432
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in microneedles for non-transdermal applications

&
Pages 1081-1097 | Received 26 May 2022, Accepted 25 Aug 2022, Published online: 14 Sep 2022

References

  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268.
  • Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Del Rev. 2004;56(5):581–587.
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Del Rev. 2012;64(14):1547–1568.
  • Yu J, Zhang Y, Kahkoska AR, et al. Bioresponsive transcutaneous patches. Curr Opin Biotechnol. 2017;48:28–32.
  • Hashmi S, Ling P, Hashmi G, et al. Genetic transformation of nematodes using arrays of micromechanical piercing structures. BioTechniques. 1995;19(5):766–770.
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115–124.
  • Wokovich AM, Prodduturi S, Doub WH, et al. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur J Pharm Biopharm. 2006;64(1):1–8.
  • Jamaledin R, Yiu CK, Zare EN, et al. Advances in antimicrobial microneedle patches for combating infections. Adv Mater. 2020;32(33):2002129.
  • Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng. 2017;8(1):177–200.
  • Ye Y, Yu J, Wen D, et al. Polymeric microneedles for transdermal protein delivery. Adv Drug Del Rev. 2018;127:106–118.
  • Zhu M, Liu Y, Jiang F, et al. Combined silk fibroin microneedles for insulin delivery. ACS Biomater Sci Eng. 2020;6(6):3422–3429.
  • Zhang Y, Jiang G, Yu W, et al. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater Sci Eng C Mater Bio Appl. 2018;85:18–26.
  • Yu J, Wang J, Zhang Y, et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng. 2020;4(5):499–506.
  • Chen G, Chen Z, Wen D, et al. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc Nat Acad Sci. 2020;117(7):3687–3692.
  • Prausnitz MR, Gomaa Y, Li W. Microneedle patch drug delivery in the gut. Nat Med. 2019;25(10):1471–1472.
  • Chang H, Chew SWT, Zheng M, et al. Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng. 2021;5(9):1008–1018.
  • Makvandi P, Maleki A, Shabani M, et al. Bioinspired microneedle patches: biomimetic designs, fabrication, and biomedical applications. Matter. 2022;5(2):390–429.
  • Makvandi P, Jamaledin R, Chen G, et al. Stimuli-responsive transdermal microneedle patches. Mater Today. 2021;47:206–222.
  • Sheng T, Luo B, Zhang W, et al. Microneedle-mediated vaccination: innovation and translation. Adv Drug Del Rev. 2021;179:113919.
  • Bal SM, Caussin J, Pavel S, et al. In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci. 2008;35(3):193–202.
  • Henry S, McAllister DV, Allen MG, et al. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922–925.
  • Lee K, Goudie MJ, Tebon P, et al. Non-transdermal microneedles for advanced drug delivery. Adv Drug Deliv Rev. 2020;165-166:41–59.
  • Zhu Q, Zarnitsyn VG, Ye L, et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Nat Acad Sci. 2009;106(19):7968–7973.
  • Ali AA, McCrudden CM, McCaffrey J, et al. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomedicine. 2017;13(3):921–932.
  • Lee K, Kim JD, Lee CY, et al. A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. Biomaterials. 2011;32(30):7705–7710.
  • Wang C, Ye Y, Hochu GM, et al. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 2016;16(4):2334–2340.
  • Chen M, Wang K, Chen D, et al. Remotely triggered release of small molecules from LaB6@SiO2-loaded polycaprolactone microneedles. Acta Biomater. 2015;13:344–353.
  • Kim Y, Quan F, Yoo D, et al. Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine. 2009;27(49):6932–6938.
  • Yu J, Zhang Y, Ye Y, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Nat Acad Sci. 2015;112(27):8260–8265.
  • Marshall S, Sahm LJ, Moore AC. The success of microneedle-mediated vaccine delivery into skin. Hum Vaccin Immunother. 2016;12(11):2975–2983.
  • Caffarel-Salvador E, Kim S, Soares V, et al. A microneedle platform for buccal macromolecule delivery. Sci Adv. 2021;7(4):eabe2620.
  • Rzhevskiy AS, Singh TRR, Donnelly RF, et al. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release. 2018;270:184–202.
  • Lee JW, Prausnitz MR. Drug delivery using microneedle patches: not just for skin. Expert Opin Drug Deliv. 2018;15(6):541–543.
