247
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Design and evaluation of chrysin-loaded nanoemulsion against lithium/pilocarpine-induced status epilepticus in rats; emphasis on formulation, neuronal excitotoxicity, oxidative stress, microglia polarization, and AMPK/SIRT-1/PGC-1α pathway

ORCID Icon, , , , , , , , , , , , , & ORCID Icon show all
Pages 159-174 | Received 10 Jun 2022, Accepted 21 Nov 2022, Published online: 12 Dec 2022

References

  • Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet. 2019;393(10172):689–701.
  • Peng Y, Chen L, Qu Y, et al. Rosiglitazone prevents autophagy by regulating Nrf2-antioxidant response element in a rat model of lithium-pilocarpine-induced status epilepticus. Neuroscience. 2021;455:212–222.
  • Vezzani A, Fujinami RS, White HS, et al. Infections, inflammation and epilepsy. Acta Neuropathol. 2016;131(2):211–234.
  • Trinka E, Cock H, Hesdorffer D, et al. A definition and classification of status epilepticus–Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015;56(10):1515–1523.
  • Lopez-Meraz M-L, Niquet J, Wasterlain CG. Distinct caspase pathways mediate necrosis and apoptosis in subpopulations of hippocampal neurons after status epilepticus. Epilepsia. 2010;51(s3):56–60.
  • Semple B, Dill L, O’Brien T. Immune challenges and seizures: how do early life insults influence epileptogenesis? Front Pharmacol. 2020;11:2.
  • Kumar D, Singh J, Baghotia A, et al. Anticonvulsant effect of the ethanol extract of Caesalpinia pulcherrima (L.) Sw., Fabaceae, leaves. Rev Bras Farmacogn. 2010;20(5):751–755.
  • Ahmed J II, Che Has AT. The evolution of the pilocarpine animal model of status epilepticus. Heliyon. 2020;6(7):e04557.
  • Brandt C, Bankstahl M, Töllner K, et al. The pilocarpine model of temporal lobe epilepsy: marked intrastrain differences in female Sprague-Dawley rats and the effect of estrous cycle. Epilepsy Behav. 2016;61:141–152.
  • Borowicz-Reutt KK, Czuczwar SJ. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol Rep. 2020;72(5):1218–1226.
  • Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: from pathogenesis to treatment target. Seizure. 2020;82:65–79.
  • Gülçin İ. Antioxidant activity of food constituents: an overview. Arch Toxicol. 2012;86(3):345–391.
  • Cetin Cakmak K, Gülçin İ. Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicol Rep. 2019;6:1273–1280.
  • Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94(3):651–715.
  • Liu J, Wang A, Li L, et al. Oxidative stress mediates hippocampal neuron death in rats after lithium-pilocarpine-induced status epilepticus. Seizure. 2010;19(3):165–172.
  • Hanada T. Ionotropic glutamate receptors in epilepsy: a review focusing on AMPA and NMDA receptors. Biomolecules. 2020;10:464.
  • Yang CS, Chiu SC, Liu PY, et al. Gastrodin alleviates seizure severity and neuronal excitotoxicities in the rat lithium-pilocarpine model of temporal lobe epilepsy via enhancing GABAergic transmission. J Ethnopharmacol. 2021;269:113751.
  • Luo W, Xu Q, Wang Q, et al. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Sci Rep. 2017;7:44612.
  • Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal. 2014;20(2):353–371.
  • Prabitha P, Justin A, Ananda Kumar TD, et al. Glitazones activate PGC-1α signaling via PPAR-γ: a promising strategy for antiparkinsonism therapeutics. ACS Chem Neurosci. 2021;12(13):2261–2272.
  • Rius-Pérez S, Torres-Cuevas I, Millán I, et al. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid Med Cell Longev. 2020;2020:1452696.
  • Kaarniranta K, Kajdanek J, Morawiec J, et al. PGC-1α protects RPE Cells of the aging retina against oxidative stress-induced degeneration through the regulation of senescence and mitochondrial quality control. the significance for AMD pathogenesis. Int J Mol Sci. 2018;19(8):2317.
