384
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances on small molecular gels: formation mechanism and their application in pharmaceutical fields

, , , , , , , ORCID Icon & show all
Pages 1597-1617 | Received 11 Jun 2022, Accepted 17 Oct 2022, Published online: 23 Nov 2022

References

  • Flory PJ. Introductory lecture. Faraday Discuss Chem Soc. 1974;57:7–18.
  • Appel E, Barrio J, Xian J, et al. Supramolecular polymeric hydrogels. Chem Soc Rev. 2012;41(18):6195–6214.
  • Dastidar P. Designing supramolecular gelators: challenges, frustrations, and hopes. Gels. 2019;5(1):15.
  • Mayr J, Saldías C, Díaz DD. Release of small bioactive molecules from physical gels. Chem Soc Rev. 2018;47(4):1484–1515.
  • Feng X, Luo Y, Li F, et al. Development of natural-drugs-based low-molecular-weight supramolecular gels. Gels. 2021;7(3):105.
  • Morris J, Bietsch J, Bashaw K, et al. Recently developed carbohydrate based gelators and their applications. Gels. 2021;7(1):24.
  • Echeverria C, Fernandes S, Godinho M, et al. Functional stimuli-responsive gels: hydrogels and microgels. Gels. 2018;4(2):54.
  • Zhang Y, Song Q, Tian Y, et al. Insights into biomacromolecule-based alcogels: a review on their synthesis, characteristics and applications. Food Hydrocolloid. 2022;128:107574.
  • Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery. Adv Healthc Mater. 2021;10(1):2001341.
  • Raeburn J, Zamith CA, Adams DJ. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev. 2013;42(12):5143–5156.
  • Zhang J, Zeng L, Feng J, et al. Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers. Chin Chem Lett. 2017;28(2):168–183.
  • Abdalla K, Lee W. Physicochemical properties and the gelation process of supramolecular hydrogels: a review. Gels. 2017;3(1):1.
  • Inukai K, Takiyama K, Noguchi S, et al., Effect of gel formation on the dissolution behavior of clarithromycin tablets. Int J Pharm. 2017;521(1–2):33–39.
  • Han J, Li L, Pang Z, et al. Mechanistic insight into gel-induced aggregation of amorphous curcumin during dissolution process. Eur J Pharm Sci. 2022;170:106083.
  • Zheng J, Fan R, Wu H, et al., Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat Commun. 2019;10(1):1604.
  • Ramin MA, Sindhu KR, Appavoo A, et al. Cation tuning of supramolecular gel properties: a new paradigm for sustained drug delivery. Adv Mater. 2017;29(13):1605227.
  • Zhang K, Zhou L, Chen F, et al. Injectable gel self-assembled by paclitaxel itself for in situ inhibition of tumor growth. J Control Release. 2019;315:197–205.
  • Khan F, Atif M, Haseen M, et al. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B. 2022;10:170–203.
  • Li A, Si Y, Wang X, et al. Poly(vinyl alcohol) nanocrystal-assisted hydrogels with high toughness and elastic modulus for three-dimensional printing. ACS Appl Nano Mater. 2019;2(2):707–715.
  • Cok M, Viola M, Vecchies F, et al. N-isopropyl chitosan. A pH- and thermo-responsive polysaccharide for gel formation. Carbohydr Polym. 2020;230:115641.
  • Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev. 2004;104(3):1201–1218.
  • Suzuki M, Abe T, Hanabusa K. Low-molecular-weight gelators based on N(alpha)-acetyl-N(epsilon)-dodecyl-L-lysine and their amphiphilic gelation properties. J Colloid Interface Sci. 2010;341(1):69–74.
  • Yan N, Xu Z, Diehn KK, et al. How do liquid mixtures solubilize insoluble gelators? Self-assembly properties of pyrenyl-linker-glucono gelators in tetrahydrofuran-water mixtures. J Am Chem Soc. 2013;135(24):8989–8999.
  • Bag BG, Majumdar R. Vesicular self-assembly of a natural triterpenoid arjunolic acid in aqueous medium: study of entrapment properties and in situ generation of gel-gold nanoparticle hybrid material. RSC Adv. 2014;4(95):53327–53334.
