273
Views
1
CrossRef citations to date
0
Altmetric
Review

Magnetic nanoparticles: multifunctional tool for cancer therapy

, , , , &
Pages 189-204 | Received 06 May 2022, Accepted 05 Jan 2023, Published online: 16 Jan 2023

References

  • Rosiere R, Van Woensel M, Gelbcke M, et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharm. 2018 Mar 5;15(3):899–910.
  • Liebow PNPJBL. Inventor Magnetic nanoparticles for selective therapy 2001.
  • Jia L, Zhang P, Sun H, et al. Optimization of nanoparticles for smart drug delivery: a review. Nanomaterials. 2021 Oct 21;11(11):2790.
  • Wei J, Shuai X, Wang R, et al. Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. Biomaterials. 2017;145:138–153.
  • Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int Journal Nanomedicine. 2017;12:7291–7309.
  • Kalubowilage M, Janik K, Bossmann SH. Magnetic nanomaterials for magnetically-aided drug delivery and hyperthermia. Appl Sci. 2019;9(14):2927.
  • Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol. 2017 Nov;7(5):738–746.
  • Chang D, Lim M, Goos J, et al. Biologically Targeted magnetic hyperthermia: potential and limitations. Front Pharmacol. 2018;9:831.
  • Liu JF, Jang B, Issadore D, et al. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;Nov;11(6):e1571.
  • Khizar S, Ahmad NM, Zine N, et al. Magnetic nanoparticles: from synthesis to theranostic applications. ACS Appl Nano Mater. 2021;4(5):4284–4306.
  • Gunn MZKW. Inventor magnetic nanoparticle compositions and methods 2006.
  • Price PM, Mahmoud WE, Al-Ghamdi AA, et al. Magnetic drug delivery: where the field is going. Front Chem. 2018;6:619.
  • Mylkie K, Nowak P, Rybczynski P, et al. Polymer-coated magnetite nanoparticles for protein immobilization. Materials. 2021 Jan 6;14(2):248.
  • Hormes CLSSRKH. Inventor in vivo imaging and therapy with magnetic nanoparticle conjugates 2009.
  • Materón EM, Miyazaki CM, Carr O, et al. Magnetic nanoparticles in biomedical applications: a review. Appl Surf Sci Adv. 2021;6:100163.
  • Gordon RT. Inventor Cancer treatment method 1976.
  • Gordon RT. Inventor Use of magnetic susceptibility probes in the treatment of cancer 1983.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017 Jan;17(1):20–37.
  • Schladt TD, Schneider K, Schild H, et al. Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans. 2011 Jun 28;40(24):6315–6343.
  • Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008 Aug 17;60(11):1252–1265.
  • Stephen MZOP. Inventor Glypican-3 targeting of liver cancer cells using multifunctional nanoparticles 2012.
  • Moros M, Idiago-Lopez J, Asin L, et al. Triggering antitumoural drug release and gene expression by magnetic hyperthermia. Adv Drug Deliv Rev. 2019 1; 138(138): 326–343.
  • Baghban R, Afarid M, Soleymani J, et al. Were magnetic materials useful in cancer therapy? Biomed Pharmacother. 2021 Dec;144:112321.
  • Navya PN, Kaphle A, Srinivas SP, et al. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019 Jul 15;6(1):23.
  • Zhu K, Ju Y, Xu J, et al. Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc Chem Res. 2018 Feb 20;51(2):404–413.
  • Mukherjee S, Liang L, Veiseh O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics. 2020 Feb 11; 12(2):147.
  • Mosayebi J, Kiyasatfar M, Laurent S Dec. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv Healthc Mater. 2017;6:23.
  • Uebe R, Schuler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016 Sep 13;14(10):621–637.
  • Tong S, Quinto CA, Zhang L, et al. Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano. 2017 Jul 25;11(7):6808–6816.
  • Yoshida S, Duong C, Oestergaard M, et al. MXD3 antisense oligonucleotide with superparamagnetic iron oxide nanoparticles: a new targeted approach for neuroblastoma. Nanomedicine. 2020;24:102127.
  • Ali A, Shah T, Ullah R, et al. Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications. Front Chem. 2021;9:629054.
