376
Views
0
CrossRef citations to date
0
Altmetric
Review

Preparation, thermal response mechanisms and biomedical applications of thermosensitive hydrogels for drug delivery

, , &
Pages 641-672 | Received 28 Feb 2023, Accepted 19 May 2023, Published online: 01 Jun 2023

References

  • Antimisiaris SG, Marazioti A, Kannavou M, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Del Rev. 2021;174:53–86.
  • Li M, Bu W, Ren J, et al. Enhanced synergism of thermo-chemotherapy for liver cancer with magnetothermally responsive nanocarriers. Theranostics. 2018;8(3):693–709. DOI:10.7150/thno.21297
  • Mo F, Jiang K, Zhao D, et al. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Del Rev. 2021;168:79–98.
  • Huang H, Dong Z, Ren X, et al. High-strength hydrogels: fabrication, reinforcement mechanisms, and applications. Nano Res. 2023;16(2):3475–3515. DOI:10.1007/s12274-022-5129-1
  • Zhao X, Liang Y, Huang Y, et al. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH Stimulus-Responsiveness for Multidrug-Resistant Bacterial Infection and Removable Wound Dressing. Adv Funct Mater. 2020;30(17):1910748. DOI:10.1002/adfm.201910748
  • Fan L, Zhang X, Nie M, et al. Photothermal responsive microspheres-triggered separable microneedles for versatile drug delivery. Adv Funct Mater. 2022;32(13):2110746. DOI:10.1002/adfm.202110746
  • Li B, Zhang L, Wang D, et al. Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. Mat Sci Eng C-Mater. 2021;122:111878.
  • Yang L, Liu Y, Shou X, et al. Bio-inspired lubricant drug delivery particles for the treatment of osteoarthritis. Nanoscale. 2020;12(32):17093–17102. DOI:10.1039/D0NR04013D
  • Liang Y, Zhao X, Hu T, et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small. 2019;15(12):1900046. DOI:10.1002/smll.201900046
  • Yue J, He L, Tang Y, et al. Facile design and development of photoluminescent graphene quantum dots grafted dextran/glycol-polymeric hydrogel for thermoresponsive triggered delivery of buprenorphine on pain management in tissue implantation. J Photochem Photobiol B. 2019;197:111530.
  • Thai Minh Duy L, Thuy Trang D H, Thambi T, et al. Bioinspired Ph- and temperature-responsive injectable adhesive hydrogels with polyplexes promotes skin wound healing. Biomacromolecules. 2018;19(8):3536–3548. DOI:10.1021/acs.biomac.8b00819
  • Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug delivery. Adv Drug Del Rev. 2021;171:240–256.
  • Qu J, Zhao X, Liang Y, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials. 2018;183:185–199.
  • Orasugh JT, Sarkar G, Saha NR, et al. Effect of cellulose nanocrystals on the performance of drug loaded in situ gelling thermo-responsive ophthalmic formulations. Int j biol macromol. 2019;124:235–245.
  • Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Del Rev. 2018;127:167–184.
  • Liu P, Guo B, Wang S, et al. A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug carrier for localized bone tuberculosis therapy. Int J Pharm. 2019;558:101–109.
  • Li Y, Yang HY, Lee DS. Advances in biodegradable and injectable hydrogels for biomedical applications. J Controlled Release. 2021;330:151–160.
  • Mahinroosta M, Jomeh Farsangi Z, Allahverdi A, et al. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater Today Chem. 2018;8:42–55.
  • Fu X, Hosta-Rigau L, Chandrawati R, et al. Multi-stimuli-responsive polymer particles, films, and hydrogels for drug delivery. Chem. 2018;4(9):2084–2107. DOI:10.1016/j.chempr.2018.07.002
  • Gil ES, Hudson SM. Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci. 2004;29(12):1173–1222.
  • Darabi MA, Khosrozadeh A, Mbeleck R, et al. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv Mater. 2017;29(31):1700533. DOI:10.1002/adma.201700533
  • Hu L, Zhang Q, Li X, et al. Stimuli-responsive polymers for sensing and actuation. Mater Horiz. 2019;6(9):1774–1793. DOI:10.1039/C9MH00490D
  • Jensen MM, Jia W, Schults AJ, et al. Temperature-responsive silk-elastinlike protein polymer enhancement of intravesical drug delivery of a therapeutic glycosaminoglycan for treatment of interstitial cystitis/painful bladder syndrome. Biomaterials. 2019;217:119293.
