453
Views
6
CrossRef citations to date
0
Altmetric
Review

Current trends in the use of human serum albumin for drug delivery in cancer

, , ORCID Icon & ORCID Icon
Pages 1449-1470 | Received 15 Jun 2022, Accepted 05 Oct 2022, Published online: 17 Oct 2022

References

  • Zeeshan F, Madheswaran T, Panneerselvam J, et al. Human serum albumin as multifunctional nanocarrier for cancer therapy. J Pharm Sci. 2021;110(9):3111–3117. Internet]. Cited: in: PMID: 33989679.
  • Ryan SM, Brayden DJ. Progress in the delivery of nanoparticle constructs: towards clinical translation. Curr Opin Pharmacol. 2014;18:120–128. DOI:10.1016/j.coph.2014.09.019. Cited: in: PMID: 25450066.
  • Kesharwani P, Xie L, Mao G, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids and Surfaces B: Biointerfaces. 2015;136:413–423. Internet] doi: 10.1016/j.colsurfb.2015.09.043. Cited: in: PMID: 26440757.
  • Choudhury H, Pandey M, Gorain B, et al. 2019. Nanoemulsions as effective carriers for the treatment of lung cancer [Internet]nanotechnology-based target. drug deliv. Syst Lung Cancer Elsevier Inc. 10.1016/B978-0-12-815720-6.00009-5
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39(2):268–307. Internet.
  • Papadakou P, Karlsen TV, Wiig H, et al. Determination of lymph flow in murine oral mucosa using depot clearance of near-infrared-labeled albumin. J Immunol Methods. 2015;425:97–101. Internet. doi: 10.1016/j.jim.2015.06.014. Cited: in: PMID: 26141254.
  • Ellmerer M, Schaupp L, Brunner GA, et al. rapid commun. 2022;352–356.
  • Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 2014AUG;5:1–7. DOI:10.3389/fphys.2014.00299
  • Gawde KA, Kesharwani P, Sau S, et al. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue. J Colloid Interface Sci. 2017;496:290–299. Internet]. doi: 10.1016/j.jcis.2017.01.092. Cited: in:: PMID: 28236692.
  • Kesharwani P, Jain A, Jain A, et al. Cationic bovine serum albumin (CBA) conjugated poly lactic-: co -glycolic acid (PLGA) nanoparticles for extended delivery of methotrexate into brain tumors. RSC Adv. 2016;6(92):89040–89050.
  • Larsen MT, Kuhlmann M, Hvam ML, et al. Albumin-based drug delivery: harnessing nature to cure disease.Mol Cell Ther.2016;4(1):1–12;Internet. Cited: in: PMID: 26925240;
  • Clark ML. Albumin structure, function and uses. Gut. 1978;19(2):159–159.
  • Paál K, Müller J, Hegedûs L. High affinity binding of paclitaxel to human serum albumin. Eur J Biochem. 2001;268(7):2187–2191. Cited: in: PMID: 11277943.
  • Aljabali AAA, Bakshi HA, Hakkim FL, et al. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers (Basel). 2020;12. DOI:10.3390/cancers12010113.
  • Chen H, Wang G, Lang L, et al. Chemical conjugation of evans blue derivative: a strategy to develop long-acting therapeutics through albumin binding. Theranostics. 2016;6(2):243–253. Cited: in: PMID: 26877782.
  • Dockal M, Carter DC, Rüker F. The three recombinant domains of human serum albumin. Structural characterization and ligand binding properties. J Biol Chem. 1999;274(41):29303–29310. Cited: in: PMID: 10506189.
  • He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992;358(6383):209–215.
  • Yang F, Zhang Y, Liang H. Interactive association of drugs binding to human serum albumin. Int J Mol Sci. 2014;15(3):3580–3595. Cited: in: PMID: 24583848.
  • Knudsen Sand KM, Bern M, Nilsen J, et al. Unraveling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front Immunol. 2015;6:1–21. DOI:10.3389/fimmu.2014.00682. Cited: in:: PMID: 25674083.
  • Kratz F, Müller-Driver R, Hofmann I, et al. A novel macromolecular prodrug concept exploiting endogenous serum albumin as a drug carrier for cancer chemotherapy [2]. J Med Chem. 2000;43(7):1253–1256. Cited: in: PMID: 10753462.