  • Liu W, Thomopoulos S, Xia Y. Soft fibrillar materials: fabrication and applications. New Jersey: Wiley-VCH; 2013.
  • Zhang Z, Yang M, Hu C, et al. Correlation between gel-forming ability, supramolecular aggregates and main-chain conformation of dendronized polymer gelators. New J Chem. 2011;35(1):103–110.
  • Zhou C, Gao W, Yang K, et al. A novel glucose/pH responsive low-molecular-weight organogel of easy recycling. Langmuir. 2013;29(44):13568–13575.
  • Wu S, Zhang Q, Deng Y, et al. Assembly pattern of supramolecular hydrogel induced by lower critical solution temperature behavior of low-molecular-weight gelator. J Am Chem Soc. 2020;142(1):448–455.
  • Zhang Q, Dong S, Zhang M, et al. Supramolecular control over thermo‐responsive systems with lower critical solution temperature behavior. Aggregate. 2021;2(1):35–47.
  • Zhang K, Xue K, Loh XJ. Thermo-responsive hydrogels: from recent progress to biomedical applications. Gels. 2021;7(3):77.
  • Svobodová H, Noponen V, Kolehmainen E, et al. Recent advances in steroidal supramolecular gels. RSC Adv. 2012;2(12):4985–5007.
  • Cao X, Meng L, Li Z, et al. Large red-shifted fluorescent emission via intermolecular π-π stacking in 4-ethynyl-1,8-naphthalimide-based supramolecular assemblies. Langmuir. 2014;30(39):11753–11760.
  • Madl CM, Heilshorn SC. Rapid Diels-Alder cross-linking of cell encapsulating hydrogels. Chem Mater. 2019;31(19):8035–8043.
  • Mukherjee S, Hill MR, Sumerlin BS. Self-healing hydrogels containing reversible oxime crosslinks. Soft Matter. 2015;11(30):6152–6161.
  • Perera MM, Ayres N. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polym Chem. 2020;11(8):1410–1423.
  • Liu X. Gelation with small molecules: from formation mechanism to nanostructure architecture. Top Curr Chem. 2005;256:1–37. .
  • Liu X, Sawant PD, Tan W, et al. Creating new supramolecular materials by architecture of three-dimensional nanocrystal fiber networks. J Am Chem Soc. 2002;124(50):15055–15063
  • Liu XY, Sawant PD. Micro/nanoengineering of the self-organized three-dimensional fibrous structure of functional materials. Angew Chem Int Ed Engl. 2002;41(19):3641–3645.
  • Wang R, Liu X, Xiong J, et al. Real-time observation of fiber network formation in molecular organogel: supersaturation-dependent microstructure and its related rheological property. J Phys Chem B. 2006;110(14):7275–7280.
  • Fages F. Low molecular mass gelators: design, self-assembly, function. Berlin Heidelberg: Springer-Verlag; 2005.
  • Pang Z, Wei Y, Wang N, et al. Gel formation of puerarin and mechanistic study during its cooling process. Int J Pharm. 2018;548(1):625–635.
  • Raeburn J, Mendoza-Cuenca C, Cattoz BN, et al. The effect of solvent choice on the gelation and final hydrogel properties of fmoc-diphenylalanine. Soft Matter. 2015;11(5):927–935.
  • Adams DJ, Butler MF, Frith WJ, et al. A new method for maintaining homogeneity during liquid-hydrogel transitions using low molecular weight hydrogelators. Soft Matter. 2009;5(9):1856–1862.
  • Qian S, Wang S, Li Z, et al., Charge-assisted bond N(+)H mediates the gelation of amorphous lurasidone hydrochloride during dissolution. Int J Pharm. 2017;518(1–2):335–341.
  • Chen X, Li D, Zhang H, et al. Sinomenine-phenolic acid coamorphous drug systems: solubilization, sustained release, and improved physical stability. Int J Pharm. 2021;598:120389.
