336
Views
5
CrossRef citations to date
0
Altmetric
Review

Microneedles for transdermal drug delivery using clay-based composites

& ORCID Icon
Pages 1099-1113 | Received 14 Jun 2022, Accepted 26 Aug 2022, Published online: 31 Aug 2022

References

  • Kaur R, Sharma A, Puri V, et al. Preparation and characterization of biocomposite films of carrageenan/locust bean gum/montmorrillonite for transdermal delivery of curcumin. BioImpacts. 2019;9(1):37–43.
  • Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release. 2022;341:132–146.
  • Parhi R. 16 - Nanocomposite for transdermal drug delivery. In: Inamuddin AAM, Mohammad A, editors. Woodhead publishing series in biomaterials, applications of nanocomposite materials in drug delivery. Sawston, Cambridge: Woodhead Publishing; 2018. p. 353–389. 10.1016/B978-0-12-813741-3.00016-9.
  • Gaharwar AK, Mukundan S, Karaca E, et al. Nanoclay-enriched poly(ℇ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng - Part A. 2014;20(15–16):2088–2101.
  • Davar F, Salavati-Niasari M, Fereshteh Z. Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. J Alloys Compd. 2010;496(1–2):638–643.
  • Rangappa S, Rangan KK, Sudarshan TS, et al. Evaluation of lidocaine loaded clay based dermal patch systems. J Drug Deliv Sci Technol. 2017;39:450–454.
  • Hassanpour M, Safardoust-Hojaghan H, Salavati-Niasari M. Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J Mol Liq. 2017;229:293–299.
  • Stojiljkovi T, Stojiljkovi MS. Application of bentonite clay for human use. Proceedings of the IV advanced ceramics and applications conference Belgrade, Serbia. 2017:349–356. 10.2991/978-94-6239-213-7.
  • Branca C, Crupi C, D’Angelo G, et al. Effect of montmorillonite on the rheological properties of dually crosslinked guar gum-based hydrogels. J Appl Polym Sci. 2015;132(5):41373.
  • Paluszkiewicz C, Stodolak E, Hasik M, et al. FT-IR study of montmorillonite–chitosan nanocomposite materials. Spectrochim Acta Part A Mol Biomol Spectrosc. 2011;79(4):784–788.
  • Zinatloo-Ajabshir S, Morassaei MS, Amiri O, et al. Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram Int. 2020;46(11):17186–17196.
  • Jafarbeglou M, Abdouss M, Shoushtari AM, et al. Clay nanocomposites as engineered drug delivery systems. RSC Adv. 2016;6(55):50002–50016.
  • Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M. Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason Sonochem. 2018;42:171–182.
  • Zinatloo-Ajabshir S, Salavati-Niasari M. Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos Part B Eng. 2019;174:106930.
  • Motahari F, Mozdianfard MR, Salavati-Niasari M. Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment. Process Saf Environ Prot. 2015;93:282–292.
  • Santos AC, Pereira I, Reis S, et al. Biomedical potential of clay nanotube formulations and their toxicity assessment. Expert Opin Drug Deliv. 2019;16(11):1169–1182.
  • Kassa A, Benhamida A, Kaci M, et al. Effects of montmorillonite, sepiolite, and halloysite clays on the morphology and properties of polycaprolactone bionanocomposites. Polym Polym Compos. 2020;28:338–347.
  • Borrego-Sánchez A, Carazo E, Aguzzi C, et al. Biopharmaceutical improvement of praziquantel by interaction with montmorillonite and sepiolite. Appl Clay Sci. 2018;160:173–179.
  • Ghiyasiyan-Arani M, Salavati-Niasari M, Naseh S. Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization. Ultrason Sonochem. 2017;39:494–503.
  • Yan L, Alba M, Tabassum N, et al. Micro- and nanosystems for advanced transdermal delivery. Adv Ther. 2019;2(12):1900141.
  • Li J, Zhou Y, Yang J, et al. Fabrication of gradient porous microneedle array by modified hot embossing for transdermal drug delivery. Mater Sci Eng C. 2019;96:576–582.
  • Lee JW, Choi SO, Felner EI, et al. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;7(4):531–539.
  • Yao G, Quan G, Lin S, et al. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: in vitro and in vivo characterization. Int J Pharm. 2017;534(1–2):378–386.
  • Gill HS, Denson DD, Burris BA, et al. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24(7):585–594.