  • Kratz F, Warnecke A, Scheuermann K, et al. Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives. Improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J Med Chem. 2002;45(25):5523–5533. Cited: in: PMID: 12459020.
  • Molina-Bolívar JA, Galisteo-González F, Hidalgo-Alvarez R. Specific cation adsorption on protein-covered particles and its influence on colloidal stability. Colloids Surf B Biointerfaces. 2001;21(1–3):125–135.
  • Roche M, Rondeau P, Singh NR, et al. The antioxidant properties of serum albumin. FEBS Lett. 2008;582(13):1783–1787. Cited: in: PMID: 18474236.
  • Pignatta S, Orienti I, Falconi M, et al. Albumin nanocapsules containing fenretinide: pre-clinical evaluation of cytotoxic activity in experimental models of human non-small cell lung cancer. Nanomedicine Nanotechnology, Biol Med. 2015;11:263–273. Internet]. Cited: in:: PMID: 25461293.
  • Elzoghby AO, Elgohary MM, Kamel NM. Implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs [Internet]. 1st ed. Adv Protein Chem Struct Biol Elsevier Inc. 2015. Available from: 10.1016/bs.apcsb.2014.12.002.
  • Kim B, Lee C, Lee ES, et al. Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer. Asian J Pharm Sci. 2016;11:708–714.
  • Tang B, Fang G, Gao Y, et al. Lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel for intracellular drug delivery to C6 glioma cells with P-gp inhibition and its tumor targeting. Asian J Pharm Sci. 2015;10(5):363–371.
  • Lee ES, Youn YS. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J Pharm Investig. 2016;46(4):305–315.
  • Ishima Y, Maruyama T, Otagiri M, et al. The new delivery strategy of albumin carrier utilizing the interaction with albumin receptors. Chem Pharm Bull (Tokyo). 2022;70(5):330–333.
  • Zou Y, Zhou Z, Yin S, et al. DHA-conjugated limonene albumin nanoparticles. 2022;6052–6065. doi: 10.1039/d1nr07767h.
  • Vaz J, Ansari D, Sasor A, et al. SPARC: a potential prognostic and therapeutic target in pancreatic cancer. Pancreas. 2015;44(7):1024–1035. Cited: in: PMID: 26335014.
  • Kumbham S, Paul M, Itoo A, et al. Oleanolic acid-conjugated human serum albumin nanoparticles encapsulating doxorubicin as synergistic combination chemotherapy in oropharyngeal carcinoma and melanoma. Int J Pharm. 2022;614:121479. Internet].doi: 10.1016/j.ijpharm.2022.121479. Cited: in:: PMID: 35041911.
  • Hama M, Ishima Y, Tuan V, et al. Evidence for delivery of abraxane via a denatured-albumin transport system. 2021; doi: 10.1021/acsami.1c03065.
  • Jahanban-Esfahlan A, Dastmalchi S, Davaran S. A simple improved desolvation method for the rapid preparation of albumin nanoparticles. Int J Biol Macromol. 2016;91:703–709. Internet].doi: 10.1016/j.ijbiomac.2016.05.032. Cited: in: PMID: 27177461.
  • Kumari P, Paul M, Bobde Y, et al. Albumin-based lipoprotein nanoparticles for improved delivery and anticancer activity of curcumin for cancer treatment. Nanomedicine. 2020;15(29):2851–2869. Cited: in: PMID: 33275041.
  • Demirkurt B, Cakan-Akdogan G, Akdogan Y. Preparation of albumin nanoparticles in water-in-ionic liquid microemulsions. J Mol Liq. 2019;295:111713. DOI:10.1016/j.molliq.2019.111713. Internet.
  • Miele E, Spinelli GP, Miele E, et al. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99–105. DOI:10.2147/ijn.s3061. Cited: in: PMID: 19516888.
  • Spada A, Emami J, Tuszynski JA, et al. The uniqueness of albumin as a carrier in nanodrug delivery. Mol Pharm. 2021;18(5):1862–1894. Cited: in: PMID: 33787270.
  • Loureiro A, Azoia G, N CGA, et al. Albumin-based nanodevices as drug carriers. Curr Pharm Des. 2016;22(10):1371–1390. Cited: in: PMID: 26806342.
  • Tang B, Qian Y, Gou Y, et al. Ve-albumin core-shell nanoparticles for paclitaxel delivery to treat MDR breast cancer. Molecules. 2018;23(11):1–10. Cited: in: PMID: 30366367.
