336
Views
0
CrossRef citations to date
0
Altmetric
Review

Drug delivery targets and strategies to address mast cell diseases

, ORCID Icon, , , & ORCID Icon
Pages 205-222 | Received 18 Jul 2022, Accepted 06 Jan 2023, Published online: 29 Jan 2023

References

  • Ribatti D. The staining of mast cells: a historical overview. Int Arch Allergy Immunol. 2018;176(1):55–60.
  • Arock M, Hoermann G, Sotlar K, et al. Clinical impact and proposed application of molecular markers, genetic variants, and cytogenetic analysis in mast cell neoplasms: status 2022. J Allergy Clin Immunol. 2022;149(6):1855–1865.
  • Theoharides TC, Valent P, Mast Cells AC. Mastocytosis, and related disorders. N Engl J Med. 2015;373(2):163–172.
  • Oldford SA, Marshall JS. Mast cells as targets for immunotherapy of solid tumors. Mol Immunol. 2015;63(1):113–124.
  • Varricchi G, Galdiero MR, Loffredo S, et al. Are mast cells MASTers in cancer? Front Immunol. 2017;8:424.
  • Valent P, Akin C, Hartmann K, et al. Updated diagnostic criteria and classification of mast cell disorders: a consensus proposal. Hemasphere. 2021;5(11):e646.
  • Ibrahim FA, Abdulla MAJ, Soliman D, et al. A rare case of systemic mastocytosis with associated hematologic neoplasm (SM-AHN) involving chronic myeloid leukemia: a case report and literature review. Am J Case Rep. 2020;21:e923354.
  • Morgado JM, Sánchez-Muñoz L, Teodósio CG, et al. Immunophenotyping in systemic mastocytosis diagnosis: ‘CD25 positive’ alone is more informative than the ‘CD25 and/or CD2’ WHO criterion. Mod Pathol. 2012;25(4):516–521.
  • Horny H-P VP. Diagnosis of mastocytosis: general histopathological aspects, morphological criteria, and immunohistochemical findings. Leuk Res. 2001;25(7):543–551.
  • Arock M, Wedeh G, Hoermann G, et al. Preclinical human models and emerging therapeutics for advanced systemic mastocytosis. Haematologica. 2018;103(11):1760–1771.
  • Caslin HL, Kiwanuka KN, Haque TT, et al. Controlling mast cell activation and homeostasis: work influenced by Bill Paul that continues today [Review]. Front Immunol. 2018;9:868.
  • Plum T, Wang X, Rettel M, et al. human mast cell proteome reveals unique lineage, putative functions, and structural basis for cell ablation. Immunity. 2020;52(2):404–416 e5.
  • Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell [Review]. Front Immunol. 2016;6:620.
  • Oka T, Kalesnikoff J, Starkl P, et al. Evidence questioning cromolyn’s effectiveness and selectivity as a ‘mast cell stabilizer’ in mice. Lab Invest. 2012;92(10):1472–1482.
  • Zhao Z, Ukidve A, Kim J, et al. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151–167.
  • Simons FE, Simons KJ. Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol. 2011;128(6):1139–1150.e4.
  • Schleimer RP. The effects of anti-inflammatory steroids on mast cells. In: Kaliner MA, Metcalfe DD, editors. The mast cell in health and disease. New York: Marcel Dekker, Inc; 1992. p. 483–511.
  • Irani AA, Schechter NM, Craig SS, et al. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci. 1986;83(12):4464–4468.
  • Schwartz LB. Analysis of MCT and MCTC mast cells in tissue. In: Krishnaswamy G, Chi DS, editors. Mast Cells: methods and Protocols. Totowa: Humana Press; 2005. p. 53–62.
  • Dwyer DF, Ordovas-Montanes J, Allon SJ, et al. Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Sci Immunol. 2021;6:56.
  • Scott CJ, Marouf WM, Quinn DJ, et al. Immunocolloidal targeting of the endocytotic Siglec-7 receptor using peripheral attachment of Siglec-7 antibodies to poly(lactide-co-glycolide) nanoparticles. Pharm Res. 2008;25(1):135–146.
  • Wang N, Wang J, Zhang Y, et al. Imperatorin ameliorates mast cell-mediated allergic airway inflammation by inhibiting MRGPRX2 and CamKII/ERK signaling pathway. Biochem Pharmacol. 2021;184:114401.
  • Ames RS, Lee D, Foley JJ, et al. Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models. J Immunol. 2001;166(10):6341.
  • Foley JF. Ceramide keeps mast cells in check. Sci Signal. 2012;5(252):ec302–ec302.
  • Shiba E, Izawa K, Kaitani A, et al. Ceramide-CD300f binding inhibits lipopolysaccharide-induced skin inflammation*. J Biol Chem. 2017;292(7):2924–2932.
  • Lippert U, Artuc M, Grützkau A, et al. Human skin mast cells express H2 and H4, but not H3 receptors. J Invest Dermatol. 2004;123(1):116–123.
  • Thangam EB, Jemima EA, Singh H, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol. 2018;9:1873.