  • Seeni RZ, Zheng M, Lio DCS, et al. Targeted delivery of anesthetic agents to bone tissues using conductive microneedles enhanced iontophoresis for painless dental anesthesia. Adv Funct Mater. 2021;31(47):2105686.
  • Ma Y, Tao W, Krebs SJ, et al. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity. Pharm Res. 2014;31(9):2393–2403.
  • Jiang J, Gill HS, Ghate D, et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007;48(9):4038–4043.
  • Lee K, Song HB, Cho W, et al. Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery. Acta Biomater. 2018;80:48–57.
  • Choi CK, Kim JB, Jang EH, et al. Curved biodegradable microneedles for vascular drug delivery. Small. 2012;8(16):2483–2488.
  • Lee KJ, Park SH, Lee JY, et al. Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. J Control Release. 2014;192:174–181.
  • Lee K, Lee J, Lee SG, et al. Microneedle drug eluting balloon for enhanced drug delivery to vascular tissue. J Control Release. 2020;321:174–183.
  • Traverso G, Schoellhammer CM, Schroeder A, et al., Microneedles for drug delivery via the gastrointestinal tract. J Pharm Sci. 2015; 104(2): 362–367.
  • Abramson A, Caffarel-Salvador E, Soares V, et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat Med. 2019;25(10):1512–1518.
  • He X, Sun J, Zhuang J, et al. Microneedle system for transdermal drug and vaccine delivery: devices, safety, and prospects. Dose-Response. 2019;17(4):1559325819878585.
  • Larrañeta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32.
  • Panda A, Matadh VA, Suresh S, et al. Non-dermal applications of microneedle drug delivery systems. Drug Deliv Transl Res. 2022;12(1):67–78.
  • Pradeep Narayanan S, Raghavan S. Solid silicon microneedles for drug delivery applications. Int J Adv Manuf Technol. 2017;93(1):407–422.
  • Doddaballapur S. Microneedling with dermaroller. J Cutan Aesthet Surg. 2009;2(2):110–111.
  • Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227–237.
  • Chen X, Fernando GJ, Crichton ML, et al. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Control Release. 2011;152(3):349–355.
  • Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res. 2007;24(7):1369–1380. DOI:10.1007/s11095-007-9286-4
  • Ma Y, Boese SE, Luo Z, et al. Drug coated microneedles for minimally-invasive treatment of oral carcinomas: development and in vitro evaluation. Biomed Microdevices. 2015;17(2):1–14.
  • Baek SH, Shin JH, Kim YC. Drug-coated microneedles for rapid and painless local anesthesia. Biomed Microdevices. 2017;19(1):2.
  • Caudill CL, Perry JL, Tian S, et al. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control Release. 2018;284:122–132.
  • Shakya AK, Lee CH, Gill HS. Cutaneous vaccination with coated microneedles prevents development of airway allergy. J Control Release. 2017;265:75–82.
  • Pere CPP, Economidou SN, Lall G, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018;544(2):425–432.
  • Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, et al. Hollow microneedles: a perspective in biomedical applications. Int J Pharm. 2021;599:120455.
  • Lhernould MS, Tailler S, Deleers M, et al. Review of patents for microneedle application devices allowing fluid injections through the skin. Recent Pat Drug Deliv Formul. 2015;9(2):146–157.
  • De Groot AMDG, Mönkäre J, Mönkäre J, et al. Hollow microneedle-mediated intradermal delivery of model vaccine antigen-loaded PLGA nanoparticles elicits protective T cell-mediated immunity to an intracellular bacterium. J Control Release. 2017;266:27–35.
  • HO BCJW, Blayney GJ, Blayney GJ, et al. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip. 2020;20(15):2788–2795.
  • Xu J, Xu D, Xuan X, et al. Advances of microneedles in biomedical applications. Molecules. 2021;26(19):5912.
  • Pamornpathomkul B, Ngawhirunpat T, Tekko IA, et al. Dissolving polymeric microneedle arrays for enhanced site-specific Acyclovir delivery. Eur J Pharm Sci. 2018;121:200–209.
  • Permana AD, McCrudden MT, Donnelly RF. Enhanced intradermal delivery of nanosuspensions of antifilariasis drugs using dissolving microneedles: a proof of concept study. Pharmaceutics. 2019;11(7):346.
  • Donnelly RF, Singh TRR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010;17(4):187–207.
