574
Views
2
CrossRef citations to date
0
Altmetric
Review

Localized, on-demand, sustained drug delivery from biopolymer-based materials

, , , &
Pages 1317-1335 | Received 14 May 2022, Accepted 03 Aug 2022, Published online: 17 Aug 2022

References

  • Vincent Rajkumar S. The high cost of prescription drugs: causes and solutions. Blood Cancer J. 2020;10(6):71.
  • Tamargo J, Le Heuzey J-Y, Mabo P. Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide. Eur J Clin Pharmacol. 2015;71(5):549–567.
  • Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc. 2016;138(3):704–717.
  • Prager BC, Bhargava S, Mahadev V, et al. Glioblastoma stem cells: driving resilience through chaos. Trends Cancer. 2020;6(3):223–235.
  • Auffinger B, Spencer D, Pytel P, et al. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother. 2015;15(7):741–752.
  • M-d-M I, Bonavia R, Seoane J. Seoane J. Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers (Basel). 2014;6(1):226–239. PubMed PMID.
  • Neuman MD, Bateman BT, Wunsch H. Inappropriate opioid prescription after surgery. Lancet. 2019;393(10180):1547–1557.
  • Sholapurkar A, Sharma D, Glass B, et al. Professionally delivered local antimicrobials in the treatment of patients with periodontitis—a narrative review. Dent J (Basel). 2021;9(1):2. PubMed PMID.
  • Ghlichloo I, Gerriets V. Nonsteroidal anti-inflammatory drugs. (NSAIDs). 2019.
  • Rebelo R, Fernandes M, Fangueiro R. Biopolymers in medical implants: a brief review. Procedia Eng. 2017;200:236–243.
  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–789.
  • Aquib M, Juthi AZ, Farooq MA, et al. Advances in local and systemic drug delivery systems for post-surgical cancer treatment. J Mat Chem B. 2020;8(37):8507–8518.
  • Birzu C, French P, Caccese M, et al. Recurrent Glioblastoma: from molecular landscape to new treatment perspectives. Cancers (Basel). 2021;13(1):47. PubMed PMID.
  • van Solinge Ts, Nieland L, Chiocca EA, et al. Advances in local therapy for glioblastoma — taking the fight to the tumour. Nat Rev Neurol. 2022;18(4):221–236.
  • Friedman DN, Henderson TO. Late effects and survivorship issues in patients with neuroblastoma. Children. 2018;5(8):107. PubMed PMID.
  • Coburn JM, Harris J, Cunningham R, et al. Manipulation of variables in local controlled release vincristine treatment in neuroblastoma. J Pediatr Surg. 2017;52(12):2061–2065.
  • Colon NC, Chung DH. Neuroblastoma. Adv Pediatr. 2011;58(1):297–311.
  • Hanssen AD, Osmon DR, Patel R. Local antibiotic delivery systems: where are we and where are we going? Clin Orthop Relat Res. Epub 2005/08/02. PubMed PMID: 16056035. 2005;437:111–114.
  • Kononen E, Gursoy M, Gursoy UK. Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med. 2019;8(8):1135; Epub 20190731. PubMed PMID: 31370168; PMCID: PMC6723779;
  • Sender-Janeczek A, Zborowski J, Szulc M, et al. New local drug delivery with antibiotic in the nonsurgical treatment of periodontitis—pilot study. Appl Sci. 2019;9(23):5077. PubMed PMID.
  • Sulthana A, Arun R, Krishnaraj S, et al. Local drug delivery in the treatment of periodontal diseases. Int J Orofac Biol. 2019;3(2):35.
  • Nadig P, Shah M. Tetracycline as local drug delivery in treatment of chronic periodontitis: a systematic review and meta-analysis. J Indian Soc Periodontol. 2016;20(6):576.
  • Pritchard EM, Hu X, Finley V, et al. Effect of silk protein processing on drug delivery from silk films: effect of silk protein processing. Macromol Biosci. 2013;13(3):311–320.