  • Clissold SP, Sorkin EM, Goa KL. Loratadine. Drugs. 1989;37(1):42–57.
  • Slater JW, Zechnich AD, Haxby DG. Second-generation antihistamines. Drugs. 1999;57(1):31–47.
  • Blumenthal LS, Rosenberg MH, Hydrochloride D (“Benadryl Hydrochloride”): report on its use in one hundred and thirty-seven patients. JAMA. 1947;135(1):20–25.
  • Kollmeier A, Francke K, Chen B, et al. The histamine h4 receptor antagonist, JNJ 39758979, Is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. J Pharmacol Exp Ther. 2014;350(1):181.
  • Kim HL, Leigh R, Omalizumab: BA. Practical considerations regarding the risk of anaphylaxis. Allergy Asthma Clin Immunol. 2010;6(1):32–32.
  • Düngen HD, Kober L, Nodari S, et al. Safety and tolerability of the chymase inhibitor fulacimstat in patients with left ventricular dysfunction after myocardial infarction-results of the CHIARA MIA 1 trial. Clin Pharmacol Drug Dev. 2019;8(7):942–951.
  • Esperante SA, Covaleda G, Trejo SA, et al. Plasticity in the oxidative folding pathway of the high affinity nerita versicolor carboxypeptidase inhibitor (NvCI). Sci Rep. 2017;7(1):5457.
  • Holgado A, Braun H, Van Nuffel E, et al. IL-33trap is a novel IL-33–neutralizing biologic that inhibits allergic airway inflammation. J Allergy Clin Immunol. 2019;144(1):204–215.
  • Ziegler SF, Roan F, Bell BD, et al. The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol. 2013;66:129–155.
  • Hopper M, Gururaja T, Kinoshita T, et al. Relative selectivity of covalent inhibitors requires assessment of inactivation kinetics and cellular occupancy: a case study of ibrutinib and acalabrutinib. J Pharmacol Exp Ther. 2020;372(3):331.
  • Valent P, Akin C, Gleixner KV, et al. Multidisciplinary challenges in mastocytosis and how to address with personalized medicine approaches. Int J Mol Sci. 2019;20:12.
  • Galli SJ, Tsai M, Wershil BK. The c-kit receptor, stem cell factor, and mast cells. what each is teaching us about the others. Am J Pathol. 1993;142(4):965–974.
  • Dastych J, Metcalfe DD. Stem cell factor induces mast cell adhesion to fibronectin. J Immunol. 1994;152(1):213.
  • Vosseller K, Stella G, Yee NS, et al. c-kit receptor signaling through its phosphatidylinositide-3’-kinase-binding site and protein kinase C: role in mast cell enhancement of degranulation, adhesion, and membrane ruffling. Mol Biol Cell. 1997;8(5):909–922.
  • Tkaczyk C, Horejsi V, Iwaki S, et al. NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and Fc epsilon RI aggregation. Blood. 2004;104(1):207–214.
  • Jensen BM, Beaven MA, Iwaki S, et al. Concurrent inhibition of kit- and FcepsilonRI-mediated signaling: coordinated suppression of mast cell activation. J Pharmacol Exp Ther. 2008;324(1):128–138.
  • Brandt EB, Strait RT, Hershko D, et al. Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest. 2003;112(11):1666–1677.
  • Lebron MB, Brennan L, Damoci CB, et al. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth. Cancer Biol Ther. 2014;15(9):1208–1218.
  • Alvarado D, Maurer M, Gedrich R, et al. Anti-KIT monoclonal antibody CDX-0159 induces profound and durable mast cell suppression in a healthy volunteer study. Allergy. 2022;n/a(n/a):2393–2403.
  • Cahill KN, Katz HR, Cui J, et al. KIT Inhibition by imatinib in patients with severe refractory asthma. N Engl J Med. 2017;376(20):1911–1920.
  • Valent P, Akin C, Hartmann K, et al. Drug-induced mast cell eradication: a novel approach to treat mast cell activation disorders? J Allergy Clin Immunol. 2022;149(6):1866–1874.
  • Third Harmonic Bio: Pipeline [Internet]. San Francisco, CA: Third Harmonic Bio; 2022 [cited 2022 Dec 29]. Available from: https://thirdharmonicbio.com/#pipeline
  • Lubbers J, Rodriguez E, van Kooyk Y. Modulation of immune tolerance via Siglec-sialic acid interactions. Front Immunol. 2018;9:2807.
  • Duan S, Paulson JC. Siglecs as immune cell checkpoints in disease. Annu Rev Immunol. 2020;38:365–395.
  • O’Sullivan JA, Chang AT, Youngblood BA, et al. Eosinophil and mast cell Siglecs: from biology to drug target. J Leukoc Biol. 2020;108(1):73–81.
  • Dispenza MC, Bochner BS, MacGlashan DW Jr. Targeting the fcepsilonri pathway as a potential strategy to prevent food-induced anaphylaxis. Front Immunol. 2020;11:614402.
  • Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14(10):653–666.
  • Kiwamoto T, Kawasaki N, Paulson JC, et al. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol Ther. 2012;135(3):327–336.
