 2018 Sep;96(6):648–651.
  • Rosenblatt A, Udaondo P, Cunha-Vaz J, et al. A collaborative retrospective study on the efficacy and safety of intravitreal dexamethasone implant (Ozurdex) in patients with diabetic macular Edema: the European DME Registry Study. Ophthalmology. 2020 Mar;127(3):377–393.
  • Kim HM, Woo SJ Ocular drug delivery to the retina: current innovations and future Perspectives. Pharmaceutics. 2021 Jan 15;13(1):108.
  • Yellepeddi VK, Sheshala R, McMillan H, et al. Punctal plug: a medical device to treat dry eye syndrome and for sustained drug delivery to the eye. Drug Discov Today. 2015 Jul;20(7):884–889.
  • Donnenfeld ED, Holland EJ, Solomon KD Safety and efficacy of nepafenac punctal plug delivery system in controlling postoperative ocular pain and inflammation after cataract surgery. J Cataract Refract Surg. 2021 Feb 1;47(2):158–164.
  • Chee SP Moxifloxacin punctum plug for sustained drug delivery. J Ocul Pharmacol Ther. 2012 Aug;28(4):340–349.
  • Xu X, Awwad S, Diaz-Gomez L, et al. 3D printed punctal plugs for controlled ocular drug delivery. Pharmaceutics. 2021 Sep 8;13(9). 1421
  • Tyson SL, Bafna S, Gira JP, et al. Multicenter randomized phase 3 study of a sustained-release intracanalicular dexamethasone insert for treatment of ocular inflammation and pain after cataract surgery. J Cataract Refract Surg. 2019 Feb;45(2):204–212.
  • Aref AA Sustained drug delivery for glaucoma: current data and future trends. Curr Opin Ophthalmol. 2017 Mar;28(2):169–174.
  • Franco P, De Marco I Contact lenses as ophthalmic drug delivery systems: a review. Polymers (Basel). 2021 Mar 30;13(7):1102.
  • Wenwen Xu WJ, Shangbin L, Tao X, et al. Bimatoprost loaded microemulsion laden contact lens to treat glaucoma. J Drug Delivery Sci Technol. 2019;54:101330.
  • Ciolino JB, Hoare TR, Iwata NG, et al. A drug-eluting contact lens. Invest Ophthalmol Vis Sci. 2009 Jul;50(7):3346–3352.
  • Ciolino JB, Stefanescu CF, Ross AE, et al. In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials. 2014 Jan;35(1):432–439.
  • Alvarez-Lorenzo C, Yanez F, Barreiro-Iglesias R, et al. Imprinted soft contact lenses as norfloxacin delivery systems. J Control Release. 2006 Jul 20;113(3):236–244.
  • Yokozak Is Y, Shimoyama Y Enhanced impregnation of hydrogel contact lenses with salicylic acid by addition of water in supercritical carbon dioxide. Chem Eng Res Des 2015;104:203–207.
  • Costa MEMB VP, Joana PG, Ana RCD, et al. Development of therapeutic contact lenses using a supercritical solvent impregnation method. J Supercrit Fluids. 2010;52(3):306–316.
  • Paradiso P, Serro AP, Saramago B, et al. Controlled release of antibiotics from vitamin e-loaded silicone-hydrogel contact lenses. J Pharm Sci. 2016 Mar;105(3):1164–1172.
  • Jain RL, Shastri JP Study of ocular drug delivery system using drug-loaded liposomes. Int J Pharm Investig. 2011 Jan;1(1):35–41.
  • Topete A, Saramago B, Serro AP Intraocular lenses as drug delivery devices. Int J Pharm. 2021 Jun 1;602:120613.
  • Eperon S, Bossy-Nobs L, Petropoulos IK, et al. A biodegradable drug delivery system for the treatment of postoperative inflammation. Int J Pharm. 2008 Mar 20;352(1–2):240–247.
  • Garty S, Shirakawa R, Warsen A, et al. Sustained antibiotic release from an intraocular lens-hydrogel assembly for cataract surgery. Invest Ophthalmol Vis Sci. 2011 Aug 3;52(9):6109–6116.