  • Zhao J, Zhao X, Guo B, et al. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein. Biomacromolecules. 2014;15(9):3246–3252. DOI:10.1021/bm5006257
  • Qu J, Zhao X, Ma PX, et al. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater. 2018;72:55–69.
  • Qu J, Liang Y, Shi M, et al. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. Int j biol macromol. 2019;140:255–264.
  • Hu D-N, Ju X-J, Pu X-Q, et al. Injectable temperature/glucose dual-responsive hydrogels for controlled release of insulin. Ind Eng Chem Res. 2021;60(22):8147–8158. DOI:10.1021/acs.iecr.1c01277
  • Zakerikhoob M, Abbasi S, Yousefi G, et al. Curcumin-incorporated crosslinked sodium alginate-g-poly (N-isopropyl acrylamide) thermo-responsive hydrogel as an in-situ forming injectable dressing for wound healing: in vitro characterization and in vivo evaluation. Carbohydr Polym. 2021;271:118434.
  • Ding H, Li B, Liu Z, et al. Decoupled Ph- and thermo-responsive injectable chitosan/PNIPAM hydrogel via thiol-ene click chemistry for potential applications in tissue engineering. Adv Healthcare Mater. 2020;9(14):2000454. DOI:10.1002/adhm.202000454
  • Mei E, Chen C, Li C, et al. Injectable and biodegradable chitosan hydrogel-based drug depot contributes to synergistic treatment of tumors. Biomacromolecules. 2021;22(12):5339–5348. DOI:10.1021/acs.biomac.1c01279
  • Hoang HT, Jo S-H, Phan Q-T, et al. Dual Ph-/thermo-responsive chitosan-based hydrogels prepared using “click” chemistry for colon-targeted drug delivery applications. Carbohydr Polym. 2021;260:117812.
  • Shin HH, Choi HW, Lim JH, et al. Near-infrared light-triggered thermo-responsive Poly(N-Isopropylacrylamide)-Pyrrole nanocomposites for chemo-photothermal cancer therapy. Nanoscale Res Lett. 2020;15(1):214. DOI:10.1186/s11671-020-03444-4
  • Rao Z-K, Chen R, Zhu H-Y, et al. Carboxylic terminated thermo-responsive copolymer hydrogel and improvement in peptide release profile. Materials. 2018;11(3):338. DOI:10.3390/ma11030338
  • Shi K, Xue B, Jia Y, et al. Sustained co-delivery of gemcitabine and cis-platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer. Nano Res. 2019;12(6):1389–1399. DOI:10.1007/s12274-019-2342-7
  • Wang H, Paul A, Duong N, et al. Tunable Control of hydrogel microstructure by kinetic competition between self-assembly and crosslinking of elastin-like proteins. ACS Appl Mater Interfaces. 2018;10(26):21808–21815. DOI:10.1021/acsami.8b02461
  • Peters JT, Hutchinson SS, Lizana N, et al. Synthesis and characterization of poly(N-isopropyl methacrylamide) core/shell nanogels for controlled release of chemotherapeutics. Chem Eng J. 2018;340:58–65.
  • Zong S, Wen H, Lv H, et al. Intelligent hydrogel with both redox and thermo-response based on cellulose nanofiber for controlled drug delivery. Carbohydr Polym. 2022;278:118943.
  • Gosecka M, Gosecki M, Urbaniak M. Composite dynamic hydrogels constructed on boronic ester cross-links with NIR-enhanced diffusivity. Biomacromolecules. 2022;23(3):948–959.
  • Sun Z, Li Y, Zheng SY, et al. Zwitterionic nanocapsules with salt- and thermo-responsiveness for controlled encapsulation and release. ACS Appl Mater Interfaces. 2021;13(39):47090–47099. DOI:10.1021/acsami.1c15071
  • Kamoun EA, Fahmy A, Taha TH, et al. Thermo-and Ph-sensitive hydrogel membranes composed of poly(N-isopropylacrylamide)-hyaluronan for biomedical applications: influence of hyaluronan incorporation on the membrane properties. Int j biol macromol. 2018;106:158–167.
  • Zhou W, Duan Z, Zhao J, et al. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact Mater. 2022;17:1–17.