  • Li B, Wang J, Gui Q, et al. Drug-loaded chitosan film prepared via facile solution casting and air-drying of plain water-based chitosan solution for ocular drug delivery. Bioact Mater. 2020;5(3):577–583.
  • Tennent DJ, Shiels SM, Jennings JA, et al. Local control of polymicrobial infections via a dual antibiotic delivery system. J Orthop Surg Res. 2018;13(1):53.
  • Dudareva M, Kümin M, Vach W, et al. Short or Long Antibiotic Regimes in Orthopaedics (SOLARIO): a randomised controlled open-label non-inferiority trial of duration of systemic antibiotics in adults with orthopaedic infection treated operatively with local antibiotic therapy. Trials. 2019;20(1):693.
  • Colilla M, Izquierdo-Barba I, Vallet-Regí M. Novel biomaterials for drug delivery. Expert Opin Ther Pat. 2008;18(6):639–656.
  • Brigham NC, Ji -R-R, Becker ML. Degradable polymeric vehicles for postoperative pain management. Nat Commun. 2021;12(1):1367.
  • Ziemba AM, Gilbert RJ. Biomaterials for local, controlled drug delivery to the injured spinal cord. Front Pharmacol. 2017;8:245.
  • Chen J-C, L-M L, Gao J-Q. Biomaterials for local drug delivery in central nervous system. Int J Pharm. 2019;560:92–100.
  • Stanos SP. Topical agents for the management of musculoskeletal pain. J Pain Symptom Manage. 2007;33(3):342–355.
  • Wang Q, Würtz P, Auro K, et al. Effects of hormonal contraception on systemic metabolism: cross-sectional and longitudinal evidence. Int J Epidemiol. 2016;45(5):1445–1457.
  • Britton LE, Alspaugh A, Greene MZ, et al. CE: an evidence-based update on contraception. AJN Am J Nurs. 2020;120(2):22–33.
  • Ramdhan RC, Simonds E, Wilson C, et al. Complications of subcutaneous contraception: a review.Cureus.2018;10(1):e2132; Epub 2018/04/04. PubMed PMID: 29610715; PMCID: PMC5878093;
  • Guida M, Farris M, Aquino CI, et al. Nexplanon subdermal implant: assessment of sexual profile, metabolism, and bleeding in a cohort of Italian women. Biomed Res Int. 2019;2019:3726957.
  • Campodonico J, Wolfrey J, Buchanan J. Reports of two broken nexplanon® rods. J Am Board Family Med. 2019;32(2):269.
  • Kawarkhe S, Poddar SS. Designing of the mucoadhesive intravaginal spermicidal films. Indian J Pharm Sci. 2010;72(5):652–655. PubMed PMID: 21695003.
  • Howard B, Grubb E, Lage MJ, et al. Trends in use of and complications from intrauterine contraceptive devices and tubal ligation or occlusion. Reprod Health. 2017;14(1):70.
  • Fenton OS, Olafson KN, Pillai PS, et al. Advances in biomaterials for drug delivery. Adv Mater. 2018;30(29):1705328.
  • Li C, Wu J, Shi H, et al. Fiber-based biopolymer processing as a route toward sustainability. Adv Mater. 2022;34(1):2105196.
  • Yavuz B, Chambre L, Harrington K, et al. Silk fibroin microneedle patches for the sustained release of levonorgestrel. ACS Appl Bio Mater. 2020;3(8):5375–5382.
  • Franck CO, Fanslau L, Bistrovic Popov A, et al. Biopolymer-based carriers for DNA vaccine design. Angew Chem. 2021;60(24):13225–13243.
  • Kadajji VG, Betageri GV. Water soluble polymers for pharmaceutical applications. Polymers. 2011;3(4):1972–2009. PubMed PMID.
  • Vigani B, Valentino C, Sandri G, et al. A composite nanosystem as a potential tool for the local treatment of glioblastoma: chitosan-coated solid lipid nanoparticles embedded in electrospun nanofibers. Polymers. 2021;13(9):1371. PubMed PMID.