  • Nejad HR, Sadeqi A, Kiaee G, et al. Low-cost and cleanroom-free fabrication of microneedles. Microsyst Nanoeng. 2018;4(1):17073.
  • Nguyen HX, Bozorg BD, Kim Y, et al. Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm. 2018;129:88–103.
  • Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems : materials science, manufacture and commercial development. Mater Sci Eng R. 2016;104:1–32.
  • Zan P, Than A, Duong PK, et al. Antimicrobial microneedle patch for treating deep cutaneous fungal infection. Adv Ther. 2019;2(10):1900064.
  • Fonseca DFS, Vilela C, Pinto RJB, et al. Bacterial nanocellulose-hyaluronic acid microneedle patches for skin applications: in vitro and in vivo evaluation. Mater Sci Eng C. 2021;118:111350.
  • Castilla-Casadiego DA, Carlton H, Gonzalez-Nino D, et al. Design, characterization, and modeling of a chitosan microneedle patch for transdermal delivery of meloxicam as a pain management strategy for use in cattle. Mater Sci Eng C. 2021;118:111544.
  • Liu D, Yu B, Jiang G, et al. Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats. Mater Sci Eng C. 2018;90:180–188.
  • Cao Y, Tao Y, Zhou Y, et al. Development of sinomenine hydrochloride-loaded polyvinylalcohol/maltose microneedle for transdermal delivery. J Drug Deliv Sci Technol. 2016;35:1–7.
  • Bansal V, Sharma PK, Sharma N, et al. Applications of Chitosan and Chitosan derivatives in drug delivery. Biol Res. 2011;5:28–37.
  • Yu J, Zhang Y, Ye Y, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci. 2015;112(27):8260–8265.
  • Tan C, Yeo Chen Long D, Cao T, et al. Drug-free microneedles in the treatment of keloids: a single-blinded intraindividual controlled clinical trial. Br J Dermatol. 2018;179(6):1418–1419.
  • Avcil M, Çelik A. Microneedles in drug delivery: progress and challenges. Micromachines. 2021;12(11):1321.
  • Ronnander P, Simon L, Spilgies H, et al. Dissolving polyvinylpyrrolidone-based microneedle systems for in-vitro delivery of sumatriptan succinate. Eur J Pharm Sci. 2018;114:84–92.
  • Kasi G, Seo J. Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater Sci Eng C. 2019;98:717–725.
  • Ye Y, Yu J, Wang C, et al. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv Mater. 2016;28(16):3115–3121.
  • Nematpour N, Farhadian N, Ebrahimi KS, et al. Sustained release nanofibrous composite patch for transdermal antibiotic delivery. Colloids Surf A Physicochem Eng Asp. 2020;586:124267.
  • Fonseca DFS, Costa PC, Almeida IF, et al. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohydr Polym. 2020;241:116314.
  • Malaiya MK, Jain A, Pooja H, et al. Controlled delivery of rivastigmine using transdermal patch for effective management of Alzheimer’s disease. J Drug Deliv Sci Technol. 2018;45:408–414.
  • Gennari CGM, Quaroni GMG, Creton C, et al. SEBS block copolymers as novel materials to design transdermal patches. Int J Pharm. 2020;575:118975.
  • Gato K, Fujii MY, Hisada H, et al. Molecular state evaluation of active pharmaceutical ingredients in adhesive patches for transdermal drug delivery. J Drug Deliv Sci Technol. 2020;58:101800.
  • Ganti SS, Bhattaccharjee SA, Murnane KS, et al. Formulation and evaluation of 4-benzylpiperidine drug-in-adhesive matrix type transdermal patch. Int J Pharm. 2018;550(1–2):71–78.
  • Akhtar B, Muhammad F, Aslam B, et al. Biodegradable nanoparticle based transdermal patches for gentamicin delivery: formulation, characterization and pharmacokinetics in rabbits. J Drug Deliv Sci Technol. 2020;57:101680.
  • Ameen D, Michniak-Kohn B. Development and in vitro evaluation of pressure sensitive adhesive patch for the transdermal delivery of galantamine: effect of penetration enhancers and crystallization inhibition. Eur J Pharm Biopharm. 2019;139:262–271.
  • Mohamed AL, Elmotasem H, Salama AAA. Colchicine mesoporous silica nanoparticles/hydrogel composite loaded cotton patches as a new encapsulator system for transdermal osteoarthritis management. Int J Biol Macromol. 2020;164:1149–1163.
