228
Views
0
CrossRef citations to date
0
Altmetric
Review

Preclinical developments in the delivery of protein antigens for vaccination

, , & ORCID Icon
Pages 367-384 | Received 10 Jul 2022, Accepted 01 Feb 2023, Published online: 10 Feb 2023

References

  • Jenner E. The three original publications on vaccination against smallpox. New York: Collier & Son; 1798. Harvard classics; Vol 38.
  • Neefjes J, Jongsma ML, Paul P, et al. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011 11;11; Nov(12): 823–836.
  • Zhang Y Gu W, et al. Th1/Th2 cell differentiation and molecular signals. In: Sun B, editor. T helper cell differentiation and their function. New York: Springer; 2014. p. 230.
  • Collins AM. IgG subclass co-expression brings harmony to the quartet model of murine IgG function. Immunol Cell Biol. 2016 Nov;94(10):949–954.
  • Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. Chem Med Chem. 2013 Mar;8(3):360–376.
  • Genito CJ, Batty CJ, Bachelder EM, et al. Considerations for size, surface charge, polymer degradation, co-delivery, and manufacturability in the development of polymeric particle vaccines for infectious diseases. Adv Nanobiomed Res. 2021 Jan;18(3):2000041.
  • Minor PD. Live attenuated vaccines: historical successes and current challenges. Virology. 2015 May;479-480:379–392.
  • Su SB, Chang HL, Chen AK. Current status of mumps virus infection: epidemiology, pathogenesis, and vaccine. Int J Environ Res Public Health. 2020 Mar 5;17(5):1686.
  • Bonnet M-C, Dutta A, Weinberger C, et al. Mumps vaccine virus strains and aseptic meningitis. Vaccine. 2006 Nov 30;24(49–50):7037–7045.
  • Su F, Patel GB, Hu S, et al. Induction of mucosal immunity through systemic immunization: phantom or reality? Hum Vaccin Immunother. 2016 Apr 2;12(4):1070–1079.
  • Carter NJ, Curran MP. Live attenuated influenza vaccine (FluMist®; Fluenz™): a review of its use in the prevention of seasonal influenza in children and adults. Drugs. 2011;71(12):1591–1622.
  • Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine. 2007 Jul 26;25(30):5467–5484.
  • Asahi Y, Yoshikawa T, Watanabe I, et al. Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines. J Immunol. 2002 Mar 15;168(6):2930–2938.
  • Yel L. Selective IgA deficiency. J Clin Immunol. 2010 Jan;30(1):10–16.
  • Belshe RB, Edwards KM, Vesikari T, et al. Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med. 2007;356(7):685–696.
  • Nichol KL, Mendelman PM, Mallon KP, et al. Effectiveness of live, attenuated intranasal influenza virus vaccine in healthy, working adults. JAMA. 1999;281:2.
  • Live Attenuated CDC Influenza Vaccine [LAIV] (the nasal spray flu vaccine) [cited 2022 Jan 06]. Available from: https://www.cdc.gov/flu/prevent/nasalspray.htm.
  • Stauffer F, El-Bacha T, Poian ATD. Advances in the Development of Inactivated Virus Vaccines. Recent patents on anti-infective drug discovery. 2006;1(3):291–296.
  • Marciani DJ. Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today. 2003;8(20):934–943.
  • O’Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert reviews vaccines. 2007;6(5):699–710.
  • Ott G, Barchfeld GL, Chernoff D, et al. MF59 design and evaluation of a safe and potent adjuvant for human vaccines. Vaccine Design: The Subunit and Adjuvant Approach 1995.
  • O’Hagan DT, Ott GS, De Gregorio E, et al. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine. 2012 Jun 19;30(29):4341–4348.
  • Puig-Barbera J, Diez-Domingo J, Varea AB, et al. Effectiveness of MF59-adjuvanted subunit influenza vaccine in preventing hospitalisations for cardiovascular disease, cerebrovascular disease and pneumonia in the elderly. Vaccine. 2007 Oct 16;25(42):7313–7321.
  • Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018 Apr;17(4):261–279.
  • Bienek DR, Loomis LJ, Biagini RE. The anthrax vaccine: no new tricks for an old dog. Hum Vaccin. 2009 Mar;5(3):184–189.
  • Glenny AT, Pope CG, Waddington H. Immunology Notes. XXIII. The Antigenic Value of Toxoid Precipitated by Potassium Alum. Journal of Pathology & Bacteriology. 1926;29(1): 31–40.
  • Hogenesch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol. 2012;3:406.
  • Kool M, Petrilli V, De Smedt T, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol. 2008 Sep 15;181(6):3755–3759.
  • Bower WA, Schiffer J, Atmar RL, et al. Use of anthrax vaccine in the United States:recommendations of the advisory committee on immunization practices. MMWR Recomm Rep. 2019;68(4):1–14.
  • Szarewski A. HPV vaccine: Cervarix. Expert opinion biological therapy. 2010;10(3):477–487.
  • Chackerian B. Virus-like particles: flexible platforms for vaccine development. Expert reviews vaccines. 2007;6(3):381–390.
  • Giannini SL, Hanon E, Moris P, et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine. 2006 Aug 14;24(33–34):5937–5949.
  • Coccia M, Collignon C, Herve C, et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNgamma response promoting vaccine immunogenicity. NPJ Vaccines. 2017;2(1):25.
  • Marty-Roix R, Vladimer GI, Pouliot K, et al. Identification of QS-21 as an inflammasome-activating molecular component of saponin adjuvants. J Biol Chem. 2016 Jan 15;291(3):1123–1136.
  • Soltysik, S, Wu, J-Y, Recchia, J, Wheeler, D, Newman, M, Coughlin, R, Kensil, C. Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine. 1995;13(15):1403–1410.
  • Garçon N, Mechelen MV. Recent clinical experience with vaccines using MPL- and QS-21containing adjuvant systems. Expert reivews vaccine. 2011;10(4):471–486.
  • James SF, Chahine EB, Sucher AJ, et al. Shingrix: the new adjuvanted recombinant herpes zoster vaccine. Ann Pharmacother. 2018 Jul;52(7):673–680.
  • CDC. What everyone should know about zostavax 2022 [cited 2022 Jan 06]. Available from: https://www.cdc.gov/vaccines/vpd/shingles/public/zostavax/index.html
  • Zeng ZY, Liao JX, Hu ZN, et al. Synthetic Investigation toward QS-21 Analogues. Org Lett. 2020 Nov 6;22(21):8613–8617.
  • Lacaille-Dubois MA. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: a review. Phytomedicine. 2019 Jul;60:152905.
  • Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert reivews vaccine. 2011;10(4):499–511.
  • Champion CR. Heplisav-B: a hepatitis B vaccine with a novel adjuvant. Ann Pharmacother. 2021 Jun;55(6):783–791.
  • Averhoff F, Mahoney F, Coleman P, et al. Immunogenicity of hepatitis B vaccines implications for persons at occupational risk of hepatitis B virus infection. Am J Preventative Med. 1998;
  • Jackson S, Lentino J, Kopp J, et al. Immunogenicity of a two-dose investigational hepatitis B vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant compared with a licensed hepatitis B vaccine in adults. Vaccine. 2018 Jan 29;36(5):668–674.
  • Wilson KD, de Jong SD, Tam YK. Lipid-based delivery of CpG oligonucleotides enhances immunotherapeutic efficacy. Adv Drug Deliv Rev. 2009 Mar 28;61(3):233–242.
  • Daniels CC, Rogers PD, Shelton CM. A review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J Pediatr Pharmacol Ther. 2016;21(1):27–35.
  • Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chem Rev. 2020 Mar 25;120(6):3210–3229.
  • Wedemeyer H, Schuller E, Schlaphoff V, et al. Therapeutic vaccine IC41 as late add-on to standard treatment in patients with chronic hepatitis C. Vaccine. 2009 Aug 13;27(37):5142–5151.
  • Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines. 2015;14(11):1509–1523.
  • Kim YC, Jarrahian C, Zehrung D, et al. Current topics in microbiology and immunology. Vol. 351. Berlin Heidelberg: Springer; 2011
  • Cook IF. Subcutaneous vaccine administration - an outmoded practice. Hum Vaccin Immunother. 2021 May 4;17(5):1329–1341.
  • Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev. 2017 May;15(114):116–131.
  • Lavelle EC, Ward RW. Mucosal vaccines - fortifying the frontiers. Nat Rev Immunol. 2022 Apr;22(4):236–250.
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current states and future trends. Immunology and cell biology. 2004;82(5):488–496.
  • Deamer DW. From “banghasomes” to liposomes: a memoir of Alec Bangham, 1921-2010. FASEB J. 2010 May;24(5):1308–1310.
  • Marasini N, Ghaffar KA, Skwarczynski M, et al. Liposomes as a vaccine delivery system. In: Skwarczynski M, Toth I, editors. Micro and nanotechnology in vaccine development. Amsterdam: Elsevier; 2017. p. 221–239.
  • Midoux P, Pichon C. Lipid-based mRNA vaccine delivery systems. Expert reivews vaccine. 2015;14(2):221–234.
  • Vu MN, Kelly HG, Tan HX, et al. Hemagglutinin functionalized liposomal vaccines enhance germinal center and follicular helper t cell immunity. Adv Healthc Mater. 2021 May;10(10):e2002142.
  • Barnier-Quer C, Elsharkawy A, Romeijn S, et al. Adjuvant effect of cationic liposomes for subunit influenza vaccine: influence of antigen loading method, cholesterol and immune modulators. Pharmaceutics. 2013;5(3):392–410.
  • Carugo D, Bottaro E, Owen J, et al. Liposome production by microfluidics: potential and limiting factors. Sci Rep. 2016 May;19(6):25876.
  • Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. Nat Rev Mater. 2019 Jun;4(6):415–428.
  • Shao S, Geng J, Ah YH, et al. Functionalization of cobalt porphyrin-phospholipid bilayers with his-tagged ligands and antigens. Nat Chem. 2015 May;7(5):438–446.
  • Kaneda Y. Virosomes: evolution of the liposome as a targeted drug delivery system. Advanced drug delivery reviews. 2000;43(2–3):197–205.
  • Ebensen T, Debarry J, Pedersen GK, et al. Mucosal administration of cycle-di-nucleotide-adjuvanted virosomes efficiently induces protection against influenza H5N1 in mice. Front Immunol. 2017;8:1223.
  • Libanova R, Ebensen T, Schulze K, et al. The member of the cyclic di-nucleotide family bis-(3’, 5’)-cyclic dimeric inosine monophosphate exerts potent activity as mucosal adjuvant. Vaccine. 2010 Mar 2;28(10):2249–2258.
  • Mischler R, Metcalfe IC. Inflexal®V a trivalent virosome subunit influenza vaccine: production. Vaccine. 2002. 10.1016/S0264-410X(02)00512-1
  • Skene CD, Sutton P. Saponin-adjuvanted particulate vaccines for clinical use. Methods. 2006 Sep;40(1):53–59.
  • Kersten GFA, Spiekstra A, Beuvery EC, et al. On the structure of immune-stimulating saponin-lipid complexes (iscoms). Biochimica et Biophysica Acta. 1991;1062(2):165–171.
  • Robson NC, Donachie AM, Mowat AM. Simultaneous presentation and cross-presentation of immune-stimulating complex-associated cognate antigen by antigen-specific B cells. Eur J Immunol. 2008 May;38(5):1238–1246.
  • Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine. 2009 Jul 16;27(33):4388–4401.
  • Andersson C, Sandberg L, Wernerus H, et al. Improved systems for hydrophobic tagging of recombinant immunogens for efficient iscom incorporation. J Immunol Methods. 2000;238(1–2):181–193.
  • McBurney WT, Lendemans DG, Myschik J, et al. In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine. 2008 Aug 18;26(35):4549–4556.
  • O’Hagan DT, Fox CB. New generation adjuvants–from empiricism to rational design. Vaccine. 2015 Jun 8;33(Suppl 2):B14–20.
  • Cibulski SP, Mourglia-Ettlin G, Teixeira TF, et al. Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake. Vaccine. 2016 Feb 24;34(9):1162–1171.
  • Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017 Nov;1(159):217–231.
  • Schwendeman SP, Tobio M, Joworowicz M, et al. New strategies for the microencapsulation of tetanus vaccine. J Microencapsul. 1998 May-Jun;15(3):299–318.
  • Li L, Schwendeman SP. Mapping neutral microclimate pH in PLGA microspheres. J Control Release. 2005 Jan 3;101(1–3):163–173.
  • Ding AG, Schwendeman SP. Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm Res. 2008 Sep;25(9):2041–2052.
  • Johansen P, Martinez Gomez JM, Gander B. Development of synthetic biodegradable microparticulate vaccines: a roller coaster story. Expert Rev Vaccines. 2007 Aug;6(4):471–474.
  • Gu P, Zhang Y, Cai G, et al. Administration routes of polyethylenimine-coated PLGA nanoparticles encapsulating angelica sinensis polysaccharide vaccine delivery system affect immune responses. Mol Pharm. 2021 Jun 7;18(6):2274–2284.
  • Lu T, Hu F, Yue H, et al. The incorporation of cationic property and immunopotentiator in poly (lactic acid) microparticles promoted the immune response against chronic hepatitis B. J Control Release. 2020 May;10(321):576–588.
  • Chen X, Liu Y, Wang L, et al. Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg. Mol Pharm. 2014 Jun 2;11(6):1772–1784.
  • Gu P, Wusiman A, Zhang Y, et al. Rational design of PLGA nanoparticle vaccine delivery systems to improve immune responses. Mol Pharm. 2019 Dec 2;16(12):5000–5012.
  • Genito C, Batty C, Bachelder E, et al. Considerations for size, surface charge, polymer degradation, co-delivery, and manufacturability in the development of polymeric particle vaccines for infectious diseases. Advanced Nano Bio med Research. 2021;1(3):3
  • Taranejoo S, Liu J, Verma P, et al. A review of the developments of characteristics of PEI derivatives for gene delivery applications. J Appl Polym Sci. 2015 n/a-n/a; 132(25): 10.1002/app.42096
  • Fan W, Wu X, Ding B, et al. Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution. Int J Nanomedicine. 2012;7:1127–1138.
  • Wang M, Lu P, Wu B, et al. High efficiency and low toxicity of polyethyleneimine modified Pluronics (PEI–Pluronic) as gene delivery carriers in cell culture and dystrophic mdx mice. J Mater Chem. 2012;22:13.
  • Yang T, Jia M, Meng J, et al. Immunomodulatory activity of polysaccharide isolated from angelica sinensis. Int J Biol Macromol. 2006 Nov 15;39(4–5):179–184.
  • Amidi M, Mastrobattista E, Jiskoot W, et al. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010 Jan 31;62(1):59–82.
  • Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med. 2009 May;20(5):1057–1079.
  • Malik A, Gupta M, Mani R, et al. Trimethyl chitosan nanoparticles encapsulated protective antigen protects the mice against anthrax. Front Immunol. 2018;9:562.