  • Angelakeris M. Magnetic nanoparticles: a multifunctional vehicle for modern theranostics. Biochim Biophys Acta Gen Sub. 2017 Jun;1861(6):1642–1651.
  • Ferreira M, Sousa J, Pais A, et al. The Role of Magnetic Nanoparticles in Cancer Nanotheranostics. Materials. 2020 Jan 7;Vol. 13(2):266.
  • Ulbrich K, Hola K, Subr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016 May 11;116(9):5338–5431.
  • Xie W, Guo Z, Gao F, et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018;8(12):3284–3307.
  • Hosu T. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry. 2019;5(4):55.
  • Fatima H, Charinpanitkul T, Kim KS. Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials. 2021 May 1;11(5):1203.
  • Shen Z, Chen T, Ma X, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS nano. 2017 Nov 28;11(11):10992–11004.
  • Hu Y, Mignani S, Majoral JP, et al. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev. 2018 Mar 5;47(5):1874–1900.
  • Zhou Q, Wei Y. For better or worse, iron overload by superparamagnetic iron oxide Nanoparticles as a MRI contrast agent for chronic liver diseases. Chem Res Toxicol. 2017 Jan 17;30(1):73–80.
  • Fraum TJ, Ludwig DR, Bashir MR, et al. Gadolinium-based contrast agents: a comprehensive risk assessment. J Mag Res Imaging. 2017 Aug;46(2):338–353.
  • van Zandwijk JK, Simonis FFJ, Heslinga FG, et al. Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI. PloS one. 2021;16(8):e0256252.
  • Yang H, Wang H, Wen C, et al. Effects of iron oxide nanoparticles as T2-MRI contrast agents on reproductive system in male mice. J Nanobiotechnol. 2022 March 02;20(1):98.
  • Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (Kidlington). 2016 Apr;19(3):157–168.
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperther. 2008 Sep;24(6):467–474.
  • Stetter MKW. Inventor Dynamic superparamagnetic markers 2001.
  • Nafiujjaman M, Revuri V, Nurunnabi M, et al. Photosensitizer conjugated iron oxide nanoparticles for simultaneous in vitro magneto-fluorescent imaging guided photodynamic therapy. Chem Commun. 2015 Apr 4;51(26):5687–5690.
  • Soetaert F, Korangath P, Serantes D, et al. Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv Drug Deliv Rev. 2020;163-164:65–83.
  • Espinosa A, Di Corato R, Kolosnjaj-Tabi J, et al. Duality of Iron Oxide Nanoparticles in Cancer Therapy: amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano. 2016 Feb 23;10(2):2436–2446.
  • Janko C, Ratschker T, Nguyen K, et al. Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy. Front Oncol. 2019;9:59.
  • Musielak M, Piotrowski I, Suchorska WM. Superparamagnetic iron oxide nanoparticles (SPIONs) as a multifunctional tool in various cancer therapies. Rep Prac Oncol Radiother. 2019 Jul-Aug;24(4):307–314.
  • Rameshkumar C, Gayathri R, Subalakshmi R. Synthesis and characterization of undopped bismuth ferrite oxide nanoparticles for the application of cancer treatment. Mater Today. 2021;43:3662–3665.
  • Shahbazi MA, Faghfouri L, Ferreira MPA, et al. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev. 2020 Feb 21;49(4):1253–1321.
  • Badrigilan S, Shaabani B, Gharehaghaji N, et al. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: ”Three-in-one” theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagnosis Photodyn Ther. 2019;25:504–514.
  • Mdlovu NV, Lin K-S, Mavuso FA, et al. Preparation, characterization, and in-vitro studies of doxorubicin-encapsulated silica coated iron oxide nanocomposites on liver cancer cells. J Taiwan Inst Chem Eng. 2020;117:190–197.
  • Fathy MM, Fahmy HM, Saad OA, et al. Silica-coated iron oxide nanoparticles as a novel nano-radiosensitizer for electron therapy. Life Sci. 2019 Oct;1(234):116756.
  • Dheyab MA, Aziz AA, Jameel MS, et al. Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications. Chin J Phys. 2020;64:305–325.