  • Chen X, Li D, Zhang H, et al. Co-amorphous systems of sinomenine with nonsteroidal anti-inflammatory drugs: a strategy for solubility improvement, sustained release, and drug combination therapy against rheumatoid arthritis. Int J Pharm. 2021;606:120894.
  • Heng W, Wei Y, Xue Y, et al. Gel formation induced slow dissolution of amorphous indomethacin. Pharm Res. 2019;36(11):159. .
  • Hamaura T, Kusai A, Nishimura K. Gel formation of cefpodoxime proxetil. S.T.P. Pham Sci. 1995;5:324–331.
  • Pokharkar VB, Mandpe LP, Padamwar MN, et al. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol. 2006;167(1):20–25.
  • Meulenaar J, Beijnen JH, Schellens JH, et al. Slow dissolution behaviour of amorphous capecitabine. Int J Pharm. 2013;441(1–2):213–217.
  • George M, Weiss RG. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res. 2006;39(8):489–497.
  • Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471–477.
  • Andronis V, Zografi G. Molecular mobility of supercooled amorphous indomethacin, determined by dynamic mechanical analysis. Pharm Res. 1997;14(4):410–414.
  • Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603–616.
  • Su M, Pang Z, Li L, et al. Charge-assisted bond and molecular self-assembly drive the gelation of lenvatinib mesylate. Int J Pharm. 2021;607:121019.
  • Jones DS, Woolfson AD, Brown AF. Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int J Pharm. 1997;151(2):223–233.
  • Lu Z, Fassihi R. Influence of colloidal silicon dioxide on gel strength, robustness, and adhesive properties of diclofenac gel formulation for topical application. AAPS Pharmscitech. 2015;16(3):636–634.
  • Tian R, Chen J, Niu R. The development of low-molecular weight hydrogels for applications in cancer therapy. Nanoscale. 2014;6(7):3474–3482.
  • Khan F, Das S. Modified low molecular weight pure and engineered gels: a review of strategies towards their development. ChemistrySelect. 2022;7(26):e202200205.
  • Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37(8):1473–1481.
  • Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications. J Control Release. 2018;271:1–20.
  • Tutar R, Motealleh A, Khademhosseini A, et al. Functional nanomaterials on 2D surfaces and in 3D nanocomposite hydrogels for biomedical applications. Adv Funct Mater. 2019;29(46):1904344.
  • Jia Y, Wei Z, Zhang S, et al. Instructive hydrogels for primary tumor cell culture: current status and outlook. Adv Healthc Mater. 2022;11(12):2102479.
  • Mantha S, Pillai S, Khayambashi P, et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials. 2019;12(20):3323.
  • Crowther RS, Marriott C, James SL. Cation induced changes in the rheological properties of purified mucus glycoprotein gels. Biorheology. 1984;21(1–2):253–263.
  • Mezger TG. The rheology handbook: for users of rotational and oscillatory rheometers. Hannover: Vincentz network; 2002.
  • Marcotte M, Hoshahili AR, Ramaswamy HS. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res Int. 2001;34(8):695–703.
  • Marcotte M, Taherian AR, Trigui M, et al. Evaluation of rheological properties of selected salt enriched food hydrocolloids. J Food Eng. 2001;48(2):157–167.
  • Farahnaky A, Askari H, Majzoobi M, et al. The impact of concentration, temperature and pH on dynamic rheology of psyllium gels. J Colloid Interface Sci. 2010;100:294–301.
  • Adhikari B, Howes T, Bhandari BR, et al. Stickiness in foods: a review of mechanisms and test methods. Int J Biol Macromol. 2001;4:1–33.
  • Heng W, Wei Y, Zhou S, et al. Effects of temperature and ionic strength of dissolution medium on the gelation of amorphous lurasidone hydrochloride. Pharm Res. 2019;36(5):72.
  • Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Maters. 2016;1:16071.
  • Mewis J, Wagner NJ. Thixotropy. Adv Colloid Interface Sci. 2009;147-148:214–227.
  • Creton C. 50th anniversary perspective: networks and gels: soft but dynamic and tough. Macromolecules. 2017;50(21):8297–8316.