  • Tao J, Zhang J, Hu Y, et al. A conformal hydrogel nanocomposite for local delivery of paclitaxel. J Biomater Sci Polym Ed. 2017;28(1):107–118.
  • Chiu B, Coburn J, Pilichowska M, et al. Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model.Br J Cancer.2014;111(4):708–715; Epub 2014/06/13. PubMed PMID: 24921912; PMCID: PMC4134491;
  • Yavuz B, Zeki J, Taylor J, et al. Silk reservoirs for local delivery of cisplatin for neuroblastoma treatment: in vitro and in vivo evaluations.J Pharm Sci.2019;108(8):2748–2755; Epub 2019/03/21. PubMed PMID: 30905702;
  • Padrão T, Coelho CC, Costa P, et al. Combining local antibiotic delivery with heparinized nanohydroxyapatite/collagen bone substitute: a novel strategy for osteomyelitis treatment. Mater Sci Eng C Mater Biol Appl. 2021;119:111329. Epub 2020/12/17. PubMed PMID: 33321574.
  • Pritchard EM, Valentin T, Panilaitis B, et al. Antibiotic-releasing silk biomaterials for infection prevention and treatment.Adv Funct Mater.2013;23(7):854–861; Epub 2012/09/26. PubMed PMID: 23483738;
  • Ioan D-C, Rău I, Tihan GT, et al. Piroxicam-collagen-based sponges for medical applications. Int J Polym Sci. 2019;6062381.
  • Catanzano O, Docking R, Schofield P, et al. Advanced multi-targeted composite biomaterial dressing for pain and infection control in chronic leg ulcers. Carbohydr Polym. 2017;172:40–48.
  • Cohen B, Shefy-Peleg A, Zilberman M. Novel gelatin/alginate soft tissue adhesives loaded with drugs for pain management: structure and properties. J Biomater Sci Polym Ed. 2014;25(3):224–240; Epub 2013/10/26. PubMed PMID: 24156311;
  • Ciolacu DE, Nicu R, Ciolacu F. Cellulose-based hydrogels as sustained drug-delivery systems. Materials. 2020;13(22):5270. PubMed PMID.
  • Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81(3):463–469.
  • Murali VP, Fujiwara T, Gallop C, et al. Modified electrospun chitosan membranes for controlled release of simvastatin. Int J Pharm. 2020;584:119438.
  • Kurakula M, Raghavendra Naveen N. Electrospraying: a facile technology unfolding the chitosan based drug delivery and biomedical applications. Eur Polym J. 2021;147:110326.
  • Patel B, Manne R, Patel DB, et al. Chitosan as functional biomaterial for designing delivery systems in cardiac therapies. Gels. 2021;7(4):253.
  • Kurakula M, NR N. Prospection of recent chitosan biomedical trends: evidence from patent analysis (2009–2020). Int J Biol Macromol. 2020;165:1924–1938.
  • Wu J, Sahoo JK, Li Y, et al. Challenges in delivering therapeutic peptides and proteins: a silk-based solution. J Control Release. 2022;345:176–189.
  • Hariyadi DM, Islam N. Current status of alginate in drug delivery. Adv Pharmacol Pharm Sci. 2020;2020:8886095. PubMed PMID: 32832902.
  • Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv. 2018;25(1):766–772. PubMed PMID: 29536778.
  • Foox M, Zilberman M. Drug delivery from gelatin-based systems. Expert Opin Drug Deliv. 2015;12(9):1547–1563; Epub 2015/05/07. PubMed PMID: 25943722.
  • Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B. 2018;8(1):34–50.
  • Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951–967.
  • Efthimiadou EK, Metaxa A-F, Kordas G. Modified polysaccharidespolysaccharidesas drug delivery. In: Ramawat KG, Mérillon J-M, editors. Polysaccharides: bioactivity and biotechnology. Cham: Springer International Publishing; 2021. p. 1–26.