  • Edelman R, Assaraf YG, Levitzky I, et al. Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy. Oncotarget. 2017;8(15):24337–24353.
  • Battogtokh G, Gotov O, Kang JH, et al. Triphenylphosphine-docetaxel conjugate-incorporated albumin nanoparticles for cancer treatment. Nanomedicine. 2018;13(3):325–338. Cited: in: PMID: 29338573.
  • Battogtokh G, Kang JH, Ko YT. Long-circulating self-assembled cholesteryl albumin nanoparticles enhance tumor accumulation of hydrophobic anticancer drug. Eur J Pharm Biopharm. 2015;96:96–105. Internet]. Cited: in:: PMID: 26212785.
  • Sun Y, Lee RJ, Meng F, et al. Microfluidic self-assembly of high cabazitaxel loading albumin nanoparticles. Biomaterials. 2020;12:16928–16933. DOI:10.1039/c9nr10941b. Cited: in: PMID: 32776029.
  • Hakala TA, Davies S, Toprakcioglu Z, et al. A microfluidic co-flow route for human serum albumin-drug–nanoparticle assembly. Chem - A Eur J. 2020;26(27):5965–5969. Cited: in:: PMID: 32237164.
  • Kazan A, Yesil-Celiktas O, Zhang YS. Fabrication of thymoquinone-loaded albumin nanoparticles by microfluidic particle synthesis and their effect on planarian regeneration. Macromol Biosci. 2019;19(11):1–6. Cited: in: PMID: 31609099.
  • Meng F, Sun Y, Lee RJ, et al. Folate receptor-targeted albumin nanoparticles based on microfluidic technology to deliver cabazitaxel. Cancers (Basel). 2019;11. DOI:10.3390/cancers11101571.
  • Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci. 2015;223:40–54. Internet].doi: 10.1016/j.cis.2015.05.003. Cited: in: PMID: 26043877.
  • Lee SH, Heng D, Ng WK, et al. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy.Int J Pharm.2011;403(1–2):192–200;Internet. Cited: in: PMID: 20951781;
  • Schmid K, Arpagaus C, Friess W. Evaluation of the nano spray dryer B-90 for pharmaceutical applications. Pharm Dev Technol. 2011;16(4):287–294. Cited: in: PMID: 20491538.
  • Heng D, Lee SH, Ng WK, et al. The nano spray dryer B-90. Expert Opin Drug Deliv. 2011;8(7):965–972. Cited: in: PMID: 21675936.
  • Li X, Anton N, Arpagaus C, et al. Nanoparticles by spray drying using innovative new technology: the Büchi Nano spray dryer B-90. J Control Release. 2010;147(2):304–310. Internet. Cited: in: PMID: 20659510.
  • Yamada K, Yamamoto N, Yamada Y, et al. Phase I and pharmacokinetic study of ABI-007, albumin-bound paclitaxel, administered every 3 weeks in Japanese patients with solid tumors. Jpn J Clin Oncol. 2010;40(5):404–411. Cited: in: PMID: 20133335.
  • Loibl S, Untch M, Burchardi N, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol. 2019;30(8):1279–1288. Cited: in: PMID: 31095287.
  • Bando H, Shimodaira H, Fujitani K, et al. A phase II study of nab-paclitaxel in combination with ramucirumab in patients with previously treated advanced gastric cancer. Eur J Cancer. 2018;91:86–91. Internet Cited: in: PMID: 29353164.
  • Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 tria. Lancet. 2020;396(10257):1090–1100. Cited: in: PMID: 32966830.
  • Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(1):44–59. Cited: in:: PMID: 31786121.
  • Yoneshima Y, Morita S, Ando M, et al. Phase 3 trial comparing nanoparticle albumin-bound paclitaxel with docetaxel for previously treated advanced NSCLC. J Thorac Oncol. 2021;16(9):1523–1532. Internet]. Cited: in: PMID: 33915251
  • Shroff RT, Javle MM, Xiao L, et al. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial. JAMA Oncol. 2019;5(6):824–830. Cited: in: PMID: 30998813.
  • Von Hoff DD, Ervin T, Arena FP, et al. Increased Survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–1703. Cited: in: PMID: 24131140. .
  • Goldstein D, El-Maraghi RH, Hammel P, et al. Nab-paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J Natl Cancer Inst. 2015;107(2):1–10. Cited: in: PMID: 25638248.