  • Paul SP, Taylor LS, Stansbury EK, et al. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood. 2000;96(2):483–490.
  • Robida PA, Rische CH, Morgenstern NB, et al. Functional and phenotypic characterization of Siglec-6 on human mast cells. Cells. 2022;11:7.
  • Mizrahi S, Gibbs BF, Karra L, et al. Siglec-7 is an inhibitory receptor on human mast cells and basophils. J Allergy Clin Immunol. 2014;134(1):230–233.
  • Kikly KK, Bochner BS, Freeman SD, et al. Identification of SAF-2, a novel Siglec expressed on eosinophils, mast cells, and basophils. J Allergy Clin Immunol. 2000;105(6 Pt 1):1093–1100.
  • Hudson SA, Herrmann H, Du J, et al. Developmental, malignancy-related, and cross-species analysis of eosinophil, mast cell, and basophil Siglec-8 expression. J Clin Immunol. 2011;31(6):1045–1053.
  • Propster JM, Yang F, Rabbani S, et al. Structural basis for sulfation-dependent self-glycan recognition by the human immune-inhibitory receptor Siglec-8. Proc Natl Acad Sci. 2016;113(29):E4170–9.
  • Ghannadana M, Hauswirtha AW, Schernthanera G-H, et al. Detection of novel CD antigens on the surface of human mast cells and basophils. Intl Arch of Allergy and Immunol. 2002;127(4):299–307.
  • Ronnberg E, Boey DZH, Ravindran A, et al. Immunoprofiling reveals novel mast cell receptors and the continuous nature of human lung mast cell heterogeneity. Front Immunol. 2021;12:804812.
  • Yokoi H, Myers A, Matsumoto K, et al. Alteration and acquisition of Siglecs during in vitro maturation of CD34+ progenitors into human mast cells. Allergy. 2006;61(6):769–776.
  • Duan S, Koziol-White CJ, Jester WF Jr., et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest. 2019;129(3):1387–1401.
  • Islam M, Arlian BM, Pfrengle F, et al. Suppressing immune responses using Siglec ligand-decorated anti-receptor antibodies. J Am Chem Soc. 2022;144:9302−9311 .
  • Freeman SD, Kelm S, Barber EK, et al. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood. 1995;85(8):20005–22012.
  • Bochner BS, Alvarez RA, Mehta P, et al. Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem. 2005;280(6):4307–4312.
  • Yokoi H, Choi OH, Hubbard W, et al. Inhibition of FcepsilonRI-dependent mediator release and calcium flux from human mast cells by sialic acid-binding immunoglobulin-like lectin 8 engagement. J Allergy Clin Immunol. 2008;121(2):499–505 e1.
  • Kerr SC, Gonzalez JR, Schanin J, et al. An anti-Siglec-8 antibody depletes sputum eosinophils from asthmatic subjects and inhibits lung mast cells. Clin Exp Allergy. 2020;50(8):904–914.
  • Schanin J, Korver, W, Brock, EC, Leung, J, Benet, Z, Luu, T, Chang, K, Xu, A, De Freitas, N, Luehrsen, K, Brehm, MA, Wong, A, Youngblood, BA. , ; 2022 5 1 1–13 . Discovery of an agonistic Siglec-6 antibody that inhibits and reduces human mast cells Commun Biol
  • Duan S, Arlian BM, Nycholat CM, et al. Nanoparticles displaying allergen and Siglec-8 ligands suppress IgE-FcεRI-mediated anaphylaxis and desensitize mast cells to subsequent antigen challenge. J Immunol. 2021;206(10):2290–2300.
  • Schanin J, Gebremeskel S, Korver W, et al. A monoclonal antibody to Siglec-8 suppresses non-allergic airway inflammation and inhibits IgE-independent mast cell activation. Mucosal Immunol. 2021;14(2):366–376.
  • Korver W, Wong A, Gebremeskel S, et al. The inhibitory receptor Siglec-8 interacts with FcεRI and globally inhibits intracellular signaling in primary mast cells upon activation. Front Immunol. 2022;13:833728.
  • Youngblood BA, Brock EC, Leung J, et al. Siglec-8 antibody reduces eosinophils and mast cells in a transgenic mouse model of eosinophilic gastroenteritis. JCI Insight. 2019;4:19.
  • Rillahan CD, Schwartz E, McBride R, et al. Click and pick: identification of sialoside analogues for Siglec-based cell targeting. Angew Chem Int Ed Engl. 2012;51(44):11014–11018.
  • Rillahan CD, Macauley MS, Schwartz E, et al. Disubstituted sialic acid ligands targeting Siglecs CD33 and CD22 associated with myeloid leukaemias and B cell lymphomas. Chem Sci. 2014;5(6):2398–2406.
  • Nycholat CM, Duan S, Knuplez E, et al. A sulfonamide sialoside analogue for targeting Siglec-8 and -F on immune cells. J Am Chem Soc. 2019;141(36):14032–14037.
  • Jung J, Enterina JR, Bui DT, et al. Carbohydrate sulfation as a mechanism for fine-tuning Siglec ligands. ACS Chem Biol. 2021;16(11):2673–2689.