  • Ashrafizadeh M, Mirzaei S, Hushmandi K, et al. Therapeutic potential of AMPK signaling targeting in lung cancer: advances, challenges and future prospects. Life Sci. 2021;278:119649.
  • Shi H-J, Xu C, Liu M-Y, et al. Resveratrol improves the energy sensing and glycolipid metabolism of blunt snout bream megalobrama amblycephala fed high-carbohydrate diets by activating the AMPK–SIRT1–PGC-1α network. Front Physiol. 2018;9:1258.
  • Entezari M, Hashemi D, Taheriazam A, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: a pre-clinical and clinical investigation. Biomed Pharmacother. 2022;146:112563.
  • Talebi M, Talebi M, Farkhondeh T, et al. An updated review on the versatile role of chrysin in neurological diseases: chemistry, pharmacology, and drug delivery approaches. Biomed Pharmacother. 2021;141:111906.
  • Rashno M, Ghaderi S, Nesari A, et al. Chrysin attenuates traumatic brain injury-induced recognition memory decline, and anxiety/depression-like behaviors in rats: insights into underlying mechanisms. Psychopharmacology (Berl). 2020;237(6):1607–1619.
  • Vedagiri A, Thangarajan S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25–35 induced oxidative stress in rat hippocampal region: an efficient formulation approach for Alzheimer’s disease. Neuropeptides. 2016;58:111–125.
  • Çelik H, Kucukler S, Çomaklı S, et al. Neuroprotective effect of chrysin on isoniazid-induced neurotoxicity via suppression of oxidative stress, inflammation and apoptosis in rats. Neurotoxicology. 2020;81:197–208.
  • Komath S, Garg A, Wahajuddin M. Development and evaluation of Chrysin-Phospholipid complex loaded solid lipid nanoparticles - storage stability and in vitro anti-cancer activity. J Microencapsul. 2018;35(6):600–617.
  • Walle T, Otake Y, Brubaker JA, et al. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br J Clin Pharmacol. 2001;51(2):143–146.
  • Ibrahim SS, Abo Elseoud OG, Mohamedy MH, et al. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways. Neuropharmacology. 2021;197:108738.
  • Sharma T, Katare OP, Jain A, et al. QbD-Steered development of biotin-conjugated nanostructured lipid carriers for oral delivery of chrysin: role of surface modification for improving biopharmaceutical performance. Colloids Surf B Biointerfaces. 2021;197:111429.
  • Cunha S, Forbes B, Sousa Lobo JM, et al. Improving drug delivery for alzheimer’s disease through nose-to-brain delivery using nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ hydrogels. Int J Nanomedicine. 2021;16:4373–4390.
  • Bayanati M, Khosroshahi AG, Alvandi M, et al. Fabrication of a thermosensitive in situ gel nanoemulsion for nose to brain delivery of temozolomide. J Nanomater. 2021;2021:1546798.
  • Kumar M, Misra A, Babbar AK, et al. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm. 2008;358(1):285–291.
  • Ismail A, Nasr M, Sammour O. Nanoemulsion as a feasible and biocompatible carrier for ocular delivery of travoprost: improved pharmacokinetic/pharmacodynamic properties. Int J Pharm. 2020;583:119402.
  • Nasr M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv. 2016;23(4):1444–1452.
  • Kaur A, Nigam K, Srivastava S, et al. Memantine nanoemulsion: a new approach to treat Alzheimer’s disease. J Microencapsul. 2020;37(5):355–365.
  • Lalani J, Baradia D, Lalani R, et al. Brain targeted intranasal delivery of tramadol: comparative study of microemulsion and nanoemulsion. Pharm Dev Technol. 2015;20(8):992–1001.
  • Ahmad N, Ahmad R, Alam MA, et al. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int J Biol Macromol. 2016;88:320–332.
  • Kim KS, Shin JS, Park Y, et al. High-performance liquid chromatographic analysis of chrysin derivatives on a Nova-Pak C18 column. Arch Pharm Res. 2002;25(5):613–616.
  • Prajit R, Sritawan N, Suwannakot K, et al. Chrysin protects against memory and hippocampal neurogenesis depletion in d-galactose-induced aging in rats. Nutrients. 2020;12(4):1100.
  • Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32(3):281–294.
  • George MY, Menze ET, Esmat A, et al. Potential therapeutic antipsychotic effects of Naringin against ketamine-induced deficits in rats: involvement of Akt/GSK-3β and Wnt/β-catenin signaling pathways. Life Sci. 2020;249:117535.
  • Ayoub IM, George MY, Menze ET, et al. Insights into the neuroprotective effects of Salvia officinalis L. and Salvia microphylla Kunth in the memory impairment rat model. Food Funct. 2022;13(4):2253–2268.
  • Ghafouri S, Fathollahi Y, Javan M, et al. Effect of low frequency stimulation on impaired spontaneous alternation behavior of kindled rats in Y-maze test. Epilepsy Res. 2016;126:37–44.
  • Horobin RW. How do histological stains work? In: Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. Sixth ed. Edinburgh: Churchill Livingstone; 2008. p. 105–119.
  • Zagrodzka J, Wieczorek M, Romaniuk A. Social interactions in rats: behavioral and neurochemical alterations in DSP-4-treated rats. Netherlands: Elsevier Science; 1994. p. 541–548.
  • Ellman GL, Courtney KD, Andres Jr, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.
  • Topal M, Gocer H, Topal F, et al. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L.). J Enzyme Inhib Med Chem. 2016;31(2):266–275.
  • Taslimi P, Gulçin İ. Antioxidant and anticholinergic properties of olivetol. Journal of Food Biochem. 2018;42(3):e12516.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–888.
  • Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46(2):849–854.
  • Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta. 1978;90(1):37–43.
  • Curia G, Longo D, Biagini G, et al. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172(2):143–157.
  • Jiang Y, Liu C, Zhai W, et al. The optimization design of lactoferrin loaded hupa nanoemulsion for targeted drug transport via intranasal route. Int J Nanomedicine. 2019;14:9217–9234.
  • Mallick A, Gupta A, Hussain A, et al. Intranasal delivery of gabapentin loaded optimized nanoemulsion for augmented permeation. J Drug Delivery Sci Technol. 2020;56:101606.
  • Gardouh AR, Nasef AM, Mostafa Y, et al. Design and evaluation of combined atorvastatin and ezetimibe optimized self- nano emulsifying drug delivery system. J Drug Delivery Sci Technol. 2020;60:102093.
  • Ahmad E, Feng Y, Qi J, et al. Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale. 2017;9(3):1174–1183.
  • Shah B, Khunt D, Misra M, et al. Non-invasive intranasal delivery of quetiapine fumarate loaded microemulsion for brain targeting: formulation, physicochemical and pharmacokinetic consideration. Eur J Pharm Sci. 2016;91:196–207.
  • Chatterjee B, Gorain B, Mohananaidu K, et al. Targeted drug delivery to the brain via intranasal nanoemulsion: available proof of concept and existing challenges. Int J Pharm. 2019;565:258–268.
  • Bshara H, Osman R, Mansour S, et al. Chitosan and cyclodextrin in intranasal microemulsion for improved brain buspirone hydrochloride pharmacokinetics in rats. Carbohydr Polym. 2014;99:297–305.
  • Mehrandish S, Mirzaeei S. Design of novel nanoemulsion formulations for topical ocular delivery of itraconazole: development, characterization and in vitrobioassay. Adv Pharm Bull. 2021;12:93–101.
  • Sun C, Li W, Ma P, et al. Development of TPGS/F127/F68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137:111126.
  • Kumar M, Misra A, Mishra AK, et al. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target. 2008;16(10):806–814.
  • Szumała P, Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int J Pharm. 2022;615:121488.
  • Gulati N, Kumar Chellappan D, Tambuwala M, et al. Oral nanoemulsion of fenofibrate: formulation, characterization, and in vitro drug release studies. Assay Drug Dev Technol. 2021;19(4):246–261.
  • Sarkaki A, Farbood Y, Mansouri SMT, et al. Chrysin prevents cognitive and hippocampal long-term potentiation deficits and inflammation in rat with cerebral hypoperfusion and reperfusion injury. Life Sci. 2019;226:202–209.