  • Li Y, Zhang H, Yang R, et al. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsys Nanoeng. 2019;5(1):41.
  • Wu M, Zhang Y, Huang H, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng C. 2020;117:111299.
  • Krieger KJ, Bertollo N, Dangol M, et al. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsys Nanoeng. 2019;5(1):42.
  • Patel SR, Lin ASP, Edelhauser HF, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–176.
  • Martanto W, Moore JS, Couse T, et al. Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release. 2006;112(3):357–361.
  • Wang PM, Cornwell M, Hill J, et al. Precise microinjection into skin using hollow microneedles. J Invest Dermatol. 2006;126(5):1080–1087.
  • Laurent PE, Bonnet S, Alchas P, et al. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine. 2007;25(52):8833–8842.
  • Ziemssen T, LS MR, Ross AP. Patient satisfaction with the new interferon Beta-1b Autoinjector (BETACONNECT™). Neurol Ther. 2015;4(2):125–136.
  • Vescovo P, Rettby N, Ramaniraka N, et al. Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™. Vaccine. 2017;35(14):1782–1788.
  • Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116–1127.
  • Migalska K, Morrow DI, Garland MJ, et al. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm Res. 2011;28(8):1919–1930.
  • Chen W, Wang C, Yan L, et al. Improved polyvinylpyrrolidone microneedle arrays with non-stoichiometric cyclodextrin. J. Mater. Chem. B. 2014;2(12):1699–1705.
  • Chu LY, Choi S-O, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci. 2010;99(10):4228–4238.
  • Ito Y, Hirono M, Fukushima K, et al. Two-layered dissolving microneedles formulated with intermediate-acting insulin. Int J Pharm. 2012;436(1–2):387–393.
  • Gujjar M, Banga AK. Iontophoretic and microneedle mediated transdermal delivery of glycopyrrolate. Pharmaceutics. 2014;6(4):663–671.
  • Lee JW, Park J-H, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–2124.
  • Quinn HL, Bonham L, Hughes CM, et al. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs. J Pharm Sci. 2015;104(10):3490–3500.
  • Shi H, Xue T, Yang Y, et al. Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease. Sci Adv. 2020;6(25):eaaz3621.
  • Wang T, Zhen Y, Ma X, et al. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloids Surf B Biointerfaces. 2015;126:520–530.
  • Miyano T, Tobinaga Y, Kanno T, et al. Sugar micro needles as transdermic drug delivery system. Biomed Microdevices. 2005;7(3):185–188.
  • Littauer EQ, Mills LK, Brock N, et al. Stable incorporation of GM-CSF into dissolvable microneedle patch improves skin vaccination against influenza. J Control Release. 2018;276:1–16.
  • Yu W, Jiang G, Liu D, et al. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater Sci Eng C. 2017;71:725–734.
  • Jg XB, Yu WJ, et al. H2O2-responsive mesoporous silica nanoparticles integrated with microneedle patches for the glucose-monitored transdermal delivery of insulin. J Mater Chem B. 2017;5(41):8200–8208.
  • Tong Z, Zhou J, Zhong J, et al. Glucose- and H(2)O(2)-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Appl Mater Interfaces. 2018;10(23):20014–20024.
  • Doppalapudi S, Jain A, Khan W, et al. Biodegradable polymers—an overview. ?Polym Adv Technol. 2014;25(5):427–435.
  • Elmowafy EM, Tiboni M, Soliman ME. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J Pharm Invest. 2019;49(4):347–380.
  • Tsioris K, Raja WK, Pritchard EM, et al. Fabrication of silk microneedles for controlled‐release drug delivery. Adv Funct Mater. 2012;22(2):330–335.
  • Lee J, Park SH, Seo IH, et al. Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. Eur J Pharm Biopharm. 2015;94:11–19.
  • Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci. 2009;10(4):1514–1524.
  • Luo Z, Sun W, Fang J, et al. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv Healthc Mater. 2019;8(3):1801054.
  • Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–2663.
  • Yasukawa T, Ogura Y, Sakurai E, et al. Intraocular sustained drug delivery using implantable polymeric devices. Adv Drug Del Rev. 2005;57(14):2033–2046.
  • Lim S, Park TY, Jeon EY, et al. Double-layered adhesive microneedle bandage based on biofunctionalized mussel protein for cardiac tissue regeneration. Biomaterials. 2021;278:121171.