  • Zhi K, Wang J, Zhao H, et al. Self-assembled small molecule natural product gel for drug delivery: a breakthrough in new application of small molecule natural products. Acta Pharm Sin B. 2020;10(5):913–927.
  • Yuan J, Fang X, Zhang L, et al. Multi-responsive self-healing metallo-supramolecular gels based on “click” ligand. J Mater Chem. 2012;22(23):11515–11522.
  • Liao J, Hou B, Huang H. Preparation, properties and drug controlled release of chitin-based hydrogels: an updated review. Carbohyd Polym. 2022;283:119177.
  • Pellá MCG, Lima-Tenório MK, Tenório-Neto ET, et al. Chitosan-based hydrogels: from preparation to biomedical applications. Carbohyd Polym. 2018;196:233–245.
  • Liao J, Dai H, Huang H. Construction of hydrogels based on the homogeneous carboxymethylated chitin from Hericium erinaceus residue: role of carboxymethylation degree. Carbohyd Polym. 2021;262:117953.
  • Skopinska-Wisniewska J, De la Flor S, Kozlowska J. From supramolecular hydrogels to multifunctional carriers for biologically active substances. Int J Mol Sci. 2021;22(14):7402.
  • Cao S, Fu X, Wang N, et al. Release behavior of salicylic acid in supramolecular hydrogels formed by L-phenylalanine derivatives as hydrogelator. Int J Pharm. 2008;357(1–2):95–99.
  • Iwanaga K, Kawai M, Miyazaki M, et al. Application of organogels as oral controlled release formulations of hydrophilic drugs. Int J Pharm. 2012;436(1–2):869–872.
  • Li W. Supramolecular nanofiber-reinforced puerarin hydrogels as drug carriers with synergistic controlled release and antibacterial properties. J Mater Sci. 2020;55(15):6669–6677.
  • Elsawy MA, Wychowaniec JK, Castillo Díaz LA, et al. Controlling doxorubicin release from a peptide hydrogel through fine-tuning of drug–peptide fiber interactions. Biomacromolecules. 2022;23(6):2624–2634.
  • Kaith BS, Singh A, Sharma AK, et al. Hydrogels: synthesis, classification, properties and potential applications-a brief review. J Polym Environ. 2021;29(12):3827–3841.
  • Yang X, Wang Q, Zhang A, et al. Strategies for sustained release of heparin: a review. Carbohyd Polym. 2022;294:119793.
  • Zhang K, Feng Q, Fang Z, et al. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics. Chem Rev. 2021;121(18):11149–11193.
  • Gu D, O’Connor AJ, Qiao GGH, et al. Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin Drug Deliv. 2017;14(7):879–895.
  • Wu C, Wang C, Zheng Y, et al. Triple enzyme‐regulated molecular hydrogels for carrier‐free delivery of lonidamine. Adv Funct Mater. 2021;31(42):2104418.
  • Weiss RG. Preface to the molecular and polymer gels; materials with self-assembled fibrillar networks special issue. Langmuir. 2009;25(15):8369.
  • Yu G, Yan X, Han C, et al. Characterization of supramolecular gels. Chem Soc Rev. 2013;42(16):6697–6722.
  • Friedman HH, Whitney JE, Szczesniak AS. The texturometer-a new instrument for objective texture measurement. J Food Sci. 1963;28(4):390–396.
  • Hermansson AM, Buchheim W. Characterization of protein gels by scanning and transmission electron microscopy a methodology study of soy protein gels. J Colloid Interface Sci. 1981;81(2):519–530.
  • Drenth J, Mesters J. In principles of protein X-ray crystallography. New York: Springlink; 2007.
  • Toma AC, Pfohl T. Small-Angle X-Ray scattering (SAXS) and Wide-Angle X-Ray scattering (WAXS) of supramolecular assemblies. New Jersey: Wiley-VCH; 2012. p. 437–450.
  • Kikhney AG, Svergun DI. A practical guide to Small Angle X-ray Scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 2015;589(19PartA):2570–2577.