  • Büll C, Nason R, Sun L, et al. Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proc Natl Acad Sci. 2021;118(17):e2026102118.
  • Thapaliya M, Chompunud Na Ayudhya C, Amponnawarat A, et al. Mast cell-specific MRGPRX2: a key modulator of neuro-immune interaction in allergic diseases. Current Allergy Asthma Rep. 2021;21(1):3.
  • Porebski G, Kwiecien K, Pawica M, et al. Mas-related G protein-coupled receptor-X2 (MRGPRX2) in drug hypersensitivity reactions [Perspective]. Front Immunol. 2018;9:3027.
  • Kumar M, Duraisamy K, Chow B-K-C. Unlocking the Non-IgE-mediated pseudo-allergic reaction puzzle with Mas-Related G-protein coupled receptor member X2 (MRGPRX2). Cells. 2021;10:5.
  • Green DP, Limjunyawong N, Gour N, et al. A Mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron. 2019;101(3):412–420.e3.
  • Manorak W, Idahosa C, Gupta K, et al. Upregulation of Mas-related G protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1. Respir Res. 2018;19(1):1.
  • Zhan M, Zheng W, Jiang Q, et al. Upregulated expression of substance P (SP) and NK1R in eczema and SP-induced mast cell accumulation. Cell Biol Toxicol. 2017;33(4):389–405.
  • Roy S, Ayudhya C CN, Thapaliya M, et al. Multifaceted MRGPRX2: new insight into the role of mast cells in health and disease. J Allergy Clin Immunol. 2021;148(2):293–308.
  • Xian Z, Jin G, Li H, et al. Imperatorin suppresses anaphylactic reaction and IgE-Mediated allergic responses by inhibiting multiple steps of fceri signaling in mast cells: imp alleviates allergic responses in PCA. Biomed Res Int. 2019;2019:7823761.
  • Deng M, Xie L, Zhong L, et al. Imperatorin: a review of its pharmacology, toxicity and pharmacokinetics. Eur J Pharmacol. 2020;879:173124.
  • Kong Y, Peng Q, Lv N, et al. Paeoniflorin exerts neuroprotective effects in a transgenic mouse model of Alzheimer’s disease via activation of adenosine A1 receptor. Neurosci Lett. 2020;730:135016.
  • Liu Y-F, Zhang L, Wu Q, et al. Paeoniflorin ameliorates ischemic injury in rat brain via inhibiting cytochrome c/caspase3/HDAC4 pathway. Acta Pharmacol Sin. 2022;43(2):273–284.
  • Zhang H, Qi Y, Yuan Y, et al. Paeoniflorin ameliorates experimental autoimmune encephalomyelitis via inhibition of dendritic cell function and Th17 cell differentiation. Sci Rep. 2017;7(1):41887.
  • Wang J, Zhang Y, Wang J, et al. Paeoniflorin inhibits MRGPRX2-mediated pseudo-allergic reaction via calcium signaling pathway. Phytother Res. 2020;34(2):401–408.
  • Zhao Y, Li X, Chu J, et al. Inhibitory effect of paeoniflorin on IgE-dependent and IgE-independent mast cell degranulation in vitro and vivo [10.1039/D1FO01421H]. Food Funct. 2021;12(16):7448–7468.
  • Liu Y, Gao L, Zhao X, et al. Saikosaponin A protects from pressure overload-induced cardiac fibrosis via inhibiting fibroblast activation or endothelial cell EndMT. Int J Biol Sci. 2018;14(13):1923–1934.
  • Du Z-A, Sun M-N, Hu Z-S. Saikosaponin a ameliorates LPS-induced acute lung injury in mice. Inflammation. 2018;41(1):193–198.
  • Lu C-N, Yuan Z-G, Zhang X-L, et al. Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-κB signaling pathway. Int Immunopharmacol. 2012;14(1):121–126.
  • Wang N, Che D, Zhang T, et al. Saikosaponin A inhibits compound 48/80-induced pseudo-allergy via the Mrgprx2 pathway in vitro and in vivo. Biochem Pharmacol. 2018;148:147–154.
  • Yu Y, Blokhuis BR, Garssen J, et al. Non-IgE mediated mast cell activation. Eur J Pharmacol. 2016;778:33–43.
  • Risma KA, Edwards KM, Hummell DS, et al. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. J Allergy Clin Immunol. 2021;147(6):2075–2082.e2.
  • Lohman R-J, Hamidon JK, Reid RC, et al. Exploiting a novel conformational switch to control innate immunity mediated by complement protein C3a. Nat Commun. 2017;8(1):351.
  • Subramanian H, Kashem SW, Collington SJ, et al. PMX-53 as a dual CD88 antagonist and an agonist for Mas-related gene 2 (MrgX2) in human mast cells. Mol Pharmacol. 2011;79(6):1005–1013.
  • Cao Y, Ao T, Wang X, et al. CD300a and CD300f molecules regulate the function of leukocytes. Int Immunopharmacol. 2021;93:107373.