  • Bachelder EM, Pino EN, Ainslie KM. Acetalated dextran: a tunable and acid-labile biopolymer with facile synthesis and a range of applications. Am Chem Soc. 2017;117(3):1915–1926.
  • Chen N, Johnson MM, Collier MA, et al. Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses. J Control Release. 2018;273:147–159.
  • Chen N, Gallovic MD, Tiet P, et al. Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy. J Control Release. 2018 Sep 24;289:114–124.
  • Gallovic MD, Junkins RD, Sandor AM, et al. STING agonist-containing microparticles improve seasonal influenza vaccine efficacy and durability in ferrets over standard adjuvant. J Control Release. 2022 May;18(347):356–368.
  • Bernasconi V, Bernocchi B, Ye L, et al. Porous nanoparticles with self-adjuvanting m2e-fusion protein and recombinant hemagglutinin provide strong and broadly protective immunity against influenza virus infections. Front Immunol. 2018;9:2060.
  • Wilson DS, Hirosue S, Raczy MM, et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat Mater. 2019 Feb;18(2):175–185.
  • Han J, Zhao D, Li D, et al. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers (Basel). 2018 2; 10(1): Jan.
  • Salazar-Gonzalez JA, Gonzalez-Ortega O, Rosales-Mendoza S. Gold nanoparticles and vaccine development. Expert Rev Vaccines. 2015;14(9):1197–1211.
  • Poon C, Patel AA. Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. Nano Express. 2020;1(1):1.
  • Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond). 2014 Feb;9(2):237–251.
  • Pusic K, Aguilar Z, McLoughlin J, et al. Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine. FASEB J. 2013 Mar;27(3):1153–1166.
  • Afroz S, Medhi H, Maity S, et al. Mesoporous ZnO nanocapsules for the induction of enhanced antigen-specific immunological responses. Nanoscale. 2017 Oct 5;9(38):14641–14653.
  • Martinez-Navio JM, Climent N, Pacheco R, et al. Immunological dysfunction in HIV-1-infected individuals caused by impairment of adenosine deaminase-induced costimulation of T-cell activation. Immunology. 2009 Nov;128(3):393–404.
  • Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nature reviews immunology. 2006;6(11): 859–868.
  • Lu W, Arraes LC, Ferreira WT, et al. Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat Med. 2004 Dec;10(12):1359–1365.
  • Garcı´ F, Lejeune M, Climent N, et al. Therapeutic immunization with dendritic cells loaded with heat-inactivated autologous HIV-1 in patients with chronic HIV-1 infection. J Infect Dis. 2005;191(10):1680–1685.
  • Garcia F, Plana M, Climent N, et al. Dendritic cell based vaccines for HIV infection: the way ahead. Hum Vaccin Immunother. 2013 Nov;9(11):2445–2452.
  • Climent N, Martinez-Navio JM, Gil C, et al. Adenosine deaminase enhances T-cell response elicited by dendritic cells loaded with inactivated HIV. Immunol Cell Biol. 2009 Nov-Dec;87(8):634–639.
  • Wyszynska A, Kobierecka P, Bardowski J, et al. Lactic acid bacteria–20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol. 2015 Apr;99(7):2967–2977.
  • Szatraj K, Szczepankowska AK, Chmielewska-Jeznach M. Lactic acid bacteria - promising vaccine vectors: possibilities, limitations, doubts. J Appl Microbiol. 2017 Aug;123(2):325–339.
  • Oh SH, Kim SH, Jeon JH, et al. Cytoplasmic expression of a model antigen with M Cell-targeting moiety in lactic acid bacteria and implication of the mechanism as a mucosal vaccine via oral route. Vaccine. 2021 Jul 5;39(30):4072–4081.
  • Takahashi K, Orito N, Tokunoh N, et al. Current issues regarding the application of recombinant lactic acid bacteria to mucosal vaccine carriers. Appl Microbiol Biotechnol. 2019 Aug;103(15):5947–5955.