  • Kumar NS, Varghese S, Narayan G, et al. Hierarchical self-assembly of donor-acceptor-substituted butadiene amphiphiles into photoresponsive vesicles and gels. Angew Chem Int Ed Engl. 2006;45(38):6317–6321.
  • Sukul PK, Malik S. Supramolecular hydrogels of adenine: morphological, structural and rheological investigations. Soft Matter. 2011;7(9):4234–4241.
  • Yu J, Ha W, Sun J, et al. Supramolecular hybrid hydrogel based on host-guest interaction and its application in drug delivery. ACS Appl Mater Interfaces. 2014;6(22):19544–19551.
  • Hisaki I, Shigemitsu H, Sakamoto Y, et al. Octadehydrodibenzo[12]annulene-based organogels: two methyl ester groups prevent crystallization and promote gelation. Angew Chem Int Ed Engl. 2009;48(30):5465–5469.
  • Piepenbrock MO, Lloyd GO, Clarke N, et al. Metal- and anion-binding supramolecular gels. Chem Rev. 2010;110(4):1960–2004.
  • Li J, Liu X. Architecture of supramolecular soft functional materials: from understanding to micro‐/nanoscale engineering. Adv Funct Mater. 2010;20(19):3196–3216.
  • Brasseur A, Michaux B, Pirard R, et al. Rheological characterization of BaTiO3 sol-gel transition. J Sol-Gel Sci Techn. 1997;9(1):5–15.
  • Liu X, Sawant PD. Formation kinetics of fractal nanofiber networks in organogels. Appl Phys Lett. 2001;79(21):3518–3520.
  • Edwards W, Lagadec CA, Smith DK. Solvent-gelator interactions-using empirical solvent parameters to better understand the self-assembly of gel-phase materials. Soft Matter. 2011;7(1):110–117.
  • Lü S, Gao C, Xu X, et al. Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation. ACS Appl Mater Interfaces. 2015;7(23):13029–13037.
  • Yin L, Fei L, Cui F, et al. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials. 2007;28(6):1258–1266.
  • Yang Z, Gu H, Zhang Y, et al. Small molecule hydrogels based on a class of antiinflammatory agents. Chem Comm. 2004;2(2):208–209.
  • Qi Z, de Molina PM, Jiang W, et al. Systems chemistry: logic gates based on the stimuli-responsive gel-sol transition of a crown ether-functionalized bis(urea) gelator. Chem Sci. 2012;3(6):2073–2082.
  • Clemente MJ, Fitremann J, Mauzac M, et al. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators. Langmuir. 2011;27(24):15236–15247.
  • Huang Y, Paul DR. Effect of molecular weight and temperature on physical aging of thin glassy poly(2,6‐dimethyl‐1,4‐phenylene oxide) films. J Polym Sci Part B: Polym Phys. 2010;45(12):1390–1398.
  • Nakagaki T, Harano A, Fuchigami Y, et al. Formation of nanoporous fibers by the self‐assembly of a pyromellitic diimide‐based macrocycle. Angew Chem Int Ed. 2010;49(50):9676–9679.
  • Hwang I, Jeon WS, Kim HJ, et al. Cucurbit[7]uril: a simple macrocyclic, pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior. Angew Chem Int Ed Engl. 2007;46(1–2):210–213.
  • Yabuuchi K, Marfo-Owusu E, Kato T. A new urea gelator: incorporation of intra- and intermolecular hydrogen bonding for stable 1D self-assembly. Org Biomol Chem. 2003;1(19):3464–3469.
  • Allix F, Curcio P, Pham QN, et al. Evidence of intercolumnar π-π stacking interactions in amino-acid-based low-molecular-weight organogels. Langmuir. 2010;26(22):16818–16827.
  • Birchall LS, Roy S, Jayawarna V, et al. Exploiting CH-π interactions in supramolecular hydrogels of aromatic carbohydrate amphiphiles. Chem Sci. 2011;2(7):1349–1355.
  • Osada Y, Kajiwara K. Gels handbook: the fundamentals. New York: Elsevier; 2000.
  • Sáez JA, Escuder B, Miravet JF. Selective catechol-triggered supramolecular gel disassembly. Chem Comm. 2010;46(42):7996–7998.