  • Takamori A, Izawa K, Kaitani A, et al. Identification of inhibitory mechanisms in pseudo-allergy involving Mrgprb2/MRGPRX2-mediated mast cell activation. J Allergy Clin Immunol. 2019;143(3):1231–1235.e12.
  • Uchida S, Izawa K, Ando T, et al. CD300f is a potential therapeutic target for the treatment of food allergy. Allergy. 2020;75(2):471–474.
  • Merrill AH, Sandhoff K. Chapter 14 - Sphingolipids: metabolism and cell signalling. In: Vance DE, Vance JE, Biochem NC. New comprehensive biochemistry. Vol. 36. United Kingdom: Elsevier; 1996. p. 309–339.
  • Goñi FM, Contreras FX, Montes LR, et al. Biophysics (and sociology) of ceramides. Biochem Soc Symp. 2005(72):177–188
  • Li X-M, Momsen MM, Brockman HL, et al. Sterol structure and sphingomyelin acyl chain length modulate lateral packing elasticity and detergent solubility in model membranes. Biophys J. 2003;85(6):3788–3801.
  • Simon CG, Holloway PW, Gear ARL. Exchange of C16-ceramide between phospholipid vesicles. Biochemistry. 1999;38(44):14676–14682.
  • Chen WY, Tsai TH, Yang JL, et al. Therapeutic strategies for targeting IL-33/ST2 signalling for the treatment of inflammatory diseases. Cell Physiol Biochem. 2018;49(1):349–358.
  • Kelsen SG, Agache IO, Soong W, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J Allergy Clin Immunol. 2021;148(3):790–798.
  • Divorty N, Mackenzie AE, Nicklin SA, et al. G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease [Review]. Front Pharmacol. 2015;6:41.
  • Heinke S, Szücs G, Norris A, et al. Inhibition of volume-activated chloride currents in endothelial cells by chromones. Br J Pharmacol. 1995;115(8):1393–1398.
  • Wang Y-J, Monteagudo A, Downey MA, et al. Cromolyn inhibits the secretion of inflammatory cytokines by human microglia (HMC3). Sci Rep. 2021;11(1):8054.
  • Viscardi RM, Hasday JD, Gumpper KF, et al. Cromolyn sodium prophylaxis inhibits pulmonary proinflammatory cytokines in infants at high risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1997;156(5):1523–1529.
  • Joyce P, Wignall A, Peressin K, et al. Chitosan nanoparticles facilitate improved intestinal permeation and oral pharmacokinetics of the mast cell stabiliser cromoglycate. Int J Pharm. 2022;612:121382.
  • Stenton G, Lau H. Effects of histamine agonists and antagonists on rat peritoneal mast cells. Inflamm Res. 1997;46(1):15–16.
  • Nakamura T, Ueno Y, Goda Y, et al. Efficacy of a selective histamine H2 receptor agonist, dimaprit, in experimental models of endotoxin shock and hepatitis in mice. Eur J Pharmacol. 1997;322(1):83–89.
  • Hofstra CL, Desai PJ, Thurmond RL, et al. Histamine H 4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther. 2003;305(3):1212.
  • Kay LJ, Suvarna SK, Peachell PT. Histamine H4 receptor mediates chemotaxis of human lung mast cells. Eur J Pharmacol. 2018;837:38–44.
  • Thurmond RL, Venable J, Savall B, et al. Clinical development of histamine H4 receptor antagonists. In: Hattori Y, Seifert Reditors. Histamine and histamine receptors in health and disease. Cham: Springer International Publishing; 2017. p. 301–320.
  • Kollmeier AP, Barnathan ES, O’Brien C, et al. A phase 2a study of toreforant, a histamine H4 receptor antagonist, in eosinophilic asthma. Ann Allergy Asthma Immunol. 2018;121(5):568–574.
  • Varga C, Horvath K, Berko A, et al. Inhibitory effects of histamine H4 receptor antagonists on experimental colitis in the rat. Eur J Pharmacol. 2005;522(1–3):130–138.
  • Coruzzi G, Adami M, Guaita E, et al. Antiinflammatory and antinociceptive effects of the selective histamine H4-receptor antagonists JNJ7777120 and VUF6002 in a rat model of carrageenan-induced acute inflammation. Eur J Pharmacol. 2007;563(1–3):240–244.
  • Boyle DL, DePrimo SE, Calderon C, et al. Toreforant, an orally active histamine H4-receptor antagonist, in patients with active rheumatoid arthritis despite methotrexate: mechanism of action results from a phase 2, multicenter, randomized, double-blind, placebo-controlled synovial biopsy study. Inflamm Res. 2019;68(4):261–274.
  • Schuh S, Parkin P, Rajan A, et al. High-versus low-dose, frequently administered, nebulized albuterol in children with severe, acute asthma. Pediatrics. 1989;83(4):513–518.
  • Weston MC, Peachell PT. Regulation of human mast cell and basophil function by cAMP. Gen Pharmacol. 1998;31(5):715–719.
  • Haney S, Hancox RJ. Rapid onset of tolerance to beta-agonist bronchodilation. Respir Med. 2005;99(5):566–571.