  • Ghaznavi H, Hosseini-Nami S, Kamrava SK, et al. Folic acid conjugated PEG coated gold-iron oxide core-shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1594–1604.
  • Yin NQ, Wu P, Yang TH, et al. Preparation and study of a mesoporous silica-coated Fe3O4 photothermal nanoprobe. RSC Adv. 2017;7(15):9123–9129.
  • Jana TK, Jana SK, Kumar A, et al. The antibacterial and anticancer properties of zinc oxide coated iron oxide nanotextured composites. Colloids Surf B Biointerfaces. 2019 May;1(177):512–519.
  • Ali R, Aziz MH, Gao S, et al. Graphene oxide/zinc ferrite nanocomposite loaded with doxorubicin as a potential theranostic mediu in cancer therapy and magnetic resonance imaging. Ceram Int. 2022;48(8):10741–10750.
  • Gonzalez-Rodriguez R, Campbell E, Naumov A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PloS one. 2019;14(6):e0217072.
  • Narayanaswamy V, Obaidat IM, Kamzin AS, et al. Synthesis of graphene oxide-Fe3O4 Based Nanocomposites Using the mechanochemical method and in vitro magnetic hyperthermia. Int J Mol Sci. 2019 July 9;20:13.
  • Niu Z, Murakonda GK, Jarubula R, et al. Fabrication of Graphene oxide-Fe3O4 nanocomposites for application in bone regeneration and treatment of leukemia. J Drug Deliv Sci Technol. 2021;63:102412.
  • Sharma H, Mondal S. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int J Mol Sci. 2020 Aug 30;21(17):6280.
  • Malhotra N, Lee JS, Liman RAD, et al. Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules. 2020 Jul 10;25(14):3159.
  • Zhi D, Yang T, Yang J, et al. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 2020 Jan;15(102):13–34.
  • Li X, Li W, Wang M, et al. Magnetic nanoparticles for cancer theranostics: advances and prospects. J Control Release. 2021 Jul 10;335:437–448.
  • Kent VAVDDVCMAB, Inventor magnetically responsive compositions for carrying biologically active substances and methods of production and use 2005.
  • Mrowczynski R, Jedrzak A, Szutkowski K, et al. Cyclodextrin-based magnetic nanoparticles for cancer therapy. Nanomaterials. 2018 Mar 16;8(3):170.
  • Jedrzak A, Grzeskowiak BF, Golba K, et al. Magnetite Nanoparticles and Spheres for Chemo- and Photothermal Therapy of Hepatocellular Carcinoma in vitro. Int J Nanomed. 2020;15:7923–7936.
  • Jędrzak A, Grześkowiak BF, Coy E, et al. Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitro. Colloids Surf B Biointerfaces. 2019 [2019/01/01];173:698–708.
  • Wang L, Liang L, Shi S, et al. Study on the application of doxorubicin-loaded magnetic nanodrugs in targeted therapy of liver cancer. Appl Bionics Biomechan. 2022;2022:2756459.
  • Ramezani Farani M, Azarian M. Heydari Sheikh, Hossein H, et al. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer. ACS Appl Bio Mater. 2022 Mar 21;5(3):1305–1318.
  • Jeon M, Lin G, Stephen ZR, et al. Paclitaxel‐loaded iron oxide nanoparticles for targeted breast cancer therapy. Adv Therapeutics. 2019;2(12):1900081.
  • Taheri-Ledari R, Zhang W, Radmanesh M, et al. Multi-stimuli nanocomposite therapeutic: docetaxel targeted delivery and synergies in treatment of human breast cancer tumor. Small. 2020 Oct;16(41):e2002733.
  • Sadr SH, Davaran S, Alizadeh E, et al. PLA-based magnetic nanoparticles armed with thermo/pH responsive polymers for combination cancer chemotherapy. J Drug Deliv Sci Technol. 2018;45:240–254.
  • Cheng HW, Tsao HY, Chiang CS, et al. Advances in magnetic nanoparticle-mediated cancer immune-theranostics. Adv Healthc Mater. 2021 Jan;10(1):e2001451.
  • Chiang CS, Lin YJ, Lee R, et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol. 2018 Aug;13(8):746–754.