  • Philip PA, Lacy J, Portales F, et al. Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): a multicentre, open-label phase 2 study. Lancet Gastroenterol Hepatol. 2020;5(3):285–294. Cited: in: PMID: 31953079.
  • Von Hoff DD, Ramanathan RK, Borad MJ, et al. Gemcitabine plus nab -paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol. 2011;29(34):4548–4554. Cited: in: PMID: 21969517.
  • Lobo C, Lopes G, Baez O, et al. Final results of a phase II study of nab-paclitaxel, bevacizumab, and gemcitabine as first-line therapy for patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat. 2010;123(2):427–435. Cited: in:: PMID: 20585851.
  • Dubéa CM, Brewstera AL, Hoda Badr TZB, et al. Massimo cristofanilli and TAR. 基因的改变NIH public access. Bone. 2012;23:1–7. Internet]. Cited: in: PMID: 1000000221.
  • Hamilton E, Kimmick G, Hopkins J, et al. Nab-paclitaxel/bevacizumab/carboplatin chemotherapy in first-line triple negative metastatic breast cancer.Clin Breast Cancer.2013;13(6):416–420;Internet. Cited: in: PMID: 24099649;
  • Forero-Torres A, Varley KE, Abramson VG, et al. TBCRC 019: a phase II trial of nanoparticle albumin-bound paclitaxel with or without the anti-death receptor 5 monoclonal antibody tigatuzumab in patients with triple-negative breast cancer. Clin Cancer Res. 2015;21(12):2722–2729. Cited: in: PMID: 25779953.
  • Mirtsching B, Cosgriff T, Harker G, et al. A phase II study of weekly nanoparticle albumin-bound paclitaxel with or without trastuzumab in metastatic breast cancer. Clin Breast Cancer. 2011;11(2):121–128. Internet.
  • Danso MA, Blum JL, Robert NJ, et al. Phase II trial of weekly nab- paclitaxel in combination with bevacizumab as first-line treatment in metastatic breast cancer. J Clin Oncol. 2008;26(15_suppl):1075.
  • Conlin AK, Hudis CA, Bach A, et al. Randomized phase II trial of nanoparticle albumin-bound paclitaxel in three dosing schedules with bevacizumab as first-line therapy for HER2-negative metastatic breast cancer (MBC). J Clin Oncol. 2009;27(15_suppl):1006.
  • Fabi A, Ferretti G, Malaguti P, et al. Nanoparticle albumin-bound paclitaxel/liposomal-encapsulated doxorubicin in HER2-negative metastatic breast cancer patients. Futur Oncol. 2020;16(22):1631–1639.
  • Tang X, Wang G, Shi R, et al. Enhanced tolerance and antitumor efficacy by docetaxel-loaded albumin nanoparticles.Drug Deliv.2016;23(8):2686–2696;Internet]. Cited: in: PMID: 26004129;
  • Yu Z, Li X, Duan J, et al. Targeted treatment of colon cancer with aptamer-guided albumin nanoparticles loaded with docetaxel. Int J Nanomedicine. 2020;15:6737–6748. Cited: in: PMID: 32982230.
  • Qu N, Sun Y, Li Y, et al. Docetaxel-loaded human serum albumin (HSA) nanoparticles: synthesis, characterization, and evaluation. Biomed Eng Online. 2019;18(1):1–14. Cited: in:: PMID: 30704488.
  • Jin G, Jin M, Jin Z, et al. Docetaxel-loaded PEG-albumin nanoparticles with improved antitumor efficiency against non-small cell lung cancer. Oncol Rep. 2016;36(2):871–876. Cited: in: PMID: 27279008.
  • Jiang S, Gong X, Zhao X, et al. Preparation, characterization, and antitumor activities of folate-decorated docetaxel-loaded human serum albumin nanoparticles. Drug Deliv. 2015;22(2):206–213. Cited: in: PMID: 24471890.
  • Kushwah V, Katiyar SS, Dora CP, et al. Co-delivery of docetaxel and gemcitabine by anacardic acid modified self-assembled albumin nanoparticles for effective breast cancer management. Acta Biomater. 2018;73:424–436. Internet]. Cited: in: PMID: 29649635.
  • Gao J, Jiang S, Zhang X, et al. Preparation, characterization and in vitro activity of a docetaxel–albumin conjugate. Bioorg Chem. 2019;83:154–160. Internet. Cited: in: PMID: 30366315.