  • Yang D, Liu C, Quan P, et al. Molecular mechanism of high capacity-high release transdermal drug delivery patch with carboxyl acrylate polymer: roles of ion-ion repulsion and hydrogen bond. Int J Pharm. 2020;585:119376.
  • Kochhar JS, Quek TC, Soon WJ, et al. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J Pharm Sci. 2013;102(11):4100–4108.
  • Rabiei M, Kashanian S, Samavati SS, et al. Nanomaterial and advanced technologies in transdermal drug delivery. J Drug Target. 2020;28(4):356–367.
  • Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res. 2018;9(1):2–8.
  • Alabi CO, Singh I, Odeku OA. Evaluation of starch-clay composites as a pharmaceutical excipient in tramadol tablet formulations. Polim Med. 2020;50(1):33–40.
  • Gilani S, Mir S, Masood M, et al. Triple-component nanocomposite films prepared using a casting method: its potential in drug delivery. J Food Drug Anal. 2018;26(2):887–902.
  • Shah SNH, Mehboob-E-Rabbani S, Badshah Y, et al. Developing an efficacious diclofenac diethylamine transdermal formulation. J Food Drug Anal. 2012;20:464–470.
  • Onnainty R, Onida B, Páez P, et al. Targeted chitosan-based bionanocomposites for controlled oral mucosal delivery of chlorhexidine. Int J Pharm. 2016;509(1–2):408–418.
  • Saha NR, Sarkar G, Roy I, et al. Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities. Carbohydr Polym. 2016;136:1218–1227.
  • Sabbagh F, Kiarostami K, Khatir NM. A comparative study on the clays incorporated with acrylamide-based hydrogels. Adv Appl NanoBio-Technol. 2021;2:15–23.
  • Lee W, Fu Y. Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J Appl Polym Sci. 2002;89(13):3652–3660.
  • García-Villén F, Faccendini A, Aguzzi C, et al. Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int J Nanomedicine. 2019;14:5051–5060.
  • Kevadiya BD, Rajkumar S, Bajaj HC, et al. Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids Surf B Biointerfaces. 2014;122:175–183.
  • Kevadiya BD, Bajaj HC. The layered silicate, Montmorillonite (MMT) as a drug delivery carrier. Key Eng Mater. 2013;571:111–132.
  • Sabbagh F, Kiarostami K, Khatir NM, et al. Green synthesis of Mg0.99 Zn0.01O nanoparticles for the fabrication of κ-Carrageenan/NaCMC hydrogel in order to deliver catechin. Polymers. 2020;12(4):861.
  • Gao G, Du G, Sun Y, et al. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl Mater Interfaces. 2015;7(8):5029–5037.
  • Reshmi CR, Sundaran SP, Subija T, et al. “Nano in micro” architecture composite membranes for controlled drug delivery. Appl Clay Sci. 2018;166:262–275.
  • Gao W, Guo J. A novel processing method namely fast evaporation mixing to prepare fluoroelastomer/montmorillonite composites. Compos Sci Technol. 2017;139:26–35.
  • Boruah M, Gogoi P, Manhar AK, et al. Biocompatible carboxymethylcellulose-g-poly(acrylic acid)/OMMT nanocomposite hydrogel for in vitro release of vitamin B 12. RSC Adv. 2014;4(83):43865–43873.
  • Benson HAE, Grice JE, Mohammed Y, et al. Topical and transdermal drug delivery: from simple potions to smart technologies. Curr Drug Deliv. 2019;16(5):444–460.
  • Ozay O. Synthesis and swelling behavior of novel ph responsive hydrogels for environmental applications. Polym Plast Technol Eng. 2014;53(2):130–140.
  • Park M, Kim CY, Lee DH, et al. Intercalation of magnesium-urea complex into swelling clay. J Phys Chem Solids. 2004;65(2–3):409–412.
  • Sabbagh F, Khatir NM, Karim AK, et al. Mechanical properties and swelling behavior of acrylamide hydrogels using montmorillonite and kaolinite as clays. J Environ Treat Tech. 2019;7:211–219.
  • Saha K, Dutta K, Basu A, et al. Controlled delivery of tetracycline hydrochloride intercalated into smectite clay using polyurethane nanofibrous membrane for wound healing application. Nano-Struct Nano-Obj. 2020;21:100418.