  • Zhang F, Lu G, Wen X, et al. Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy. J Control Release. 2020 10;Oct(326):131–139.
  • Jiang Q, Wang K, Zhang X, et al. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small. 2020 Jun;16(22):e2001704.
  • Bocanegra Gondan AI, Ruiz-de-Angulo A, Zabaleta A, et al. Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles. Biomaterials. 2018;170:95–115.
  • Wu X, Cheng Y, Zheng R, et al. Immunomodulation of tumor microenvironment by arginine-loaded iron oxide nanoparticles for gaseous immunotherapy. ACS Appl Mater Interfaces. 2021 May 5;13(17):19825–19835.
  • Périgo EA, Hemery G, Sandre O, et al. Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev. 2015;2(4):041302.
  • Zhu H. Inventor targeted nanoparticle drug for magnetic hyperthermia treatment on malignant tumors 2011.
  • Gavilan H, Avugadda SK, Fernandez-Cabada T, et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev. 2021 Oct 18;50(20):11614–11667.
  • Kubovcikova M, Koneracka M, Strbak O, et al. Poly-L-lysine designed magnetic nanoparticles for combined hyperthermia, magnetic resonance imaging and cancer cell detection. J Magn Magn Mater. 2019;475:316–326.
  • Eivazzadeh-Keihan R, Radinekiyan F, Asgharnasl S, et al. A natural and eco-friendly magnetic nanobiocomposite based on activated chitosan for heavy metals adsorption and the in-vitro hyperthermia of cancer therapy. J Mater Res Technol. 2020;9(6):12244–12259.
  • Garanina AS, Naumenko VA, Nikitin AA, et al. Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination. Nanomed Nanotechnol Biol Med. 2020;25:102171.
  • Kaushik S, Thomas J, Panwar V, et al. In Situ Biosynthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONS) induce efficient hyperthermia in cancer cells. ACS Appl Bio Mater. 2020 Feb 17;3(2):779–788.
  • Sanchez-Cabezas S, Montes-Robles R, Gallo J, et al. Combining magnetic hyperthermia and dual T1/T2 MR imaging using highly versatile iron oxide nanoparticles. Dalton Trans. 2019 Mar 19;48(12):3883–3892.
  • Eivazzadeh-Keihan R, Radinekiyan F, Maleki A, et al. A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int J Biol Macromol. 2019 Nov;1(140):407–414.
  • Eivazzadeh-Keihan R, Radinekiyan F, Maleki A, et al. A new generation of star polymer: magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy. J Mater Sci. 2019;55(1):319–336.
  • Kandasamy G, Sudame A, Luthra T, et al. Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS Omega. 2018 Apr 30;3(4):3991–4005.
  • Dahaghin A, Emadiyanrazavi S, Haghpanahi M, et al. A comparative study on the effects of increase in injection sites on the magnetic nanoparticles hyperthermia. J Drug Deliv Sci Technol. 2021;63:102542.
  • Ivkov R. Inventor magnetic nanoscale particle compositions, and therapeutic methods related thereto 2006.
  • Mi Y, Shao Z, Vang J, et al. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol. 2016;7(1):11.
  • Nabavinia M, Beltran-Huarac J J. Recent progress in iron oxide nanoparticles as therapeutic magnetic agents for cancer treatment and tissue engineering. ACS Appl Bio Mater. 2020 Dec 21;3(12):8172–8187.
  • Russell E, Dunne V, Russell B, et al. Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiat Oncol. 2021 Jun 12;16(1):104.
  • Neshastehriz A, Khosravi Z, Ghaznavi H, et al. Gold-coated iron oxide nanoparticles trigger apoptosis in the process of thermo-radiotherapy of U87-MG human glioma cells. Radiat Environ Biophys. 2018 Nov;57(4):405–418.
  • Wu C, Muroski ME, Miska J, et al. Repolarization of myeloid derived suppressor cells via magnetic nanoparticles to promote radiotherapy for glioma treatment. Nanomed Nanotechnol Biol Med. 2019 Feb;16:126–137.