  • Psimadas D, Georgoulias P, Valotassiou V, et al. Molecular nanomedicine towards cancer. J Pharm Sci. 2012;101(7):2271–2280.
  • Nateghian N, Goodarzi N, Amini M, et al. Biotin/folate-decorated human serum albumin nanoparticles of docetaxel: comparison of chemically conjugated nanostructures and physically loaded nanoparticles for targeting of breast cancer. Chem Biol Drug Des. 2016;87(1):69–82. Cited: in: PMID: 26216713.
  • Miao FQ, An YL, Yang R, et al. Preparation of DOX/BSANP and its antitumor effect on bel-7404 liver cancer cells in vitro and in vivo. Biomed Mater Eng. 2014;24(1):599–607. Cited: in: PMID: 24211944.
  • Su Z, Xing L, Chen Y, et al. Lactoferrin-modified poly(ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas. Mol Pharm. 2014;11(6):1823–1834. Cited: in: PMID: 24779677.
  • Shen Z, Wei W, Tanaka H, et al. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy.Pharmacol Res.2011;64(4):410–419;Internet]. Cited: in:: PMID: 21723392.
  • Lee H, Jang Y, Park S, et al. Development and evaluation of a CEACAM6-targeting theranostic nanomedicine for photoacoustic-based diagnosis and chemotherapy of metastatic cancer. Theranostics. 2018;8(15):4247–4261. Cited: in:: PMID: 30128051.
  • Kuan SL, Stöckle B, Reichenwallner J, et al. Dendronized albumin core-shell transporters with high drug loading capacity. Biomacromolecules. 2013;14(2):367–376. Cited: in: PMID: 23210662.
  • He YJ, Xing L, Cui PF, et al. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. Biomaterials. 2017;113:266–278. Cited: in:: PMID: 27842254.
  • Ma R, Alifu N, Du Z, et al. Indocyanine green-based theranostic nanoplatform for nir fluorescence image-guided chemo/photothermal therapy of cervical cancer. Int J Nanomedicine. 2021;16:4847–4861. Cited: in: PMID: 34305398.
  • Chen L, Chen F, Zhao M, et al. A redox-sensitive micelle-like nanoparticle self-assembled from amphiphilic adriamycin-human serum albumin conjugates for tumor targeted therapy. Biomed Res Int. 2015; Cited: in:: PMID: 26075280
  • Wu Y, Ihme S, Feuring-Buske M, et al. A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Adv Healthc Mater. 2013;2(6):884–894. Cited: in: PMID: 23225538.
  • Tiwari R, Viswanathan K, Gour V, et al. Cisplatin-loaded albumin nanoparticle and study their internalization effect by using β-cyclodextrin. J Recept Signal Transduct. 2021;41(4):393–400. Internet. Cited: in: PMID: 32900251.
  • Shrikhande SS, Jain DS, Athawale RB, et al. Evaluation of anti-metastatic potential of Cisplatin polymeric nanocarriers on B16F10 melanoma cells. Saudi Pharm J. 2015;23(4):341–351. Internet.
  • Chen D, Tang Q, Xue W, et al. The preparation and characterization of folate-conjugated human serum albumin magnetic cisplatin nanoparticles. J Biomed Res. 2010;24(1):26–32.
  • Chen Y, Wang J, Wang J, et al. Aptamer functionalized cisplatin-albumin nanoparticles for targeted delivery to epidermal growth factor receptor positive cervical cancer. J Biomed Nanotechnol. 2016;12(4):656–666. Cited: in:: PMID: 27301192.
  • Shi H, Cheng Q, Yuan S, et al. Human serum albumin conjugated nanoparticles for ph and redox-responsive delivery of a prodrug of cisplatin. Chem - A Eur J. 2015;21(46):16547–16554. Cited: in: PMID: 26670391.
  • Kushwah V, Agrawal AK, Dora CP, et al. Novel gemcitabine conjugated albumin nanoparticles: a potential strategy to enhance drug efficacy in pancreatic cancer treatment. Pharm Res. 2017;34(11):2295–2311. Cited: in: PMID: 28795274.
  • Han H, Wang J, Chen T, et al. Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment. J Colloid Interface Sci. 2017;507:217–224. Internet. Cited: in: PMID: 28800445.