  • Segad M, Jönsson B, Akesson T, et al. Ca/Na montmorillonite: structure, forces and swelling properties. Langmuir. 2010;26(8):5782–5790.
  • Mansoor I, Hafeli UO, Stoeber B. Hollow out-of-plane polymer microneedles made by solvent casting for transdermal drug delivery. J Microelectromechanical Syst. 2012;21(1):44–52.
  • Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49(4):780–792.
  • Thakur G, Singh A, Singh I. Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin. Int J Pharm Investig. 2016;6(1):23.
  • Laftah WA, Hashim S, Ibrahim AN. Polymer Hydrogels: a Review. Polym Plast Technol Eng. 2011;50(14):1475–1486.
  • Dong J, Cheng Z, Tan S, et al. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin Drug Deliv. 2021;18(6):695–714.
  • Lvov YM, DeVilliers MM, Fakhrullin RF. The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv. 2016;13(7):977–986.
  • Simonton TC, Komarneni S, Roy R. Gelling properties of sepiolite versus montmorillonite. Appl Clay Sci. 1988;3(2):165–176.
  • Pérez Rodríguez JL, Carretero MI, Maqueda C. Behaviour of sepiolite, vermiculite and montmorillonite as supports in anaerobic digesters. Appl Clay Sci. 1989;4(1):69–82.
  • Sivasankarapillai VS, Das SS, Sabir F, et al. Progress in natural polymer engineered biomaterials for transdermal drug delivery systems. Mater Today Chem. 2021;19:100382.
  • Fattahi H, Amani M, Mosaei Oskoei Y, et al. Novel thermal stable polymeric nanocomposite based on poly(ethyl vinyl ether-alt-maleic anhydride) and organo-modified montmorillonite. Polym Compos. 2018;39(11):3889–3895.
  • Londono SC, Hartnett HE, Williams LB. Antibacterial activity of aluminum in clay from the colombian amazon. Environ Sci Technol. 2017;51(4):2401–2408.
  • Tenci M, Rossi S, Aguzzi C, et al. Carvacrol/clay hybrids loaded into in situ gelling films. Int J Pharm. 2017;531(2):676–688.
  • Mahdavinia GR, Mosallanezhad A. Facile and green rout to prepare magnetic and chitosan-crosslinked k -carrageenan bionanocomposites for removal of methylene blue. J Water Process Eng. 2016;10:143–155.
  • Ahsan A, Farooq MA. Therapeutic potential of green synthesized silver nanoparticles loaded PVA hydrogel patches for wound healing. J Drug Deliv Sci Technol. 2019;54:101308.
  • Reza G, Aghaie H, Sheykhloie H, et al. Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym. 2013;98(1):358–365.
  • Farhangi M, Dadashzadeh S, Bolourchian N. Biodegradable gelatin microspheres as controlled release intraarticular delivery system: the effect of formulation variables. Indian J Pharm Sci. 2017;79(1):105–112.
  • Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, et al. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int J Polym Mater Polym Biomater. 2020;69(1):1–20.
  • Zhou Z, He S, Huang T, et al. Preparation of gelatin/hyaluronic acid microspheres with different morphologies for drug delivery. Polym Bull. 2015;72(4):713–723.
  • Varaprasad K, Vimala K, Ravindra S, et al. Development of sodium carboxymethyl cellulose-based poly(acrylamide-co-2acrylamido-2-methyl-1-propane sulfonic acid) hydrogels for in vitro drug release studies of ranitidine hydrochloride an anti-ulcer drug. Polym Plast Technol Eng. 2011;50(12):1199–1207.
  • Lv X, Zhang W, Liu Y, et al. Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/Alginate polyelectrolyte complexes and its application as pH-sensitive delivery system. Carbohydr Polym. 2018;198:86–93.
  • He G, Zhu C, Ye S, et al. Preparation and properties of novel hydrogel based on chitosan modified by poly(amidoamine) dendrimer. Int J Biol Macromol. 2016;91:828–837.
  • Varshosaz J, Sadrai H, Heidari A. Nasal delivery of insulin using bioadhesive chitosan gels. Drug Deliv. 2006;13:31–38.
  • Karimi MH, Mahdavinia GR, Massoumi B, et al. Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T. Int J Biol Macromol. 2018;113:361–375.