  • Kleinmann G, Apple DJ, Chew J, et al. Hydrophilic acrylic intraocular lens as a drug-delivery system for fourth-generation fluoroquinolones. J Cataract Refract Surg. 2006 Oct;32(10):1717–1721.
  • Lipnitzki I, Bronshtein R, Ben Eliahu S, et al. Hydrophilic acrylic intraocular lens as a drug delivery system: influence of the presoaking time and comparison to intracameral injection. J Ocul Pharmacol Ther. 2013 May;29(4):414–418.
  • Lipnitzki I, Ben Eliahu S, Marcovitz AL, et al. Intraocular concentration of moxifloxacin after intracameral injection combined with presoaked intraocular lenses. J Cataract Refract Surg. 2014 Apr;40(4):639–643.
  • Topete A, Tang J, Ding X, et al. Dual drug delivery from hydrophobic and hydrophilic intraocular lenses: in-vitro and in-vivo studies. J Control Release. 2020 Oct 10;326:245–255.
  • Topete A, Serro AP, Saramago B Dual drug delivery from intraocular lens material for prophylaxis of endophthalmitis in cataract surgery. Int J Pharm. 2019 Mar 10;558:43–52.
  • Filipe HP, Bozukova D, Pimenta A, et al. Moxifloxacin-loaded acrylic intraocular lenses: in vitro and in vivo performance. J Cataract Refract Surg. 2019 Dec;45(12):1808–1817.
  • Bouledjouidja A, Masmoudi Y, Sergent M, et al. Drug loading of foldable commercial intraocular lenses using supercritical impregnation. Int J Pharm. 2016 Mar 16;500(1–2):85–99.
  • Vieira IV, Boianovsky C, Saraiva TJ, et al. Safety and efficacy of intracameral moxifloxacin injection for prophylaxis of endophthalmitis after phacoemulsification. Arq Bras Oftalmol. 2017 Jun;80(3):165–167.
  • Ongkasin K, Masmoudi Y, Wertheimer CM, et al. Supercritical fluid technology for the development of innovative ophthalmic medical devices: drug loaded intraocular lenses to mitigate posterior capsule opacification. Eur J Pharm Biopharm. 2020 Apr;149:248–256.
  • Manju S, Kunnatheeri S Layer-by-Layer modification of poly (methyl methacrylate) intra ocular lens: drug delivery applications. Pharm Dev Technol. 2010 Jul-Aug;15(4):379–385.
  • Kassumeh SA, Wertheimer CM, von Studnitz A, et al. Poly(lactic-co-glycolic) acid as a slow-release drug-carrying matrix for Methotrexate coated onto Intraocular lenses to conquer posterior capsule opacification. Curr Eye Res. 2018 Jun;43(6):702–708.
  • Pimenta AFR, Vieira AP, Colaco R, et al. Controlled release of moxifloxacin from intraocular lenses modified by Ar plasma-assisted grafting with AMPS or SBMA: an in vitro study. Colloids Surf B Biointerfaces. 2017 Aug 1;156:95–103.
  • Vieira AP, Pimenta AFR, Silva D, et al. Surface modification of an intraocular lens material by plasma-assisted grafting with 2-hydroxyethyl methacrylate (HEMA), for controlled release of moxifloxacin. Eur J Pharm Biopharm. 2017 Nov;120:52–62.
  • Tan DT, Chee SP, Lim L, et al. Randomized clinical trial of a new dexamethasone delivery system (Surodex) for treatment of post-cataract surgery inflammation. Ophthalmology. 1999 Feb;106(2):223–231.
  • Tan DT, Chee SP, Lim L, et al. Randomized clinical trial of Surodex steroid drug delivery system for cataract surgery: anterior versus posterior placement of two Surodex in the eye. Ophthalmology. 2001 Dec;108(12):2172–2181.
  • Taubenslag KJ, Kim SJ, Grzybowski A Anti-inflammatory Pharmacotherapy for the prevention of Cystoid Macular edema after cataract surgery. Am J Ophthalmol. 2021 Dec;232:1–8.