  • Dubey RD, Alam N, Saneja A, et al. Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine [Internet]. Int J Pharm Elsevier B V. 2015;10.1016/j.ijpharm.2015.07.012
  • Vis A, Van Der Gaast A, Van Rhijn B, et al. A phase II trial of methotrexate-human serum albumin (MTX-HSA) in patients with metastatic renal cell carcinoma who progressed under immunotherapy. Cancer Chemother Pharmacol. 2002;49(4):342–345. Cited: in: PMID: 11914915.
  • Schneeweiss A, Park-Simon TW, Albanell J, et al. Phase Ib study evaluating safety and clinical activity of the anti-HER3 antibody lumretuzumab combined with the anti-HER2 antibody pertuzumab and paclitaxel in HER3-positive, HER2-low metastatic breast cancer. Invest New Drugs. 2018;36(5):848–859. Cited: in: PMID: 29349598.
  • Baird RD, Linossi C, Middleton M, et al. First-in-human phase I study of MP0250, a first-in-class DARPin drug candidate targeting VEGF and HGF, in patients with advanced solid tumors. J Clin Oncol. 2021;39(2):145–154. Cited: in:: PMID: 33301375.
  • Tang Y, Liang J, Wu A, et al. Co-delivery of trichosanthin and albendazole by nano-self-assembly for overcoming tumor multidrug-resistance and metastasis. ACS Appl Mater Interfaces. 2017;9(32):26648–26664. Cited: in:: PMID: 28741923.
  • Kim B, Seo B, Park S, et al. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers. Colloids Surf B Biointerfaces. 2017;158:157–166. Internet]. doi: 10.1016/j.colsurfb.2017.06.039. Cited: in: PMID: 28688365.
  • Desale JP, Swami R, Kushwah V, et al. Chemosensitizer and docetaxel-loaded albumin nanoparticle: overcoming drug resistance and improving therapeutic efficacy. Nanomedicine. 2018;13(21):2759–2776. Cited: in: PMID: 30398388.
  • lin LY, bin MY, Feng C, et al. Dong C yan. Co-delivery of cyclopamine and doxorubicin mediated by bovine serum albumin nanoparticles reverses doxorubicin resistance in breast cancer by down-regulating p-glycoprotein expression. J Cancer. 2019;10(10):2357–2368.
  • Motevalli SM, Eltahan AS, Liu L, et al. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys Rep [Internet. 2019;5(1):19–30.
  • Zhao P, Yin W, Wu A, et al. Dual-targeting to cancer cells and M2 macrophages via biomimetic delivery of mannosylated albumin nanoparticles for drug-resistant cancer Therapy. Adv Funct Mater. 2017;27:1–15.
  • Kayani Z, Firuzi O, Bordbar AK. Doughnut-shaped bovine serum albumin nanoparticles loaded with doxorubicin for overcoming multidrug-resistant in cancer cells. Int J Biol Macromol. 2018;107:1835–1843. Internet]. doi: 10.1016/j.ijbiomac.2017.10.041. Cited: in: PMID: 29030194.
  • Onafuye H, Pieper S, Mulac D, et al. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J Nanotechnol. 2019;10:1707–1715.
  • Choi SH, Byeon HJ, Choi JS, et al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J Control Release. 2015;197:199–207. Internet. doi: 10.1016/j.jconrel.2014.11.008. Cited: in: PMID: 25445703.
  • Bae S, Ma K, Kim TH, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types.Biomaterials.2012;33(5):1536–1546;Internet. Cited: in:: PMID: 22118776;
  • Gad SF, Park J, Park JE, et al. Enhancing docetaxel delivery to multidrug-resistant cancer cells with albumin-coated nanocrystals. Mol Pharm. 2018;15(3):871–881.
  • Lian H, Wu J, Hu Y, et al. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int J Nanomedicine. 2017;12:7777–7787. DOI:10.2147/IJN.S144634. Cited: in:: PMID: 29123392.
  • Gaca S, Reichert S, Rödel C, et al. Survivin-miRNA-loaded nanoparticles as auxiliary tools for radiation therapy: preparation, characterisation, drug release, cytotoxicity and therapeutic effect on colorectal cancer cells. J Microencapsul. 2012;29(7):685–694. Cited: in:: PMID: 22703230.