  • Huang T, Hazen M, Shang Y, et al. Depletion of major pathogenic cells in asthma by targeting CRTh2. JCI Insight. 2016;1(7):e86689.
  • Kuna P, Bjermer L, Tornling G. Two Phase II randomized trials on the CRTh2 antagonist AZD1981 in adults with asthma. Drug Des Devel Ther. 2016;10:2759–2770.
  • Oliver ET, Chichester K, Devine K, et al. Effects of an oral CRTh2 Antagonist (AZD1981) on eosinophil activity and symptoms in chronic spontaneous urticaria. Int Arch Allergy Immunol. 2019;179(1):21–30.
  • Guntern P, Eggel A. Past, present, and future of anti-IgE biologics. Allergy. 2020;75(10):2491–2502.
  • Off-Label E-QD. Uses of Omalizumab. Clin Rev Allergy Immunol. 2016;50(1):84–96.
  • Pennington LF, Tarchevskaya S, Brigger D, et al. Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange. Nat Commun. 2016;7:11610–11610.
  • MacGinnitie AJ, Rachid R, Gragg H, et al. Omalizumab facilitates rapid oral desensitization for peanut allergy. J Allergy Clin Immunol. 2017;139(3):873–881.e8.
  • Gasser P, Tarchevskaya SS, Guntern P, et al. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat Commun. 2020;11(1):165.
  • Trischler J, Bottoli I, Janocha R, et al. Ligelizumab treatment for severe asthma: learnings from the clinical development programme. Clin Transl Immunology. 2021;10(3):e1255.
  • Maurer M, Giménez-Arnau AM, Sussman G, et al. Ligelizumab for chronic spontaneous urticaria. N Engl J Med. 2019;381(14):1321–1332.
  • Gauvreau GM, Harris JM, Boulet LP, et al. Targeting membrane-expressed IgE B cell receptor with an antibody to the M1 prime epitope reduces IgE production. Sci Transl Med. 2014;6(243):243ra85.
  • Harris JM, Cabanski CR, Scheerens H, et al. A randomized trial of quilizumab in adults with refractory chronic spontaneous urticaria. J Allergy Clin Immunol. 2016;138(6):1730–1732.
  • Cairns JA, Walls AF. Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol. 1996;156(1):275–283.
  • He S, Gaça MD, Walls AF. A role for tryptase in the activation of human mast cells: modulation of histamine release by tryptase and inhibitors of tryptase. J Pharmacol Exp Ther. 1998;286(1):289–297.
  • Caughey GH. Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev. 2007;217:141–154.
  • Maun HR, Jackman JK, Choy DF, et al. An allosteric anti-tryptase antibody for the treatment of mast cell-mediated severe asthma. Cell. 2019;179(2):417–431.e19.
  • Rymut SM, Sukumaran S, Sperinde G, et al. Dose-dependent inactivation of airway tryptase with a novel dissociating anti-tryptase antibody (MTPS9579A) in healthy participants: a randomized trial. Clin Transl Sci. 2022;15(2):451–463.
  • Waern I, Taha S, Lorenzo J, et al. Carboxypeptidase inhibition by NvCI suppresses airway hyperreactivity in a mouse asthma model. Allergy. 2021;76(7):2234–2237.
  • Brown MA, Pierce JH, Watson CJ, et al. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell. 1987;50(5):809–818.
  • Jja M, Baker B, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine. 2015;75(1):57–61.
  • Kim J-E, Jung K, Kim J-A, et al. Engineering of anti-human interleukin-4 receptor alpha antibodies with potent antagonistic activity. Sci Rep. 2019;9(1):7772.
  • Maspero JF, Katelaris CH, Busse WW, et al. Dupilumab efficacy in uncontrolled, moderate-to-severe asthma with self-reported chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2020;8(2):527–539.e9.
  • Mullard A. FDA approves dupilumab for severe eczema. Nat Rev Drug Discov. 2017;16(5):305.
  • Harb H, Chatila TA. Mechanisms of Dupilumab. Clin Exp Allergy. 2020;50(1):5–14.
  • Straus DB, Pryor D, Haque TT, et al. IL-33 priming amplifies ATP-mediated mast cell cytokine production. Cell Immunol. 2022;371:104470.
  • Peng G, Mu Z, Cui L, et al. Anti-IL-33 antibody has a therapeutic effect in an atopic dermatitis murine model induced by 2, 4-dinitrochlorobenzene. Inflammation. 2018;41(1):154–163.
  • Albrecht M. Turning off the alarm - Targeting alarmins and other epithelial mediators of allergic inflammation with biologics. Allergol Select. 2021;5:82–88.
  • Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of Itepekimab in patients with moderate-to-severe asthma. N Engl J Med. 2021;385(18):1656–1668.
  • Chinthrajah S, Cao S, Liu C, et al. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. JCI Insight. 2019;4:22.
  • Qi HJ, Li LF. New biologics for the treatment of atopic dermatitis: analysis of efficacy, safety, and paradoxical atopic dermatitis acceleration. Biomed Res Int. 2021;2021:5528372.
  • Liao B, Cao PP, Zeng M, et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2015;70(9):1169–1180.
  • Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384(19):1800–1809.
  • Riccaboni M, Bianchi I, Petrillo P. Spleen tyrosine kinases: biology, therapeutic targets and drugs. Drug Discov Today. 2010;15(13):517–530.
  • Masuda ES, Schmitz J. Syk inhibitors as treatment for allergic rhinitis. Pulm Pharmacol Ther. 2008;21(3):461–467.
  • Whitlock A, Belen L, Chapin MJ, et al. Preclinical assessment of the syk inhibitor PRT2761 for allergic conjunctivitis. Investig Ophthalmol Vis Sci. 2018;59(9):5568–5568.
  • Liu D, Mamorska-Dyga A. Syk inhibitors in clinical development for hematological malignancies. J Hematol Oncol. 2017;10(1):145.
  • Tang S, Yu Q, Ding C. Investigational spleen tyrosine kinase (SYK) inhibitors for the treatment of autoimmune diseases. Expert Opin Investig Drugs. 2022;31(3):291–303.
  • Lamb DJ, Wollin SL, Schnapp A, et al. BI 1002494, a novel potent and selective oral spleen tyrosine kinase inhibitor, displays differential potency in human basophils and B cells. J Pharmacol Exp Ther. 2016;357(3):554.
  • Weber ANR, Bittner Z, Liu X, et al. Bruton’s tyrosine kinase: an emerging key player in innate immunity [Mini Review]. Front Immunol. 2017;8:1454.
  • Hata D, Kawakami Y, Inagaki N, et al. Involvement of Bruton’s tyrosine kinase in FcεRI-dependent mast cell degranulation and cytokine production. J Exp Med. 1998;187(8):1235–1247.
  • Mendes-Bastos P, Brasileiro A, Kolkhir P, et al. Bruton’s tyrosine kinase inhibition—An emerging therapeutic strategy in immune-mediated dermatological conditions. Allergy. 2022;n/a(n/a):2355–2366.
  • Dispenza MC. The use of Bruton’s tyrosine kinase inhibitors to treat allergic disorders. Curr Treat Options Allergy. 2021;8(3):261–273.
  • Tam CS, Trotman J, Opat S, et al. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood. 2019;134(11):851–859.
  • Regan JA, Cao Y, Dispenza MC, et al. Ibrutinib, a Bruton’s tyrosine kinase inhibitor used for treatment of lymphoproliferative disorders, eliminates both aeroallergen skin test and basophil activation test reactivity. J Allergy Clin Immunol. 2017;140(3):875–879 e1.
  • Dispenza MC, Krier-Burris RA, Chhiba KD, et al. Bruton’s tyrosine kinase inhibition effectively protects against human IgE-mediated anaphylaxis. J Clin Invest. 2020;130(9):4759–4770.
  • Metz M, Sussman G, Gagnon R, et al. Fenebrutinib in H1 antihistamine-refractory chronic spontaneous urticaria: a randomized phase 2 trial. Nat Med. 2021;27(11):1961–1969.
  • Jin JR, Gogvadze E, Xavier AR, et al. PI3Kγ regulatory protein p84 determines mast cell sensitivity to ras inhibition—Moving towards cell specific PI3K targeting? Front Immunol. 2020;11:585070.
  • Alvarez-Twose I, Matito A, Morgado JM, et al. Imatinib in systemic mastocytosis: a phase IV clinical trial in patients lacking exon 17 KIT mutations and review of the literature. Oncotarget. 2017;8(40):68950–68963.
  • Lortholary O, Chandesris MO, Livideanu CB, et al. Masitinib for treatment of severely symptomatic indolent systemic mastocytosis: a randomised, placebo-controlled, phase 3 study. Lancet. 2017;389(10069):612–620.
  • Cerny-Reiterer S, Rabenhorst A, Stefanzl G, et al. Long-term treatment with imatinib results in profound mast cell deficiency in Ph+ chronic myeloid leukemia. Oncotarget. 2015;6(5):3071–3084.
  • Nedoszytko B, Arock M, Lyons JJ, et al. Clinical impact of inherited and acquired genetic variants in mastocytosis. Int J Mol Sci. 2021;22:1.
  • Kennedy VE, Perkins C, Reiter A, et al. Mast cell leukemia: clinical and molecular features and survival outcomes of patients in the ECNM registry. In Blood Adv. 2022. p. 1–37.
  • Scott EA, Karabin NB, Augsornworawat P. Overcoming immune dysregulation with immunoengineered nanobiomaterials. Annu Rev Biomed Eng. 2017;19:57–84.
  • Druker BJ. STI571 (Gleevec™) as a paradigm for cancer therapy. Trends Mol Med. 2002;8(4):S14–S18.
  • Fry DC. Protein–protein interactions as targets for small molecule drug discovery. Peptide Sci. 2006;84(6):535–552.
  • Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2019;144:19–50.
  • Wang C, Xu P, Zhang L, et al. Current strategies and applications for precision drug design [Review]. Front Pharmacol. 2018;9:787.
  • Gotlib J, Kluin-Nelemans HC, George TI, et al. Efficacy and safety of midostaurin in advanced systemic mastocytosis. N Engl J Med. 2016;374(26):2530–2541.