  • Donnenfeld E, Holland E Dexamethasone intracameral drug-delivery suspension for inflammation associated with Cataract surgery: a randomized, placebo-controlled, phase iii trial. Ophthalmology. 2018 Jun;125(6):799–806.
  • Matossian C, Hovanesian J, Bacharach J, et al. Impact of dexamethasone intraocular suspension 9% on intraocular pressure after routine cataract surgery: post hoc analysis. J Cataract Refract Surg. 2021 Jan 1;47(1):53–64.
  • Bardoloi N, Sarkar S, Pilania A, et al. Efficacy and safety of dropless cataract surgery. Indian J Ophthalmol. 2020 Jun;68(6):1081–1085.
  • Stringham JD, Flynn HW Jr., Schimel AM, et al. Dropless Cataract surgery: what are the potential downsides? Am J Ophthalmol. 2016 Apr;164:viii–x.
  • Li S, Dong S, Xu W, et al. Antibacterial Hydrogels. Adv Sci (Weinh). 2018 May;5(5):1700527.
  • Grassiri B, Zambito Y, Bernkop-Schnurch A Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci. 2021 Feb;288:102342.
  • Vashist A, Vashist A, Gupta YK, et al. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B. 2014 Jan 14;2(2):147–166.
  • Sabry HS, Al-Shohani ADH, Mahmood SZ Formulation and evaluation of Levofloxacin and Betamethasone Ophthalmic Emulgel. J Pharm Bioallied Sci. 2021 Apr-Jun;13(2):205–211.
  • Kim DJ, Jung MY, Park JH, et al. Moxifloxacin releasing intraocular implant based on a cross-linked hyaluronic acid membrane. Sci Rep. 2021 Dec 16;11(1):24115.
  • Shorstein NH, Gardner S Injection volume and intracameral moxifloxacin dose. J Cataract Refract Surg. 2019 Oct;45(10):1498–1502.
  • Asena L, Akova YA, Goktas MT, et al. Ocular pharmacokinetics, safety and efficacy of intracameral moxifloxacin 0.5% solution in a rabbit model. Curr Eye Res. 2013 Apr;38(4):306–316.
  • Arshinoff SA, Modabber M Injection volume and intracameral moxifloxacin dose. J Cataract Refract Surg. 2020 Jan;46(1):162–163.
  • Fulgencio Gde O, Viana FA, Ribeiro RR, et al. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther. 2012 Aug;28(4):350–358.
  • Cheng YH, Hung KH, Tsai TH, et al. Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater. 2014 Oct;10(10):921–928.
  • Widjaja LK, Bora M, Chan PN, et al. Hyaluronic acid-based nanocomposite hydrogels for ocular drug delivery applications. J Biomed Mater Res A. 2014 Sep;102(9):3056–3065.
  • Natu MV, Sardinha JP, Correia IJ, et al. Controlled release gelatin hydrogels and lyophilisates with potential application as ocular inserts. Biomed Mater. 2007 Dec;2(4):241–249.
  • Song Y, Nagai N, Saijo S, et al. In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery. Mater Sci Eng C Mater Biol Appl. 2018 Jul 1;88:1–12.
  • Khalil IA, Saleh B, Ibrahim DM, et al. Ciprofloxacin-loaded bioadhesive hydrogels for ocular applications. Biomater Sci. 2020 Sep 15;8(18):5196–5209.
  • Mandal S, Thimmasetty MK, Prabhushankar G, et al. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharm Investig. 2012 Apr;2(2):78–82.
  • Kianersi Sogol SA, Saeed S-S, Saeed-Heidari K, et al. Alginate nanoparticles as ocular drug delivery carriers. J Drug Delivery Sci Technol. 2021;66:102889.
  • Dewan M, Bhowmick B, Sarkar G, et al. Effect of methyl cellulose on gelation behavior and drug release from poloxamer based ophthalmic formulations. Int J Biol Macromol. 2015 Jan;72:706–710.
  • Zhao L, Qi X, Cai T, et al. Gelatin hydrogel/contact lens composites as rutin delivery systems for promoting corneal wound healing. Drug Deliv. 2021 Dec;28(1):1951–1961.
  • Liu W, Griffith M, Li F Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J Mater Sci Mater Med. 2008 Nov;19(11):3365–3371.