  • Larson N, Ghandehari H. Polymeric conjugates for drug delivery. Chem Mater. 2012;24(5):840–853; Epub 2012/01/04. PubMed PMID: 22707853;
  • Karve KA, Gil ES, McCarthy SP, et al. Effect of β-sheet crystalline content on mass transfer in silk films. J Memb Sci. 2011;383(1–2):44–49. PubMed PMID: 22135474.
  • Wongpinyochit T, Vassileiou AD, Gupta S, et al. Unraveling the impact of high-order silk structures on molecular drug binding and release behaviors. J Phys Chem Lett. 2019;10(15):4278–4284.
  • Butt A, Jabeen S, Nisar N, et al. Controlled release of cephradine by biopolymers based target specific crosslinked hydrogels. Int J Biol Macromol. 2019;121:104–112.
  • Li AB, Kluge JA, Guziewicz NA, et al. Silk-based stabilization of biomacromolecules. J Control Release. 2015;219:416–430.
  • Shang L, Shao C, Chi J, et al. Living materials for life healthcare. Acc Mater Res. 2021;2(1):59–70.
  • Gheorghita R, Anchidin-Norocel L, Filip R, et al. Applications of biopolymers for drugs and probiotics delivery. Polymers. 2021;13(16):2729. PubMed PMID: 34451268.
  • Maddock RMA, Pollard GJ, Moreau NG, et al. Enzyme-catalysed polymer cross-linking: biocatalytic tools for chemical biology, materials science and beyond. Biopolymers. 2020;111(9):e23390.
  • Li J, Wu C, Chu PK, et al. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep. 2020;140:100543.
  • Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res. 2018;22(1):27.
  • Lepeltier E, Bourgaux C, Couvreur P. Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices. Adv Drug Deliv Rev. 2014;71:86–97. Epub 20131230. PubMed PMID: 24384372.
  • Wongpinyochit T, Johnston BF, Seib FP. Manufacture and Drug Delivery Applications of Silk Nanoparticles. J Vis Exp. 2016;(116) Epub 20161008. PubMed PMID: 27768078; PMCID: PMC5092179
  • Wu J, Andrews MP. Carboxylated cellulose nanocrystal microbeads for removal of organic dyes from wastewater: effects of kinetics and diffusion on binding and release. ACS Appl Nano Mater. 2020;3(11):11217–11228.
  • Wang Y, Li P, Truong-Dinh Tran T, et al. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016;6(2):26. PubMed PMID.
  • Salatin S, Barar J, Barzegar-Jalali M, et al. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci. 2017;12(1):1–14. PubMed PMID: 28255308; PMCID: PMC5333474.
  • Sahin A, Esendagli G, Yerlikaya F, et al. A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles’ characteristics and efficacy of intracellular delivery. Artif Cells Nanomed Biotechnol. 2017;45(8):1657–1664; Epub 20170113. PubMed PMID: 28084837
  • Vilela C, Figueiredo ARP, Silvestre AJD, et al. Multilayered materials based on biopolymers as drug delivery systems. Expert Opin Drug Deliv. 2017;14(2):189–200.
  • Tsioris K, Raja WK, Pritchard EM, et al. Fabrication of silk microneedles for controlled-release drug delivery. Adv Funct Mater. 2012;22(2):330–335.
  • Li C, Hotz B, Ling S, et al. Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials. 2016;110:24–33. Epub 2016/10/05. PubMed PMID: 27697669; PMCID: PMC5104183.
  • James EN, Van Doren E, Li C, et al. Silk biomaterials-mediated miRNA functionalized orthopedic devices.Tissue Eng Part A.2019;25(1–2):12–23; Epub 2018/02/09. PubMed PMID: 29415631; PMCID: PMC6352554;
  • Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10(4):255–274.
  • Shegokar RWMM. An effective way to solve drug solubility issue. In: Aliofkhazraei M, editor. Handbook of nanoparticles. Cham: Springer International Publishing; 2015. p. 1–17.
  • Lau M, Young PM, Traini D. A review of co-milling techniques for the production of high dose dry powder inhaler formulation. Drug Dev Ind Pharm. 2017;43(8):1229–1238.