  • Akar ST, San E, Akar T. Chitosan – alunite composite : an effective dye remover with high sorption, regeneration and application potential. Carbohydr Polym. 2016;143:318–326.
  • Bayat A, Dorkoosh FA, Dehpour AR, et al. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int J Pharm. 2008;356(1–2):259–266.
  • Zhang Y, Wei W, Lv P, et al. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur J Pharm Biopharm. 2011;77(1):11–19.
  • Saber-Samandari S, Gazi M, Yilmaz E. UV-induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels. Polym Bull. 2011;68(6):1623–1639.
  • Sadighian S, Hosseini-monfared H, Rostamizadeh K, et al. pH-triggered Magnetic-Chitosan Nanogels (MCNs) for doxorubicin delivery : physically vs. chemically cross linking approach. Adv Pharm Bull. 2015;5(1):115–120.
  • Hadebe SI, Ngubane PS, Serumula MR, et al. Transdermal delivery of insulin by amidated pectin hydrogel matrix patch in streptozotocin-induced diabetic rats: effects on some selected metabolic parameters. PLoS one. 2014;9(7):e101461.
  • Aydin AA, Ilberg V. Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: starch blends. Carbohydr Polym. 2016;136:441–448.
  • Okeke OC, Boateng JS. Composite HPMC and sodium alginate based buccal formulations for nicotine replacement therapy. Int J Biol Macromol. 2016;91:31–44.
  • Suksaeree J, Thuengernthong A, Pongpichayasiri K, et al. Formulation and evaluation of matrix type transdermal patch containing silver nanoparticles. J Polym Environ. 2018;26(12):4369–4375.
  • Jabar A, Madni A, Bashir S, et al. Statistically optimized pentazocine loaded microsphere for the sustained delivery application: formulation and characterization. PLoS One. 2021;16(4):e0250876.
  • Tahir MA, Ali ME, Lamprecht A. Nanoparticle formulations as recrystallization inhibitors in transdermal patches. Int J Pharm. 2020;575:118886.
  • Micic M, Suljovrujic E. Network parameters and biocompatibility of p(2-hydroxyethyl methacrylate/itaconic acid/oligo(ethylene glycol) acrylate) dual-responsive hydrogels. Eur Polym J. 2013;49(10):3223–3233.
  • Montoro SR, Medeiros SDF, Alves GM. Chapter 10 - Nanostructured Hydrogels. In: Thomas S, Shanks R, Chandrasekharakurup S, editors. Nanostructured Polymer Blends. Norwich, NY: William Andrew Publishing; 2014. p. 325–355. DOI:10.1016/B978-1-4557-3159-6.00010-9.
  • Turner JG, White LR, Estrela P, et al. Hydrogel-forming microneedles: current advancements and future trends. Macromol Biosci. 2021;21(2):2000307.
  • Hong C, Qi-dan L, Wen-gong Z, et al. Luminescent drug-containing hydrotalcite-like compound as a drug carrier. Chem Eng J. 2012;185–186:358–365.
  • Hasan MM, Uddin MF, Zabin N, et al. Fabrication and characterization of chitosan-polyethylene glycol (CH-Peg) based hydrogels and evaluation of their potency in rat skin wound model. Int J Biomater. 2021;2021:4877344.
  • Kim J, Lee K-W, Hefferan TE, et al. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromolecules. 2008;9(1):149–157.
  • Mohapatra A, Uthaman S, Park I-K. Chapter 10 - polyethylene glycol nanoparticles as promising tools for anticancer therapeutics. In: Kesharwani P, Paknikar KM, Gajbhiye V, editors. Polymeric nanoparticles as a promising tool for anti-cancer therapeutics. Cambridge, Massachusetts: Academic Press; 2019. p. 205–231. DOI:10.1016/b978-0-12-816963-6.00010-8.
  • Pelaz B, Del Pino P, Maffre P, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015;9(7):6996–7008.
  • Nagarwal RC, Kant S, Singh PN, et al. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136(1):2–13.
  • Ramos-diaz JM, Rinnan Å, Jouppila K. Application of NIR imaging to the study of expanded snacks containing amaranth, quinoa and kañiwa. LWT - Food Sci Technol. 2019;102:8–14.
  • Bala P, Jathar S, Kale S, et al. Transdermal Drug Delivery System (TDDS) - A multifaceted approach for drug delivery. J Pharm Res. 2014;8:1805–1835.