  • Wang Z, Yang Z, Jiang J, et al. Silk microneedle patch capable of on‐demand multidrug delivery to the brain for glioblastoma treatment. Adv Mater. 2022;34(1):2106606.
  • Wang SS, Tang YL, Pang X, et al. The maintenance of an oral epithelial barrier. Life Sci. 2019;227:129–136.
  • Wu Y, Liu Y, Li X, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;14(1):1–15.
  • Viralkumar FP, Marc FL, Brown B. Advances in oral transmucosal drug delivery. J Control Release. 2011;153(2):106–116.
  • Kraan H, Vrieling H, Czerkinsky C, et al. Buccal and sublingual vaccine delivery. J Control Release. 2014;190:580–592.
  • Ogle OE, Mahjoubi G. Local anesthesia: agents, techniques, and complications. Dent Clin North Am. 2012;56(1):133–148. ix.
  • Budenz AW. Local anesthetics in dentistry: then and now. J Calif Dent Assoc. 2003;31(5):388–396.
  • Kang S-M, Song J-M, Kim Y-C. Microneedle and mucosal delivery of influenza vaccines. Expert Rev Vaccines. 2012;11(5):547–560.
  • Shakya AK, Chowdhury MY, Tao W, et al. Mucosal vaccine delivery: current state and a pediatric perspective. J Control Release. 2016;240:394–413.
  • Kim K-YL S-H, Jang Y-S. Mucosal immune system and m cell-targeting strategies for oral mucosal vaccination. Immune Netw. 2012;12(5):165–175.
  • McNeilly CL, Crichton ML, Primiero CA, et al. Microprojection arrays to immunise at mucosal surfaces. J Control Release. 2014;196:252–260.
  • Thakur Singh RR, Tekko I, McAvoy K, et al. Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv. 2017;14(4):525–537.
  • Moffatt K, Wang Y, Singh TRR, et al. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol. 2017;36:14–21.
  • Than A, Liu C, Chang H, et al. Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat Commun. 2018;9(1):4433.
  • Dugam S, Tade R, Dhole R, et al. Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives. Future J Pharm Sci. 2021;7(1):1–26.
  • Shi H, Zhou J, Wang Y, et al. A rapid corneal healing microneedle for efficient ocular drug delivery. Small. 2022;18(4):2104657.
  • Gilger BC, Abarca EM, Salmon JH, et al. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Invest Ophthalmol Vis Sci. 2013;54(4):2483–2492.
  • Song HB, Lee KJ, Seo IH, et al. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. J Control Release. 2015;209:272–279.
  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. AAPS J. 2010;12(3):348–360.
  • Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today. 2008;13(3–4):135–143.
  • Jiang J, Moore JS, Edelhauser HF, et al. Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res. 2009;26(2):395–403.
  • Patel SR, Berezovsky DE, McCarey BE, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53(8):4433–4441.
  • Moisseiev E, Loewenstein A, Yiu G. The suprachoroidal space: from potential space to a space with potential. Clinical ophthalmology. 2016. Vol. 10. Auckland NZ: Dove Medical Press. 173–178.
  • Chiang B, Jung JH, Prausnitz MR. The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev. 2018;126:58–66.
  • Jagadeesh G, Balakumar P, Maung-U K. Pathophysiology and pharmacotherapy of cardiovascular disease. Switzerland: Springer; 2015.
  • Zhou R, Yu J, Gu Z, et al. Microneedle-mediated therapy for cardiovascular diseases. Drug Deliv Transl Res. 2022;12:472–483.
  • Palasubramaniam J, Wang X, Peter KJA, et al. Thrombosis Myocardial infarction—From atherosclerosis to thrombosis: uncovering new diagnostic and therapeutic approaches. Arteriosclerosis, Thrombosis, and Vascular Biology. 2019;39(8):e176–e185.
  • Madonna R, Ferdinandy P, De Caterina R, et al. Recent developments in cardiovascular stem cells. Circ Res. 2014;115(12):e71–e78.
  • Boyle AJ, Schulman SP, Hare JM. Stem cell therapy for cardiac repair: ready for the next step. Circulation. 2006;114(4):339–352.
  • Tang J, Wang J, Huang K, et al., Cardiac cell–integrated microneedle patch for treating myocardial infarction. Sci Adv. 2018; 4(11): eaat9365.
  • Ishikawa K, Weber T, Hajjar RJ. Human cardiac gene therapy. Circ Res. 2018;123(5):601–613.