  • Wittenberg JB, Isaacs L. Supramolecular chemistry: from molecules to nanomaterials. New Jersey: Wiley; 2012.
  • Abdeltawab H, Svirskis D, Sharma M. Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert Opin Drug Deliv. 2020;17(4):495–509.
  • Al-Kinani AA, Zidan G, Elsaid N, et al. Ophthalmic gels: past, present and future. Adv Drug Deliv Rev. 2018;126:113–126.
  • Okur N, Yağcılar AP, Siafaka PI. Promising polymeric drug carriers for local delivery: the case of in situ gels. Curr Drug Deliv. 2020;17(8):675–693.
  • Russo E, Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics. 2019;11(12):671.
  • Yu C, Yao F, Li J. Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomater. 2021;139:4–21.
  • Liu Q, Zhan C, Barhoumi A, et al. A supramolecular shear-thinning anti-inflammatory steroid hydrogel. Adv Mater. 2016;28(31):6680–6686.
  • Christoff-Tempesta T, Lew AJ, Ortony JH. Beyond covalent crosslinks: applications of supramolecular gels. Gels. 2018;4(2):40.
  • Limón D, Amirthalingam E, Rodrigues M, et al. Novel nanostructured supramolecular hydrogels for the topical delivery of anionic drugs. Eur J Pharm Biopharm. 2015;96:421–436.
  • Kang L, Liu X, Sawant PD, et al. SMGA gels for the skin permeation of haloperidol. J Control Release. 2005;106(1–2):88–98.
  • Lim PF, Liu X, Kang L, et al. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int J Pharm. 2006;311(1–2):157–164.
  • Wei W, Li H, Yin C, et al. Research progress in the application of in situ hydrogel system in tumor treatment. Drug Deliv. 2020;27(1):460–468.
  • Patel SS, Acharya A, Ray RS, et al. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr. 2020;60(6):887–939.
  • Yang C, Wang Z, Ou C, et al. A supramolecular hydrogelator of curcumin. Chem Commun. 2014;50(66):9413–9415.
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351.
  • Skilling KJ, Citossi F, Bradshaw TD, et al. Insights into low molecular mass organic gelators: a focus on drug delivery and tissue engineering applications. Soft Matter. 2013;10(2):237–256.
  • Saunders L, Ma PX. Self-healing supramolecular hydrogels for tissue engineering applications. Macromol Biosci. 2019;19(1):1800313.
  • Yang C, Li D, Liu Z, et al. Responsive small molecular hydrogels based on adamantane-peptides for cell culture. J Phys Chem B. 2012;116(1):633–638.
  • Heng W, Su M, Cheng H, et al. Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride. Mol Pharm. 2020;17(1):84–97.
  • Guo M, Sun X, Chen J, et al. Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537–2564.
  • Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B. 2019;9(1):19–35.
  • Liu J, Grohganz H, Löbmann K, et al. Co-amorphous drug formulations in numbers: recent advances in co-amorphous drug formulations with focus on co-formability, molar ratio, preparation methods, physical stability, in vitro and in vivo performance, and new formulation strategies. Pharmaceutics. 2021;13(3):389.
  • Wang S, Heng W, Wang X, et al. Coamorphization combined with complexation enhances dissolution of lurasidone hydrochloride and puerarin with synchronized release. Int J Pharm. 2020;588:119793.
  • Vasconcelos T, Marques S, Das Neves J, et al. Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev. 2016;100:85–101.
  • Pandi P, Bulusu R, Kommineni N, et al. Amorphous solid dispersions: an update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm. 2020;586:119560.
  • Law D, Krill SL, Schmitt EA, et al. Physicochemical considerations in the preparation of amorphous ritonavir-poly(ethylene glycol) 8000 solid dispersions. J Pharm Sci. 2001;90(8):1015–1025.
  • Furitsu H, Suzuki Y. Inventor; Hasegawa Y, assignee. Medical composition. Japan patent WO2006030826A1. 2005 March 23.