  • Islam M, Arlian BM, Pfrengle F, et al. Suppressing immune responses using Siglec ligand-decorated anti-receptor antibodies. J Am Chem Soc. 2022;144(21):9302–9311.
  • Grunewald S, Klug LR, Mühlenberg T, et al. Resistance to Avapritinib in PDGFRA-driven GIST is caused by secondary mutations in the PDGFRA kinase domain. Cancer Discov. 2021;11(1):108–125.
  • Akin C, Arock M, Valent P. Tyrosine kinase inhibitors for the treatment of indolent systemic mastocytosis: are we there yet? J Allergy Clin Immunol. 2022;149(6):1912–1918.
  • Guarnieri A, Chicarelli M, Cable L, et al. Preclinical data with KIT D816V inhibitor bezuclastinib (CGT9486) demonstrates high selectivity and minimal brain penetrance. Blood. 2021;138:4595.
  • Terhorst-Molawi D, Hawro T, Grekowitz E, et al. The anti-KIT antibody, CDX-0159, reduces mast cell numbers and circulating tryptase and improves disease control in patients with chronic inducible urticaria (Cindu). J Allergy Clin Immunol. 2022;149(2):AB178.
  • O’Sullivan JA, Carroll DJ, Cao Y, et al. Leveraging Siglec-8 endocytic mechanisms to kill human eosinophils and malignant mast cells. J Allergy Clin Immunol. 2018;141(5):1774–1785 e7.
  • Tateno H, Li H, Schur MJ, et al. Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity. Mol Cell Biol. 2007;27(16):5699–5710.
  • Dogra P, Rancan C, Ma W, et al. Tissue determinants of human NK cell development, function, and residence. Cell. 2020;180(4):749–763.e13.
  • Kurdi AT, Glavey SV, Bezman NA, et al. Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab. Mol Cancer Ther. 2018;17(7):1454–1463.
  • Landolina N, Zaffran I, Smiljkovic D, et al. Activation of Siglec-7 results in inhibition of in vitro and in vivo growth of human mast cell leukemia cells. Pharmacol Res. 2020;158:104682.
  • Dellon ES, Peterson KA, Murray JA, et al. Anti-Siglec-8 antibody for eosinophilic gastritis and duodenitis. N Engl J Med. 2020;383(17):1624–1634.
  • Siebenhaar FBH, Hawro T, et al. Allakos: Scientific Presentations [Internet]. San Diego, CA: Allakos, Inc. 2019. [cited 2022 May 15]. Available from: https://www.allakos.com/file.cfm/59/docs/
  • Klaessig F, Marrapese M, Abe S. Current perspectives in nanotechnology terminology and nomenclature. In: Murashov V, Howard J, editors. Nanotechnology Standards. Berlin: Springer; 2011. p. 21–52.
  • Altrichter S, Staubach P, Pasha M, et al. Efficacy and safety data of AK002, an anti-Siglec-8 monoclonal antibody, in patients with multiple forms of uncontrolled chronic urticaria (CU): results from an open- label phase 2a study. Allergy. 2019(74):117–129.
  • Amadori S, Suciu S, Selleslag D, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized Phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–979.
  • Abrams T, Connor A, Fanton C, et al. Preclinical antitumor activity of a novel anti-c-KIT antibody-drug conjugate against mutant and wild-type c-KIT-positive solid tumors. Clin Cancer Res. 2018;24(17):4297–4308.
  • Frey M, Bobbala S, Karabin N, et al. Influences of nanocarrier morphology on therapeutic immunomodulation. Nanomedicine (Lond). 2018;13(14):1795–1811.
  • Vincent MP, Navidzadeh JO, Bobbala S, et al. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell. 2022;40(3):255–276.
  • Yi S, Allen SD, Liu YG, et al. Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano. 2016;10(12):11290–11303.
  • Vincent MP, Bobbala S, Karabin NB, et al. Surface chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets. Nat Commun. 2021;12(1):648.
  • Vincent MP, Karabin NB, Allen SD, et al. The combination of morphology and surface chemistry defines the immunological identity of nanocarriers in human blood. Adv Ther. 2021;4(8):2100062.
  • Yi S, Zhang X, Sangji MH, et al. Surface engineered polymersomes for enhanced modulation of dendritic cells during cardiovascular immunotherapy. Adv Funct Mater. 2019;29(42):1904399.
  • Bibi S, Zhang Y, Hugonin C, et al. A new humanized in vivo model of KIT D816V+ advanced systemic mastocytosis monitored using a secreted luciferase. Oncotarget. 2016;7(50):82985–83000.
  • Willmann M, Yuzbasiyan-Gurkan V, Marconato L, et al. Proposed diagnostic criteria and classification of canine mast cell neoplasms: a consensus proposal [Review]. Front Vet Sci. 2021;8:755258.
  • Wei Y, Chhiba KD, Zhang F, et al. Mast cell-specific expression of human Siglec-8 in conditional knock-in mice. Int J Mol Sci. 2018;20:1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.