  • Butkovich N, Li E, Ramirez A, et al. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 May;13(3):e1681.
  • Lopez-Sagaseta J, Malito E, Rappuoli R, et al. Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J. 2016;14:58–68.
  • Kim KH, Cho KJ, Lee JH, et al. Ferritin from Helicobacter pylori. 2008.
  • Izard T, Aevarsson A, Allen MD, et al. E2p from bacillus stearothermophilus 1999.
  • Izard T, Ævarsson A, Allen MD, et al. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proceedings of the National Academy of Sciences of the United States of America. 1998;96(4): 1240–1245 .
  • Joyce MG, Chen WH, Sankhala RS, et al. SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Rep. 2021 Dec 21;37(12):110143.
  • He L, de Val N, Morris CD, et al. Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nat Commun. 2016 Jun 28;7(1):12041.
  • Kovacs JM, Noeldeke E, Ha HJ, et al. Stable, uncleaved HIV-1 envelope glycoprotein gp140 forms a tightly folded trimer with a native-like structure. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18542–18547.
  • Hossain MK, Ahmed T, Bhusal P, et al. Microneedle Systems for Vaccine Delivery: the story so far. Expert Rev Vaccines. 2020 Dec;19(12):1153–1166.
  • Menon I, Bagwe P, Gomes KB, et al. Microneedles: a new generation vaccine delivery system. Micromachines (Basel). 2021 Apr 14;12(4).
  • Corrie S, Depelsenaire A, Kendall M. Introducing the nanopatch: a skin-based, needle-free vaccine delivery system. Australian biochemist.2012;43(3): 17–20 .
  • Caudill C, Perry JL, Iliadis K, et al. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity . Proc Natl Acad Sci U S A. 2021;118(39).
  • Nasir A, Kausar A, Younus A. A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym-Plast Technol Eng. 2014;54(4):325–341.
  • Gallovic MD, Schully KL, Bell MG, et al. Acetalated dextran microparticulate vaccine formulated via coaxial electrospray preserves toxin neutralization and enhances murine survival following inhalational bacillus anthracis exposure. Adv healthc mater. 2016;5(20):2617–2627.
  • Steipel RT, Gallovic MD, Batty CJ, et al. Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo. Mater Sci Eng C. 2019;105(June):110070.
  • Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 Sep-Oct;7(5):655–677.
  • Chen BM, Cheng TL, Roffler SR. Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano. 2021 Sep 28;15(9):14022–14048.
  • Bavli Y, Winkler I, Chen BM, et al. Doxebo (doxorubicin-free Doxil-like liposomes) is safe to use as a pre-treatment to prevent infusion reactions to PEGylated nanodrugs. J Control Release. 2019 Jul;28(306):138–148.
  • Johnson-Weaver B, Choi HW, Abraham SN, et al. Mast cell activators as novel immune regulators. Curr Opin Pharmacol. 2018 Aug;41:89–95.
  • Kumar A, Kumar A. Mucosal and transdermal vaccine delivery strategies against COVID-19. Drug Deliv Transl Res. 2022 May;12(5):968–972.
  • BlueWillow Biologics 2022 [cited 2022 Jan 06]. Available from: https://bluewillow.com/
  • Crommelin DJA, Anchordoquy TJ, Volkin DB, et al. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci. 2021 Mar;110(3):997–1001.
  • Jain S, Venkataraman A, Wechsler ME, et al. Messenger RNA-based vaccines: past, present, and future directions in the context of the COVID-19 pandemic. Adv Drug Deliv Rev. 2021 Dec;179:114000.
  • Nanomedicine and the COVID-19. vaccines. Nat Nanotechnol. 2020 Dec;15(12):963
  • Kraft JC, Pham MN, Shehata L, et al. Antigen- and scaffold-specific antibody responses to protein nanoparticle immunogens. Cell Rep Med. 2022 Oct 18;3(10):100780.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.