  • Yamashita H, Sun CC. Material-sparing and expedited development of a tablet formulation of carbamazepine glutaric acid cocrystal- a QbD approach. Pharm Res. 2020;37(8):153.
  • Gao Y, Qian S, Zhang J. Physicochemical and pharmacokinetic characterization of a spray-dried cefpodoxime proxetil nanosuspension. Chem Pharm Bull. 2010;58(7):912–917.
  • Peters GM, Davis JT. Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs. Chem Soc Rev. 2016;45(11):3188–3206.
  • Song Z, Liu H, Shen J, et al. A molecular hydrogel of a camptothecin derivative. Biomater Sci. 2013;1(2):190–193.
  • Su H, Wang F, Wang Y, et al. Macrocyclization of a class of camptothecin analogues into tubular supramolecular polymers. J Am Chem Soc. 2019;141(43):17107–17111.
  • Schiapparelli P, Zhang P, Lara-Velazquez M, et al. Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. J Control Release. 2020;319:311–321.
  • Martino E, Della Volpe S, Terribile E, et al. The long story of camptothecin: from traditional medicine to drugs. Bioorg Med Chem Lett. 2017;27(4):701–707.
  • Inukai K, Noguchi S, Kimura SI, et al. Stabilization mechanism of roxithromycin tablets under gastric pH conditions. J Pharm Sci. 2018;107(9):2514–2518.
  • Granata G, Petralia S, Forte G, et al. Injectable supramolecular nanohydrogel from a micellar self-assembling calix[4]arene derivative and curcumin for a sustained drug release. Mater Sci Eng C Mater Biol Appl. 2020;111:110842.
  • Fan J, Zhong H, Zhang X, et al. Preparation and characterization of oleanolic acid-based low-molecular-weight supramolecular hydrogels induced by heating. ACS Appl Mater Interfaces. 2021;13:29130–29136.
  • Bag BG, Dash SS. Self-assembly of sodium and potassium betulinates into hydro- and organo-gels: entrapment and removal studies of fluorophores and synthesis of gel-gold nanoparticle hybrid materials. RSC Adv. 2016;6(21):17290–17296.
  • Wu J, Lu J, Hu J, et al. Self-assembly of sodium glycyrrhetinate into a hydrogel: characterisation and properties. RSC Adv. 2013;3(47):24906–24909.
  • Bag BG, Paul K. Vesicular and fibrillar gels by self-assembly of nanosized oleanolic acid. Asian J Org Chem. 2012;1(2):150–154.
  • Bag BG, Majumdar R. Self-assembly of a renewable nano-sized triterpenoid 18β-glycyrrhetinic acid. RSC Adv. 2012;2(23):8623–8626.
  • Bag BG, Dash SS. First self-assembly study of betulinic acid, a renewable nano-sized, 6-6-6-6-5 pentacyclic monohydroxy triterpenic acid. Nanoscale. 2011;3(11):4564–4566.
  • Lu J, Wu X, Liu L, et al. First organogelation study of ursolic acid, a natural ursane triterpenoid. Chem Lett. 2016;45(8):860–862.
  • Zhi K, Zhao H, Yang X, et al. Natural product gelators and a general method for obtaining them from organisms. Nanoscale. 2018;10(8):3639–3643.
  • Wang J, Bao J, Fan X, et al. pH-Switchable vitamin B(9) B 9 gels for stoichiometry-controlled spherical co-crystallization. Chem Commun. 2016;52(92):13452–13455.
  • Fujiki S, Iwao Y, Kobayashi M, et al. Stabilization mechanism of clarithromycin tablets under gastric pH conditions. Chem Pharm Bull. 2011;59(5):553–558.
  • Tiller JC. Increasing the local concentration of drugs by hydrogel formation. Angew Chem Int Ed Engl. 2003;42(27):3072–3075.
  • Xing B, Yu C, Chow K, et al. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc. 2002;124(50):14846–14847.
  • Hayakawa E, Furuya K, Kuroda T, et al. Studies on the dissolution behavior of doxorubicin hydrochloride freeze-dried product. Chem Pharm Bull. 2008;38(12):3434–3439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.