  • Ramadan E, Borg T, Abdelghani GM, et al. Design and in vivo pharmacokinetic study of a newly developed lamivudine transdermal patch. Futur J Pharm Sci. 2018;4(2):166–174.
  • Benavent-Gil Y, Rosell CM. Chapter 9 - technological and nutritional applications of starches in gluten-free products. Clerici MTPS, Schmiele M. Cambridge, Massachusetts: Starches for Food Application, Academic Press. 2019. 333–358. DOI: 10.1016/B978-0-12-809440-2.00009-5
  • Rana V, Rai P, Tiwary AK, et al. Modified gums: approaches and applications in drug delivery. Carbohydr Polym. 2011;83(3):1031–1047.
  • Fakharian MH, Tamimi N, Abbaspour H, et al. Effects of κ-carrageenan on rheological properties of dually modified sago starch: towards finding gelatin alternative for hard capsules. Carbohydr Polym. 2015;132:156–163.
  • Asghari F, Samiei M, Adibkia K, et al. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol. 2017;45(2):185–192.
  • Vasilev K, Cook J, Griesser HJ. Antibacterial surfaces for biomedical devices. Expert Rev Med Devices. 2009;6(5):553–567.
  • Vieira IRS, de F de O CL, Dos S MG, et al. Transdermal progesterone delivery study from waterborne poly(urethane-urea)s nanocomposites films based on montmorillonite clay and reduced graphene oxide. J Drug Deliv Sci Technol. 2020;60:101873.
  • Figoli A, Marino T, Galiano F. 2 - polymeric membranes in biorefinery. In: Figoli A, Cassano A, Basile A, editors. Membrane technologies for biorefining. Sawston, Cambridge: Woodhead Publishing; 2016. p. 29–59. DOI:10.1016/B978-0-08-100451-7.00002-5.
  • Kim MH, Park DH, Yang JH, et al. Drug-inorganic-polymer nanohybrid for transdermal delivery. Int J Pharm. 2013;444(1–2):120–127.
  • Ghebaur A, Garea SA, Iovu H. New polymer-halloysite hybrid materials - Potential controlled drug release system. Int J Pharm. 2012;436(1–2):568–573.
  • Dos Santos EC, Rozynek Z, Hansen EL, et al. Ciprofloxacin intercalated in fluorohectorite clay: identical pure drug activity and toxicity with higher adsorption and controlled release rate. RSC Adv. 2017;7(43):26537–26545.
  • Wang X, Du Y, Luo J. Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology. 2008;19(6):065707.
  • Yuan Q, Ramisetti N, Misra RDK. Nanoscale near-surface deformation in polymer nanocomposites. Acta Mater. 2008;56(9):2089–2100.
  • Subedi RK, Ryoo JP, Moon C, et al. Formulation and in vitro evaluation of transdermal drug delivery system for donepezil. J Pharm Investig. 2012;42(1):1–7.
  • Moradi L, Javanmardi S, Abolmaali S, et al. Passive enhancement of transdermal drug delivery: lipid-based colloidal carriers as an emerging pharmaceutical technology platform. Trends Pharm Sci. 2019;5:25–40.
  • Menezes J, da Silva T, Dos Santos J, et al. Layered double hydroxides (LDHs) as carrier of antimony aimed for improving leishmaniasis chemotherapy. Appl Clay Sci. 2014;91–92:127–134.
  • Ye X, Zhan Y, Li T, et al. Pectin based composite nanofabrics incorporated with layered silicate and their cytotoxicity. Int J Biol Macromol. 2016;93:123–130.
  • Li PR, Wei JC, Chiu YF, et al. Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl Mater Interfaces. 2010;2(6):1608–1613.
  • Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R. Nanoclays for Biomedical Applications. Martínez L, Kharissova O, Kharisov B editors. Handbook of Ecomaterials. Springer: Cham. 2018. 1–19. 10.1007/978-3-319-48281-1_50-1
  • Toledano-Magaña Y, Flores-Santos L, Montes De Oca G, et al. Effect of clinoptilolite and sepiolite nanoclays on human and parasitic highly phagocytic cells. Biomed Res Int. 2015;2015:164980.
  • Tarasova E, Naumenko E, Rozhina E, et al. Cytocompatibility and uptake of polycations-modified halloysite clay nanotubes. Appl Clay Sci. 2019;169:21–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.