  • Guo C, Li C, Vu HV, et al. Thermoplastic moulding of regenerated silk. Nat Mater. 2020;19(1):102–108.
  • Willberg-Keyriläinen P, Orelma H, Ropponen J. Injection molding of thermoplastic cellulose esters and their compatibility with poly(lactic acid) and polyethylene. Materials (Basel). 2018;11(12):2358. PubMed PMID: 30477116.
  • Galvis-Sánchez AC, Castro MCR, Biernacki K, et al. Natural deep eutectic solvents as green plasticizers for chitosan thermoplastic production with controlled/desired mechanical and barrier properties. Food Hydrocoll. 2018;82:478–489.
  • Salerno A, Oliviero M, Maio ED, et al. Thermoplastic Foams from Zein and Gelatin. Int Polym Proc. 2007;22(5):480–488.
  • Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54(2):107–117.
  • Repka MA, Majumdar S, Kumar Battu S, et al. Applications of hot-melt extrusion for drug delivery.Expert Opin Drug Deliv.2008;5(12):1357–1376; Epub 2008/12/02. PubMed PMID: 19040397; PMCID: PMC5821067;
  • Repka MA, Shah S, Lu J, et al. Melt extrusion: process to product. Expert Opin Drug Deliv. 2012;9(1):105–125.
  • Zheng Y, Pokorski JK. Hot melt extrusion: an emerging manufacturing method for slow and sustained protein delivery. WIREs Nanomed Nanobiotechnol. 2021;13(5):e1712.
  • Altomare L, Bonetti L, Campiglio CE, et al. Biopolymer-based strategies in the design of smart medical devices and artificial organs. Int J Artif Organs. 2018;41(6):337–359.
  • Sabourian P, Tavakolian M, Yazdani H, et al. Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J Control Release. 2020;317:216–231.
  • Wang W, Wang A. Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym. 2010;82(1):83–91.
  • Emi T, Michaud K, Orton E, et al. Ultrasonic generation of pulsatile and sequential therapeutic delivery profiles from calcium-crosslinked alginate hydrogels. Molecules. 2019;24(6):1048.
  • Ceylan H, Yasa IC, Yasa O, et al. 3D-Printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano. 2019;13(3):3353–3362.
  • Jiang X, Yang X, Yang B, et al. Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture. Carbohydr Polym. 2021;273:118547.
  • Shao D, Gao Q, Sheng Y, et al. Construction of a dual-responsive dual-drug delivery platform based on the hybrids of mesoporous silica, sodium hyaluronate, chitosan and oxidized sodium carboxymethyl cellulose. Int J Biol Macromol. 2022;202:37–45.
  • Meng Q, Zhong S, He S, et al. Synthesis and characterization of curcumin-loaded pH/reduction dual-responsive folic acid modified carboxymethyl cellulose-based microcapsules for targeted drug delivery. J Ind Eng Chem. 2022;105:251–258.
  • Gou S, Xie D, Ma Y, et al. Injectable, thixotropic, and multiresponsive silk fibroin hydrogel for localized and synergistic tumor therapy. ACS Biomater Sci Eng. 2020;6(2):1052–1063.
  • Zhao Y, Wei C, Chen X, et al. Drug delivery system based on near-infrared light-responsive molybdenum disulfide nanosheets controls the high-efficiency release of dexamethasone to inhibit inflammation and treat osteoarthritis. ACS Appl Mater Interfaces. 2019;11(12):11587–11601.
  • Sumitha NS, Sreeja S, Varghese PJG, et al. A dual functional superparamagnetic system with pH-dependent drug release and hyperthermia potential for chemotherapeutic applications. Mater Chem Phys. 2021;273:125108.
  • Xue W, Liu X-L, Ma H, et al. AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J Mat Chem B. 2018;6(15):2289–2303.
  • Wang Y, Boero G, Zhang XS, et al. Thermal and pH sensitive composite membrane for on-demand drug delivery by applying an alternating magnetic field. Adv Mater Interfaces. 2020;7(17): PubMed PMID: WOS:000572343600017.