  • Anuje M, Pawaskar PN, Khot V, et al. Synthesis, Characterization, and Cytotoxicity Evaluation of Polyethylene Glycol-Coated Iron Oxide Nanoparticles for Radiotherapy Application. J Med Phys. 2021 Jul-Sep;46(3):154–161.
  • Askar MA, El-Nashar HA, Al-Azzawi MA, et al. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer. Breast Cancer: Basic Clin Res. 2022;16:11782234221086728.
  • Rahman WN, Kadian SNM, Ab Rashid R, et al. Radiosensitization characteristic of superparamagnetic iron oxide nanoparticles in electron beam radiotherapy and brachytherapy. J Phys Conf Ser. 2019;1248(1):012068.
  • Belete TM. The current status of gene therapy for the treatment of cancer. Biol Targ Ther. 2021;15:67–77.
  • Manescu (Paltanea) V, Paltanea G, Antoniac I, et al. Magnetic nanoparticles used in oncology. Materials. 2021 Oct 10;14(20):5948.
  • Grapa CM, Mocan L, Crisan D, et al. Biomarkers in pancreatic cancer as analytic targets for nanomediated imaging and therapy. Materials. 2021 Jun 4;14(11):3038.
  • Mu X, Li J, Yan S, et al. siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy. ACS Biomater Sci Eng. 2018 Nov 12;4(11):3895–3905.
  • Shtykalova S, Egorova A, Maretina M, et al. Magnetic nanoparticles as a component of peptide-based DNA delivery system for suicide gene therapy of uterine leiomyoma. Bioengineering. 2022 Mar 8;9(3):112.
  • Wang Z, Chang Z, Lu M, et al. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials. 2018 Feb;154:147–157.
  • Yang Z, Duan J, Wang J, et al. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int J Nanomed. 2018;13:1851–1865.
  • Jin L, Wang Q, Chen J, et al. Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells. Pharmaceutics. 2019 Nov 17;11(11):615.
  • Grabowska M, Grzeskowiak BF, Szutkowski K, et al. Nano-mediated delivery of double-stranded RNA for gene therapy of glioblastoma multiforme. PloS one. 2019;14(3):e0213852.
  • Zhou Z, Yang L, Gao J, et al. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Adv Mater. 2019 Feb;31(8):e1804567.
  • Chen Y, Ding X, Zhang Y, et al. Design and synthesis of magnetic nanoparticles for biomedical diagnostics. Quant Imaging Med Surg. 2018 Oct;8(9):957–970.
  • Hayashi K, Tokuda A, Nakamura J, et al. Tearable and fillable composite sponges capable of heat generation and drug release in response to alternating magnetic field. Materials. 2020 Aug 17;13(16):16.
  • Anik MI, Hossain MK, Hossain I, et al. Recent progress of magnetic nanoparticles in biomedical applications: a review. Nano Select. 2021;2(6):1146–1186.
  • Schneider-Futschik EK, Reyes-Ortega F. Advantages and disadvantages of using magnetic nanoparticles for the treatment of complicated ocular disorders. Pharmaceutics. 2021 Jul 27;13(8):8.
  • Miri A, Najafzadeh H, Darroudi M, et al. Iron oxide nanoparticles: biosynthesis, magnetic behavior, cytotoxic effect. Chem Open. 2021 Mar;10(3):327–333.
  • Balakrishnan PB, Silvestri N, Fernandez‐Cabada T, et al. exploiting unique alignment of cobalt ferrite nanoparticles, mild hyperthermia, and controlled intrinsic cobalt toxicity for cancer therapy. Adv Mater. 2020 Nov;32(45):e2003712.
  • Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater. 2012;2012:1–11.
  • Skocaj M, Bizjak M, Strojan K, et al. Proposing urothelial and muscle in vitro cell models as a novel approach for assessment of long-term toxicity of nanoparticles. Int J Mol Sci. 2020 Oct 13;21(20):7545.
  • Popova M, Koseva N, Trendafilova I, et al. Design of PEG-modified magnetic nanoporous silica based miltefosine delivery system: experimental and theoretical approaches. Microporous Mesoporous Mater. 2021;310:110664.
  • Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021 May;18(5):280–296.