  • Choi YH, Hwang J-S, Han SH, et al. Thermo-responsive microcapsules with tunable molecular permeability for controlled encapsulation and release. Adv Funct Mater. 2021;31(24):2100782. DOI:10.1002/adfm.202100782
  • Liu L, Ma H, Yu J, et al. Fabrication of glycerophosphate-based nanochitin hydrogels for prolonged release under in vitro physiological conditions. Cellul. 2021;28(8):4887–4897. DOI:10.1007/s10570-021-03819-5
  • Shi D, Mi G, Shen Y, et al. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale. 2019;11(32):15057–15071. DOI:10.1039/C9NR03931G
  • Wu D, Tang Y, Li W, et al. Thermo-sensitive micelles extend therapeutic potential for febrile seizures signal transduction. Targeted Ther. 2021;6(1):296. DOI:10.1038/s41392-021-00638-9
  • Castillo-Henríquez L, Castro-Alpízar J, Lopretti-Correa M, et al. Exploration of bioengineered scaffolds composed of thermo-responsive polymers for drug delivery in wound healing. Int J Mol Sci. 2021;22(3):1408. DOI:10.3390/ijms22031408
  • Rafael D, Melendres MMR, Andrade F, et al. Thermo-responsive hydrogels for cancer local therapy: challenges and state-of-art. Int J Pharm. 2021;606:120954.
  • Chatterjee S, PC-L H. Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems. Polymers. 2021;13(13):2086.
  • Ding L, Cui X, Jiang R, et al. Design, Synthesis and characterization of a novel type of thermo-responsible phospholipid microcapsule-alginate composite hydrogel for drug delivery. Molecules. 2020;25(3):694. DOI:10.3390/molecules25030694
  • Ye J-J, Li L-F, Hao R-N, et al. Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release. Bioact Mater. 2023;21:284–298.
  • Mostafalu P, Tamayol A, Rahimi R, et al. Smart bandage for monitoring and treatment of chronic wounds. Small. 2018;14(33):1703509. DOI:10.1002/smll.201703509
  • Theodorakis N, Saravanou S-F, Kouli N-P, et al. Ph/Thermo/Thermo-responsive grafted alginate-based SiO2 hybrid nanocarrier/hydrogel drug delivery systems. Polymers. 2021;13(8):1228. DOI:10.3390/polym13081228
  • Bobbala S, Gibson B, Gamble AB, et al. Poloxamer 407-chitosan grafted thermoresponsive hydrogels achieve synchronous and sustained release of antigen and adjuvant from single-shot vaccines. Immunol Cell Biol. 2018;96(6):656–665. DOI:10.1111/imcb.12031
  • Chi J, Zhang X, Chen C, et al. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater. 2020;5(2):253–259. DOI:10.1016/j.bioactmat.2020.02.004
  • Ahmad U, Sohail M, Ahmad M, et al. Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: development, characterization and in-vivo evaluation. Int j biol macromol. 2019;129:233–245.
  • Chatterjee S, PC-L H, Siu WS, et al. Influence of Ph-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int j biol macromol. 2021;168:163–174.
  • Modi D, Mohammad, Warsi MH, et al. Formulation development, optimization, and in vitro assessment of thermoresponsive ophthalmic pluronic F127-chitosan in situ tacrolimus gel. J Biomat Sci-Polym E. 2021;32(13):1678–1702. DOI:10.1080/09205063.2021.1932359
  • Luckanagul JA, Pitakchatwong C, Bhuket PRN, et al. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr Polym. 2018;181:1119–1127.
  • Lima-Sousa R, de Melo-Diogo D, Alves CG, et al. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Mat Sci Enf C Mater. 2020;117:111294. doi:10.1016/j.msec.2020.111294
  • Dehghan-Baniani D, Chen Y, Wang D, et al. Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloids Surf B. 2020;192:111059.
  • Fathalla Z, Mustafa WW, Abdelkader H, et al. Hybrid thermosensitive-mucoadhesive in situ forming gels for enhanced corneal wound healing effect of L-carnosine. Drug Deliv. 2022;29(1):374–385. DOI:10.1080/10717544.2021.2023236
  • Isiklan N, Tokmak S. Development of thermo/thermo/Ph-responsive chitosan coated pectin-graft-poly(N, N-diethyl acrylamide) microcarriers. Carbohydr Polym. 2019;218:112–125.
  • Kim W, Kim M, Tae G. Injectable system and its potential application for the delivery of biomolecules by using thermosensitive poly(gamma-glutamic acid)-based physical hydrogel. Int j biol macromol. 2018;110:457–464.