  • Ruskowitz ER, DeForest CA. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat Rev Mater. 2018;3(2):17087.
  • Olejniczak J, Carling C-J, Almutairi A. Photocontrolled release using one-photon absorption of visible or NIR light. J Control Release. 2015;219:18–30.
  • Chen YW, Hao Y, Huang YL, et al. An injectable, near-infrared light-responsive click cross-linked azobenzene hydrogel for breast cancer chemotherapy. J Biomed Nanotechnol. 2019;15(9):1923–1936. PubMed PMID: WOS:000482645400006.
  • Szablowski JO, Bar-Zion A, Shapiro MG. Achieving spatial and molecular specificity with ultrasound-targeted biomolecular nanotherapeutics. Acc Chem Res. 2019;52(9):2427–2434.
  • DeBari MK, Niu X, Scott JV, et al. Therapeutic ultrasound triggered silk fibroin scaffold degradation.Adv Healthc Mater.2021;10(10):e2100048; Epub 20210318. PubMed PMID: 33738976
  • Mousavi ST, Harper GR, Municoy S, et al. Electroactive silk fibroin films for electrochemically enhanced delivery of drugs. Macromol Mater Eng. 2020;305(6):2000130.
  • Qu J, Zhao X, Ma PX, et al. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater. 2018;72:55–69.
  • Jiang X, Zeng F, Yang X, et al. Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy. Acta Biomater. 2022;141:102–113.
  • Rezk AI, Obiweluozor FO, Choukrani G, et al. Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: towards cancer chemotherapy. Int J Biol Macromol. 2019;141:388–400.
  • L-L B, Wang H-Q, Pan Y, et al. Gelatinase-sensitive nanoparticles loaded with photosensitizer and STAT3 inhibitor for cancer photothermal therapy and immunotherapy. J Nanobiotechnology. 2021;19(1):379.
  • Jiao Z, Zhang B, Li C, et al. Carboxymethyl cellulose-grafted graphene oxide for efficient antitumor drug delivery. Nanotechnol Rev. 2018;7(4):291–301.
  • Sheng Y, Gao J, Yin -Z-Z, et al. Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment. Carbohydr Polym. 2021;269:118325.
  • Sahle FF, Gerecke C, Kleuser B, et al. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int J Pharm. 2017;516(1):21–31.
  • Pan F, Giovannini G, Zhang S, et al. pH-responsive silica nanoparticles for the treatment of skin wound infections. Acta Biomater. 2022;145:172–184.
  • Ciancia S, Cafarelli A, Zahoranova A, et al. Pulsatile drug delivery system triggered by acoustic radiation force. Front Bioeng Biotechnol. 2020;8:8.
  • Jain D, Raturi R, Jain V, et al. Recent technologies in pulsatile drug delivery systems. Biomatter. 2011;1(1):57–65.
  • Mirvakili SM, Langer R. Wireless on-demand drug delivery. Nat Electron. 2021;4(7):464–477.
  • Davoodi P, LY L, Xu Q, et al. Drug delivery systems for programmed and on-demand release. Advanced Drug Delivery Reviews. 2018;132:38–104.
  • Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/ polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102.
  • Lin -C-C, Anseth KS. Chapter II.4.3 - the biodegradation of biodegradable polymeric biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, et al., editors. Biomaterials Science. Third ed. Cambridge, Massachusetts: Academic Press; 2013. p. 716–728.
  • Schönberger M, Hoffstetter M. 6 - Emerging trends. In: Schönberger M, Hoffstetter M, editors. Emerging trends in medical plastic engineering and manufacturing: William Andrew publishing. Norwich, NY: William Andrew publishing. 2016. p. 235–268.
  • García MC. 12 - Drug delivery systems based on nonimmunogenic biopolymers. In: Parambath A, editor. Engineering of biomaterials for drug delivery systems. Cambridge: Woodhead Publishing; 2018. p. 317–344.