  • Houser CR, Esclapez M. Downregulation of the alpha5 subunit of the GABA(A) receptor in the pilocarpine model of temporal lobe epilepsy. Hippocampus. 2003;13(5):633–645.
  • Nejatbakhsh M, Saboory E, Bagheri M. Effect of prenatal stress on ɑ5 GABA(A) receptor subunit gene expression in hippocampus and pilocarpine induced seizure in rats. Int J Dev Neurosci. 2018;68:66–71.
  • Rodríguez-Landa JF, Guillén-Ruiz G, Hernández-López F, et al. Chrysin reduces anxiety-like behavior through actions on GABAA receptors during metestrus-diestrus in the rat. Behav Brain Res. 2021;397:112952.
  • Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: opportunities for novel therapeutics development. Biochem Pharmacol. 2021;193:114786.
  • González-Reyes S, Santillán-Cigales JJ, Jiménez-Osorio AS, et al. Glycyrrhizin ameliorates oxidative stress and inflammation in hippocampus and olfactory bulb in lithium/pilocarpine-induced status epilepticus in rats. Epilepsy Res. 2016;126:126–133.
  • Lumley L, Niquet J, Marrero-Rosado B, et al. Treatment of acetylcholinesterase inhibitor-induced seizures with polytherapy targeting GABA and glutamate receptors. Neuropharmacology. 2021;185:108444.
  • Dubey V, Dey S, Dixit AB, et al. Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe and neocortex in a pilocarpine model of temporal lobe epilepsy. Exp Neurol. 2022;347:113916.
  • Meller S, Brandt C, Theilmann W, et al. Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy. Brain Res. 2019;1712:109–123.
  • Gnatek Y, Zimmerman G, Goll Y, et al. Acetylcholinesterase loosens the brain’s cholinergic anti-inflammatory response and promotes epileptogenesis. Front Mol Neurosci. 2012;5:66.
  • Taslimi P, Kandemir F, Demir Y, et al. The antidiabetic and anticholinergic effects of chrysin oncyclophosphamide‐induced multiple organ toxicity in rats:Pharmacological evaluation of some metabolic enzymeactivities. J Biochem Mol Toxicol. 2019;33:e22313.
  • Campos HM, da Costa M, da Silva Moreira LK, et al. Protective effects of chrysin against the neurotoxicity induced by aluminium: in vitro and in vivo studies. Toxicology. 2022;465:153033.
  • Youssef FS, Menze ET, Ashour ML. A potent lignan from prunes alleviates inflammation and oxidative stress in lithium/pilocarpine-induced epileptic seizures in rats. Antioxidants (Basel). 2020;9(7):575.
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438.
  • Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287–293.
  • Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15(1):71.
  • Kandemir FM, Kucukler S, Eldutar E, et al. Chrysin Protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: a multi-biomarker approach. Sci Pharm. 2017;85(1):4.
  • Wang A, Si Z, Li X, et al. FK506 attenuated pilocarpine-induced epilepsy by reducing inflammation in rats. Front Neurol. 2019;10:971.
  • Castaneda OA, Lee SC, Ho CT, et al. Macrophages in oxidative stress and models to evaluate the antioxidant function of dietary natural compounds. J Food Drug Anal. 2017;25(1):111–118.
  • Feng X, Qin H, Shi Q, et al. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ. Biochem Pharmacol. 2014;89(4):503–514.
  • George MY, Esmat A, Tadros MG, et al. In vivo cellular and molecular gastroprotective mechanisms of chrysin; Emphasis on oxidative stress, inflammation and angiogenesis. Eur J Pharmacol. 2018;818:486–498.
  • Watts ME, Pocock R, Claudianos C. Brain energy and oxygen metabolism: emerging role in normal function and disease. Front Mol Neurosci. 2018;11:216.
  • Tian L, Cao W, Yue R, et al. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J Pharmacol Sci. 2019;139(4):352–360.
  • Zhou YJ, Xu N, Zhang XC, et al. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant hepg2 cells and HFD/STZ-induced C57BL/6J mice. J Agric Food Chem. 2021;69(20):5618–5627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.