  • Kocak FZ, Talari ACS, Yar M, et al. In-situ forming ph and thermosensitive injectable hydrogels to stimulate angiogenesis: potential candidates for fast bone regeneration applications. Int J Mol Sci. 2020;21(5):1633. DOI:10.3390/ijms21051633
  • Mamidi N, Velasco Delgadillo RM. Design, fabrication and drug release potential of dual stimuli-responsive composite hydrogel nanoparticle interfaces. Colloids Surf B. 2021;204:111819.
  • Nafee N, Zewail M, Boraie N. Alendronate-loaded, biodegradable smart hydrogel: a promising injectable depot formulation for osteoporosis. J Drug Targeting. 2018;26(7):563–575.
  • Rezaei N, Hamidabadi HG, Khosravimelal S, et al. Antimicrobial peptides-loaded smart chitosan hydrogel: release behavior and antibacterial potential against antibiotic resistant clinical isolates. Int j biol macromol. 2020;164:855–862.
  • Wang F, Li J, Chen C, et al. Preparation and synergistic chemo-photothermal therapy of redox-responsive carboxymethyl cellulose/chitosan complex nanoparticles. Carbohydr Polym. 2022;275:118714.
  • Wang Q-S, Xu B-X, Fan K-J, et al. Dexamethasone-loaded thermo-sensitive hydrogel attenuates osteoarthritis by protecting cartilage and providing effective pain relief. Ann Transl Med. 2021;9(14):1120. DOI:10.21037/atm-21-684
  • Wang S, Chen B, Ouyang L, et al. A novel stimuli-responsive injectable antibacterial hydrogel to achieve synergetic photothermal/gene-targeted therapy towards uveal melanoma. Adv Sci. 2021;8(18):2004721. DOI:10.1002/advs.202004721
  • Wu X, Yang Y, Kling C, et al. Inactivated rabies virus-vectored immunocontraceptive vaccine in a thermo-responsive hydrogel induces high and persistent antibodies against rabies, but insufficient antibodies against gonadotropin-releasing hormone for contraception. Vaccines. 2019;7(3):73. DOI:10.3390/vaccines7030073
  • Yan Y-H, Rong L-H, Ge J, et al. Mussel-inspired hydrogel composite with multi-stimuli responsive behavior. Macromol Mater Eng. 2019;304(7):1800720. doi:10.1002/mame.201800720.
  • Yeo YH, Park WH. Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels. Carbohydr Polym. 2021;258:117705.
  • Liu C, Yang P, Li J, et al. NIR/NIR/Ph-responsive chitosan hydrogels containing Ti3C2/AuNRs with NIR-triggered photothermal effect. Carbohydr Polym. 2022;295:119853.
  • King JL, Maturavongsadit P, Hingtgen SD, et al. Injectable pH thermo-responsive hydrogel scaffold for tumoricidal neural stem cell therapy for glioblastoma multiforme. Pharmaceutics. 2022;14(10):2243. DOI:10.3390/pharmaceutics14102243
  • Lin T, Zhang J, Long H, et al. Temperature-sensitive hydrogels containing carboxylated chitosan-modified carbon nanotubes for controlled drug release. ACS Appl Nano Mater. 2022;5(8):10409–10420. DOI:10.1021/acsanm.2c01777
  • Céspedes-Valenzuela DN, Sánchez-Rentería S, Cifuentes J, et al. Novel photo- and thermo-responsive nanocomposite hydrogels based on functionalized rGO and modified SIS/Chitosan polymers for localized treatment of malignant cutaneous melanoma. front bioeng biotech. 2022;10:947616.
  • Goo YT, Yang HM, Kim CH, et al. Optimization of a floating poloxamer 407-based hydrogel using the Box-Behnken design: in vitro characterization and in vivo buoyancy evaluation for intravesical instillation. Eur J Pharm Sci. 2021;163:105962.
  • Aprodu A, Mantaj J, Raimi-Abraham B, et al. Evaluation of a methylcellulose and hyaluronic acid hydrogel as a vehicle for rectal delivery of biologics. Pharmaceutics. 2019;11(3):127. DOI:10.3390/pharmaceutics11030127
  • Xu L, Zhong S, Gao Y, et al. Thermo-responsive poly(N-isopropylacrylamide)-hyaluronic acid nano-hydrogel and its multiple applications. Int j biol macromol. 2022;194:811–818.
  • Liu X, Li M, Zhang H, et al. An injectable thermo-responsive hydrogel based cellulose-brush derivative for the sustained release of doxorubicin. Cellul. 2021;28(3):1587–1597. DOI:10.1007/s10570-020-03612-w
  • Sajadi-Javan ZS, Varshosaz J, Mirian M, et al. Thermo-responsive hydrogels based on methylcellulose/Persian gum loaded with taxifolin enhance bone regeneration: an in vitro/in vivo study. Cellul. 2022;29(4):2413–2433. DOI:10.1007/s10570-021-04383-8
  • Emam HE, Shaheen TI. Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release. Carbohydr Polym. 2022;278:118925.