  • Liu L, Bi Y, Zhou M, et al. Biomimetic human serum albumin nanoparticle for efficiently targeting therapy to metastatic breast cancers. ACS Appl Mater Interfaces. 2017;9(8):7424–7435. Cited: in:: PMID: 28150932.
  • Chen Q, Chen J, Liang C, et al. Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. J Control Release. 2017;263:79–89. Internet]. Cited: in: PMID: 27840167.
  • Guo Z, Wang F, Di Y, et al. Antitumor effect of gemcitabine-loaded albumin nanoparticle on gemcitabine-resistant pancreatic cancer induced by low hENT1 expression. Int J Nanomedicine. 2018;13:4869–4880. Cited: in: PMID: 30214194.
  • Wang C, Shieh M, Chen K. The synergistic effect of hyperthermia and chemotherapy in magnetite nanomedicine-based lung cancer treatment. International Journal of Nanomedicine. 2020;15:10331–10347.
  • Taheri A, Dinarvand R, Ahadi F, et al. The in vivo antitumor activity of LHRH targeted methotrexate – human serum albumin nanoparticles in 4T1 tumor-bearing Balb/c mice. Int J Pharm. 2012;431(1–2):183–189. Internet.
  • Taheri A, Dinarvand R, Atyabi F, et al. European Journal of Pharmaceutical Sciences Trastuzumab decorated methotrexate – human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells. Eur J Pharm Sci. 2012;47(2):331–340. Internet.
  • Taheri A, Dinarvand R, Nouri FS, et al. Use of biotin targeted methotrexate – human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy. Int J Nanomedicine. 2011;6:1863–1874.
  • Jain S, Mathur R, Das M, et al. Synthesis, pharmacoscintigraphic evaluation and antitumor efficacy of methotrexate-loaded, folate-conjugated, stealth albumin nanoparticles. Nanomedicine. 2011;6(10):1733–1754.
  • Chen Z, Luo Z, Lyu J, et al. Preparation and formulation optimization of methotrexate-loaded human serum albumin nanoparticles modified by mannose. Curr Med Chem. 2021;28(24):5016–5029.
  • Vysyaraju NR, Paul M, Ch S, et al. Olaparib @ human serum albumin nanoparticles as sustained drug-releasing tumour-targeting nanomedicine to inhibit growth and metastasis in the mouse model of triple-negative breast cancer. J Drug Target. 2022;0:1–18. DOI:10.1080/1061186X.2022.2092623. Internet.
  • Ming Y, Li B, Fu R, et al. Bovine serum albumin nanoparticle-mediated delivery of sorafenib for improving hepatocellular carcinoma therapy. J Nanosci Nanotechnol. 2021;21(10):5075–5082.
  • Dong C, Li B, Li Z, et al. Dasatinib-loaded albumin nanoparticles possess diminished endothelial cell barrier disruption and retain potent anti- leukemia cell activity. Oncotarget. 2016;7(31):49699–49709.
  • Kratz F. DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials. Expert Opinion on Investigational Drugs. 2007;16(6):855–866.
  • Kratz F, Ehling G, Kauffmann H, et al. Human & experimental toxicology acute and repeat-dose toxicity studies of the (6-maleimidocaproyl) hydrazone derivative binding prodrug of the anticancer agent doxorubicin. 2007.
  • Unger C, Ha B, Medinger M, et al. Cancer therapy : clinical phase i and pharmacokinetic study of the (6-maleimidocaproyl) hydrazone derivative of Doxorubicin. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research. 2007;13(16):4858–4866.
  • Cheng Z, Huang Y, Shao P, et al. Hypoxia-activated albumin-binding exatecan prodrug for cancer therapy. 2022;1–8. doi: 10.1021/acsomega.1c05671.
  • Woo S, Seok B, Byun J, et al. Albumin-binding caspase-cleavable prodrug that is selectively activated in radiation exposed local tumor. Biomaterials. 2016;94:1–8. DOI:10.1016/j.biomaterials.2016.03.043. Internet.
  • Cho H, Shim MK, Yang S, et al. Cathepsin B-overexpressed tumor cell activatable albumin- Binding Doxorubicin Prodrug for Cancer-Targeted Therapy. 2022;1–13.
  • Unger C, Saleem T, Elsadek B, et al. Optimization of an albumin-binding prodrug of doxorubicin that is cleaved by prostate-specific antigen. 2010;234–238. doi: 10.1021/ml100060m.