  • Popova M, Trendafilova I, Szegedi Á, et al. Novel SO 3 H functionalized magnetic nanoporous silica/polymer nanocomposite as a carrier in a dual-drug delivery system for anticancer therapy. Microporous Mesoporous Mater. 2018;263:96–105.
  • Hajal C, Campisi M, Mattu C, et al. In vitro models of molecular and nano-particle transport across the blood-brain barrier. Biomicrofluidics. 2018 Jul;12(4):042213.
  • Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009 June 21;61(6):467–477.
  • Angelopoulou A, Kolokithas-Ntoukas A, Fytas C, et al. Folic acid-functionalized, condensed magnetic nanoparticles for targeted delivery of doxorubicin to tumor cancer cells overexpressing the folate receptor. ACS Omega. 2019 Dec 24;4(26):22214–22227.
  • Anuje M, Pawaskar P, Sivan A, et al. Use of Poly (Ethylene Glycol) Coated Superparamagnetic Iron Oxide Nanoparticles as Radio Sensitizer in Enhancing Colorectal Cancer Radiation Efficacy. J Med Phys. 2021 Oct-Dec;46(4):278–285.
  • Ferraris C, Cavalli R, Panciani PP, et al. Overcoming the blood–brain barrier: successes and challenges in developing nanoparticle-mediated drug delivery systems for the treatment of brain tumours. Int J Nanomed. 2020;15:2999–3022.
  • Albukhaty S, Al-Musawi S, Abdul Mahdi S, et al. Investigation of dextran-coated superparamagnetic nanoparticles for targeted vinblastine controlled release, delivery, apoptosis induction, and gene expression in pancreatic cancer cells. Molecules. 2020 Oct 15;25(20):4721.
  • Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnol. 2022 Jun 27;20(1):305.
  • Hedayatnasab Z, Dabbagh A, Abnisa F, et al. Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. Eur Polym J. 2020;133:109789.
  • Nguyen MP, Nguyen MH, Kim J, et al. Encapsulation of superparamagnetic iron oxide nanoparticles with polyaspartamide biopolymer for hyperthermia therapy. Europe Polym J. 2020;122:109396.
  • Zuvin M, Koçak M, Ünal Ö, et al. Nanoparticle based induction heating at low magnitudes of magnetic field strengths for breast cancer therapy. J Magn Magn Mater. 2019;483:169–177.
  • Zhao -P-P, Ge Y-W, Liu X-L, et al. Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases. Chem Eng J. 2020;381:122694.
  • Kandasamy G, Sudame A, Maity D, et al. Multifunctional magnetic-polymeric nanoparticles based ferrofluids for multi-modal in vitro cancer treatment using thermotherapy and chemotherapy. J Mol Liq. 2019;293:111549.
  • Teng Y, Du Y, Shi J, et al. Magnetic iron oxide nanoparticle-hollow mesoporous silica Spheres:Fabrication and potential application in drug delivery. Curr Appl Phys. 2020;20(2):320–325.
  • Khaniabadi PM, Shahbazi-Gahrouei D, Aziz AA, et al. Trastuzumab conjugated porphyrin-superparamagnetic iron oxide nanoparticle: a potential PTT-MRI bimodal agent for herceptin positive breast cancer. Photodiagnosis Photodyn Ther. 2020 Sep;31:101896.
  • Zatovicova M, Jelenska L, Hulikova A, et al. Carbonic anhydrase IX as an anticancer therapy target: preclinical evaluation of internalizing monoclonal antibody directed to catalytic domain. Curr pharm Design. 2010;16(29):3255–3263.
  • Klein S, Sommer A, Distel LVR, et al. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun. 2012 Aug 24;425(2):393–397.
  • Kirakli EK, Takan G, Hoca S, et al. Superparamagnetic iron oxide nanoparticle (SPION) mediated in vitro radiosensitization at megavoltage radiation energies. J Radioanalyt Nucl Chem. 2018;315(3):595–602.
  • Abdul Rashid R, Zainal Abidin S, Khairil Anuar MA, et al. Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. Open Nano. 2019;4:100027.
  • Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019 Mar 29;12(1):34.
  • Ahmad T, Sarwar R, Iqbal A, et al. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomed Nanotechnol Biol Med. 2020;15(12):1221–1237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.