  • Gabisonia K, Prosdocimo G, Aquaro GD, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 2019;569(7756):418–422.
  • Hajjar RJ, Ishikawa K. Introducing genes to the heart: all about delivery. Circ Res. 2017;120(1):33–35.
  • Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113:600–609.
  • Sarjeant JM, Rabinovitch M. Understanding and treating vein graft atherosclerosis. Cardiovasc Pathol. 2002;11(5):263–271.
  • Subbotin VM, Gibson R, Illner R. Analysis of arterial intimal hyperplasia: review and hypothesis. Theor Biol Med Modell. 2007;4(1):1–20.
  • Pires NM, van der Hoeven BL, De Vries MR, et al. Local perivascular delivery of anti-restenotic agents from a drug-eluting poly(epsilon-caprolactone) stent cuff. Biomaterials. 2005;26(26):5386–5394.
  • Edelmana ER, Nathan A, Katada M, et al. Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials. 2000;21(22):2279–2286.
  • Schnorr B, Albrecht T. Drug-coated balloons and their place in treating peripheral arterial disease. Expert Rev Med Devices. 2013;10(1):105–114.
  • Cortese B, Bertoletti A. Paclitaxel coated balloons for coronary artery interventions: a comprehensive review of preclinical and clinical data. Int J Cardiol. 2012;161(1):4–12.
  • Mignani S, El Kazzouli S, Bousmina M, et al. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Del Rev. 2013;65(10):1316–1330.
  • Borner M, Schöffski P, De Wit R, et al. Patient preference and pharmacokinetics of oral modulated UFT versus intravenous fluorouracil and leucovorin: a randomised crossover trial in advanced colorectal cancer. Eur J Cancer. 2002;38(3):349–358.
  • Aoki Y, Morishita M, Asai K, et al. Region-dependent role of the mucous/glycocalyx layers in insulin permeation across rat small intestinal membrane. Pharm Res. 2005;22(11):1854–1862.
  • Abramson A, Kirtane AR, Shi Y, et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter. 2022;5(3):975–987.
  • Chen W, Wainer J, Ryoo SW, et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci Adv. 2022;8(1):eabk1792.
  • Li H, Wang Z, Ogunnaike EA, et al., Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy. Natl Sci Rev. 2022; 9(3): nwab172.
  • Ensign LM, Tang BC, Wang -Y-Y, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra79–138ra79.
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–158.
  • Vincent KL, Frost PA, Motamedi M, et al. High-resolution quantitative mapping of macaque cervicovaginal epithelial thickness: implications for mucosal vaccine delivery. Front Immunol. 2021;12:660524.
  • Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol. 2012;12(8):592–605.
  • Wang N, Zhen Y, Jin Y, et al. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS). J Control Release. 2017;246:12–29.
  • Mc Crudden MT, Larrañeta E, Clark A, et al. Design, formulation, and evaluation of novel dissolving microarray patches containing rilpivirine for intravaginal delivery. Adv Healthc Mater. 2019;8(9):1801510.
  • Lee SH, Thunemann M, Lee K, et al. Scalable thousand channel penetrating microneedle arrays on flex for multimodal and large area coverage brainmachine interfaces. Adv Funct Mater. 2022;32(25):2112045.
  • Paul R, Saville AC, Hansel JC, et al., Extraction of plant DNA by microneedle patch for rapid detection of plant diseases. ACS nano. 2019; 13(6): 6540–6549.
  • Jung JH, Jin Sgjjo PI. Microneedle for transdermal drug delivery: current trends and fabrication. Journal of Pharmaceutical Investigation. 2021;51(5):503–517.
  • Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: applications and growing therapeutic potential. J Control Release. 2022;348:186–205.
  • Levin Y, Kochba E, Hung I, et al. Intradermal vaccination using the novel microneedle device MicronJet600: past, present, and future. Hum Vaccin Immunother. 2015;11(4):991–997.
  • Huang Y, Yu H, Wang L, et al. Research progress on cosmetic microneedle systems: preparation, property and application. Eur Polym J. 2022;163:110942.
  • Yang G, Chen Q, Wen D, et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano. 2019;13(4):4354–4360.
  • Faisal W, Abina C, inventor; UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF Ireland, CORK (Cork, IE), assignee. MICRONEEDLES, AND METHODS FOR THE MANUFACTURE THEREOF. United States 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.