  • Wei W, He Z, Yang J, et al. Cytosine arabinoside prodrug designed to bind plasma serum albumin for drug delivery. Drug Delivery and Translational Research. 2018;8(5):1162–1170.
  • Lee S, Kwon JA, Park KH, et al. Controlled drug release with surface-capped mesoporous silica nanoparticles and its label-free in situ Raman monitoring. Eur J Pharm Biopharm. 2018;131:232–239. Internet]. doi: 10.1016/j.ejpb.2018.08.012. Cited: in:: PMID: 30165104
  • Zhang J, Shen B, Chen L, et al. A dual-sensitive mesoporous silica nanoparticle based drug carrier for cancer synergetic therapy. Colloids Surf B Biointerfaces. 2019;175:65–72. Internet]. doi: 10.1016/j.colsurfb.2018.11.071. Cited: in: PMID: 30522009.
  • Fang J, Wang Q, Yang G, et al. Albumin-MnO 2 gated hollow mesoporous silica nanosystem for modulating tumor hypoxia and synergetic therapy of cervical carcinoma. Colloids Surf B Biointerfaces. 2019;179:250–259. Internet. doi: 10.1016/j.colsurfb.2019.03.070. Cited: in: PMID: 30978612.
  • Xia B, Zhang W, Shi J, et al. A novel strategy to fabricate doxorubicin/bovine serum albumin/porous silicon nanocomposites with pH-triggered drug delivery for cancer therapy in vitro. J Mater Chem B. 2014;2(32):5280–5286.
  • Quan Q, Xie J, Gao H, et al. HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm. 2011;8(5):1669–1676. Cited: in: PMID: 21838321 .
  • Villar-Alvarez E, Cambón A, Pardo A, et al. Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules. J Nanobiotechnology. 2019;17:1–19. Internet]. Cited: in: PMID: 31615570
  • Kim D, Park S, Yoo H, et al. Overcoming anticancer resistance by photodynamic therapy-related efflux pump deactivation and ultrasound-mediated improved drug delivery efficiency. Nano Converg. 2020;7(1):Internet. DOI:10.1186/s40580-020-00241-8.
  • Gu W, Zhang T, Gao J, et al. Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma. Drug Deliv. 2019;26(1):918–927. Internet. Cited: in: PMID: 31526064.
  • Croissant JG, Zhang D, Alsaiari S, et al. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J Control Release. 2016;229:183–191. DOI:10.1016/j.jconrel.2016.03.030. Internet.
  • Zhu W, Fu D, Di Y. Triple-functional albumin-based nanoparticles for combined chemotherapy and photodynamic therapy of pancreatic cancer with lymphatic metastases. International Journal of Nanomedicine. 2017;12:6771–6785.
  • Wang J, Wu W, Zhang Y, et al. The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors.Biomaterials.2014;35(2):866–878;Internet]. Cited: in: PMID: 24157313
  • Wang J, Zhang Z, Wang X, et al. Size- and pathotropism-driven targeting and washout-resistant effects of boronic acid-rich protein nanoparticles for liver cancer regression.J Control Release.2013;168(1):1–9;Internet. Cited: in:: PMID: 23459020;
  • Pulakkat S, Balaji SA, Rangarajan A, et al. Surface engineered protein nanoparticles with hyaluronic acid based multilayers for targeted delivery of anticancer agents. ACS Appl Mater Interfaces. 2016;8(36):23437–23449.
  • Shen Z, Li Y, Kohama K, et al. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.Pharmacol Res. 2011;63(1):51–58.
  • Mizuta Y, Maeda H, Ishima Y, et al. A mannosylated, PEGylated albumin as a drug delivery system for the treatment of cancer stroma cells. Adv Func Materials. 2021;31(43):2104136.
  • Iqbal H, Yang T, Li T, et al. Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release. 2021;329:997–1022. DOI:10.1016/j.jconrel.2020.10.030. Internet.
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–183. https://doi.org/10.1016/j.jconrel.2008.05.010. PMID: 18582981.
  • Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev Royal Society of Chemistry. 2016;
  • Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J Control Release.2012;161(2):429–445;Internet]. Cited: in: PMID: 22155554;
  • Kouchakzadeh H, Safavi MS, Shojaosadati SA. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles [Internet. 1st ed.] Adv Protein Chem Struct Biol. Elsevier Inc. 2015. Available from: 10.1016/bs.apcsb.2014.11.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.