  • Wang Y, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008;29(24):3415–3428.
  • Guo C, Li C, Kaplan DL. Enzymatic degradation of bombyx mori silk materials: a review. Biomacromolecules. 2020;21(5):1678–1686.
  • Harting R, Johnston K, Petersen S. Correlating in vitro degradation and drug release kinetics of biopolymer-based drug delivery systems. Int J Biobased Plast. 2019;1(1):8–21.
  • Zhang D, Chen Q, Shi C, et al. Dealing with the foreign‐body response to implanted biomaterials: strategies and applications of new materials. Adv Funct Mater. 2021;31(6):2007226.
  • Veiseh O, Vegas AJ. Domesticating the foreign body response: recent advances and applications. Adv Drug Deliv Rev. 2019;144:148–161.
  • Sridharan R, Cameron AR, Kelly DJ, et al. Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater Today. 2015;18(6):313–325.
  • Chandorkar Y, R K, Basu B. The foreign body response demystified. ACS Biomater Sci Eng. 2019;5(1):19–44.
  • Ratner BD. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Control Release. 2002;78(1–3):211–218.
  • Jung YH, Kim JU, Lee JS, et al. Injectable biomedical devices for sensing and stimulating internal body organs. Adv Mater. 2020;32(16):1907478.
  • Vishwakarma A, Bhise NS, Evangelista MB, et al. Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol. 2016;34(6):470–482.
  • Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010;12(2):188–196.
  • Jesus S, Schmutz M, Som C, et al. Hazard assessment of polymeric nanobiomaterials for drug delivery: what can we learn from literature so far. Front Bioeng Biotechnol. 2019;7:261.
  • Haxton KJ, Burt HM. Polymeric drug delivery of platinum-based anticancer agents. J Pharm Sci. 2009;98(7):2299–2316.
  • Ulbrich K, Holá K, Šubr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116(9):5338–5431.
  • Helton KL, Ratner BD, Wisniewski, et al. Biomechanics of the sensor-tissue interface—effects of motion, pressure, and design on sensor performance and the foreign body response—part i: theoretical framework. J Diabetes Sci Technol. 2011;5(3):632–646.
  • Veiseh O, Doloff JC, Ma M, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater. 2015;14(6):643–651.
  • Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release. 2012;159(1):14–26.
  • Watanabe T, Okitsu T, Ozawa F, et al. Millimeter-thick xenoislet-laden fibers as retrievable transplants mitigate foreign body reactions for long-term glycemic control in diabetic mice. Biomaterials. 2020;255:120162.
  • Cao H, McHugh K, Chew SY, et al. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res. 2009;9999A:NA–NA.
  • Friedemann M, Kalbitzer L, Franz S, et al. Instructing human macrophage polarization by stiffness and glycosaminoglycan functionalization in 3D collagen networks. Adv Healthcare Mater. 2017;6(7):1600967.
  • Sridharan R, Cavanagh B, Cameron AR, et al. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 2019;89:47–59.
  • Okamoto T, Takagi Y, Kawamoto E, et al. Reduced substrate stiffness promotes M2-like macrophage activation and enhances peroxisome proliferator-activated receptor γ expression. Exp Cell Res. 2018;367(2):264–273.
  • Rnjak-Kovacina J, Wray LS, Burke KA, et al. Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater Sci Eng. 2015;1(4):260–270.
  • Farah S, Doloff JC, Müller P, et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. Nat Mater. 2019;18(8):892–904.
  • Ashimova A, Yegorov S, Negmetzhanov B, et al. Cell encapsulation within alginate microcapsules: immunological challenges and outlook. Front Bioeng Biotechnol. 2019;7:380.
  • Takahashi H, Wang Y, Grainger DW. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation. J Control Release. 2010;147(3):400–407.
  • P-o R, Jao B, Yang J, et al. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater. 2013;9(1):4513–4524.
  • Schöttler S, Becker G, Winzen S, et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nature Nanotech. 2016;11(4):372–377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.