  • Sahoo SK, Dilnawaz F, Krishnakumar S Nanotechnology in ocular drug delivery. Drug Discov Today. 2008 Feb;13(3–4):144–151.
  • Nakhaei P, Margiana R, Bokov DO, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886.
  • Kaur IP, Garg A, Singla AK, et al. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004 Jan 9;269(1):1–14.
  • Shen Y, Tu J Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J. 2007 Dec 7;9(3):E371–7.
  • Taha EI, El-Anazi MH, El-Bagory IM, et al. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J. 2014 Jul;22(3):231–239.
  • Natarajan JV, Ang M, Darwitan A, et al. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–131.
  • Gautam N, Kesavan K Development of microemulsions for ocular delivery. Ther Deliv. 2017 Mar;8(5):313–330.
  • Kesavan K, Kant S, Singh PN, et al. Mucoadhesive chitosan-coated cationic microemulsion of dexamethasone for ocular delivery: in vitro and in vivo evaluation. Curr Eye Res. 2013 Mar;38(3):342–352.
  • Fialho SL, da Silva-Cunha A New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol. 2004 Dec;32(6):626–632.
  • Kalam MA, Alshamsan A, Aljuffali IA, et al. Delivery of gatifloxacin using microemulsion as vehicle: formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv. 2016;23(3):896–907.
  • Bharti SK, Kesavan K Phase-transition W/O Microemulsions for ocular delivery: evaluation of antibacterial activity in the treatment of bacterial keratitis. Ocul Immunol Inflamm. 2017 Aug;25(4):463–474.
  • Mandal A, Bisht R, Rupenthal ID, et al. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017 Feb 28;248:96–116.
  • Civiale C, Licciardi M, Cavallaro G, et al. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm. 2009 Aug 13;378(1–2):177–186.
  • Xu L, Xu X, Chen H, et al. Ocular biocompatibility and tolerance study of biodegradable polymeric micelles in the rabbit eye. Colloids Surf B Biointerfaces. 2013 Dec 1;112:30–34.
  • Gupta AK, Madan S, Majumdar DK, et al. Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int J Pharm. 2000 Nov 19;209(1–2):1–14.
  • Duan Y, Cai X, Du H, et al. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces. 2015 Apr 1;128:322–330.
  • Kumar D, Jain N, Gulati N, et al. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 2013 Jan;4(1):9–17.
  • Tan G, Li J, Song Y, et al. Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome. Acta biomaterialia. 2019;99:350–362.
  • Lin S, Ge C, Wang D, et al. Overcoming the anatomical and physiological barriers in topical eye surface medication using a peptide-decorated polymeric micelle. ACS Applied Mater Interfaces. 2019;11(43):39603–39612
  • Sánchez-González J-M, De-Hita-Cantalejo C, Sánchez-González Mcjijo O Crosslinked hyaluronic acid with liposomes and crocin for management symptoms of dry eye disease caused by moderate meibomian gland dysfunction. 2020;13(9):1368. Int J Ophthalmol
  • Gugleva V, Titeva S, Rangelov S, et al. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. 2019;567:118431. Int J Pharmaceutics
  • Varela-Fernández R, García-Otero X, Díaz-Tomé V, et al. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. 2022;172:144–156. Euro J Pharmaceutics Biopharmaceutics
  • Apaolaza P, Busch M, Asin-Prieto E, et al. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: evaluation of the surface properties and effect on their distribution. Exper Eye Res. 2020;198:108151.
  • Qu W, Meng B, Yu Y, et al. EpCAM antibody-conjugated mesoporous silica nanoparticles to enhance the anticancer efficacy of carboplatin in retinoblastoma. Mater Sci Eng C Mater Biol Appl. 2017;76:646–651.
  • Liao Y-T, Lee C-H, Chen S-T, et al. Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmacotherapy of glaucoma. J Mater Chem B. 2017;5(34):7008–7013.
  • Maccarone R, Tisi A, Passacantando M, et al. Ophthalmic applications of cerium oxide nanoparticles. J Ocular Pharmacol Therapeutics. 2020;36(6):376–383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.