  • Song F, Gong J, Tao Y, et al. A robust regenerated cellulose-based dual stimuli-responsive hydrogel as an intelligent switch for controlled drug delivery. Int j biol macromol. 2021;176:448–458.
  • Okubo M, Iohara D, Anraku M, et al. A thermoresponsive hydrophobically modified hydroxypropylmethylcellulose/cyclodextrin injectable hydrogel for the sustained release of drugs. Int J Pharm. 2020;575:118845.
  • Kim MH, Park H, Shin JY, et al. Effect of vitamin derivatives on gelation rate and gel strength of methylcellulose. Carbohydr Polym. 2018;196:414–421.
  • Al-Rajabi MM, Teow YH. Green synthesis of thermo-responsive hydrogel from oil palm empty fruit bunches cellulose for sustained drug delivery. Polymers. 2021;13(13):2153.
  • Chen T, Yang Y, Peng H, et al. Cellulose nanocrystals reinforced highly stretchable thermal-sensitive hydrogel with ultra-high drug loading. Carbohydr Polym. 2021;266:118122.
  • Liang Y, Zhu H, Wang L, et al. Biocompatible smart cellulose nanofibres for sustained drug release via pH and temperature dual-responsive mechanism. Carbohydr Polym. 2020;249:116876.
  • Li Y, Zhang L, Song Z, et al. Intelligent temperature-Ph dual responsive nanocellulose hydrogels and the application of drug release towards 5-fluorouracil. Int j biol macromol. 2022;223:11–16.
  • Andrade F, Roca-Melendres MM, Llaguno M, et al. Smart and eco-friendly N-isopropylacrylamide and cellulose hydrogels as a safe dual-drug local cancer therapy approach. Carbohydr Polym. 2022;295:119859.
  • Ghorbani F, Ghalandari B, Liu Z, et al. Injectable light-assisted thermo-responsive methylcellulose-sodium humate hydrogel proposed for photothermal ablation and localized delivery of cisplatin. Front Bioeng Biotech. 2022;10:967438.
  • Soares SF, Fateixa S, Trindade T, et al. A versatile synthetic route towards gelatin-silica hybrids and magnetic composite colloidal nanoparticles. Adv Compos Hybrid Mater. 2022;5(2):884–898. DOI:10.1007/s42114-021-00386-y
  • Luo L-J, Duc Dung N, Lai J-Y. Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease. Mat Sci Eng C-Mater. 2020;115:111095.
  • Lee SY, Jeon SI, Sim SB, et al. A supramolecular host-guest interaction-mediated injectable hydrogel system with enhanced stability and sustained protein release. Acta Biomater. 2021;131:286–301.
  • Mansukhani ND, Guiney LM, Wei Z, et al. Optothermally reversible carbon nanotube-DNA supramolecular hybrid hydrogels. Macromol Rapid Commun. 2018;39(2):1700587. DOI:10.1002/marc.201700587
  • An H, Yang Y, Zhou Z, et al. Pectin-based injectable and biodegradable self-healing hydrogels for enhanced synergistic anticancer therapy. Acta Biomater. 2021;131:149–161.
  • Ying R, Huang W-C, Mao X. Synthesis of agarose-based multistimuli-responsive hydrogel dressing for accelerated wound healing. ACS Biomater Sci Eng. 2022;8(1):293–302.
  • Liao J, Huang H. Temperature/pH dual sensitive Hericium erinaceus residue carboxymethyl chitin/poly (N-isopropyl acrylamide) sequential IPN hydrogels. Cellul. 2020;27(2):825–838.
  • Sun X-F, Zeng Q, Wang H, et al. Preparation and swelling behavior of pH/temperature responsive semi-IPN hydrogel based on carboxymethyl xylan and poly(N-isopropyl acrylamide). Cellul. 2019;26(3):1909–1922. DOI:10.1007/s10570-018-2180-x
  • Pilipenko IM, Korzhikov-Vlakh VA, Zakharova NV, et al. Thermo- and Ph-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly(N-isopropylacrylamide. Carbohydr Polym. 2020;248:116764.
  • Liu L, Bakhshi H, Jiang S, et al. Composite polymeric membranes with directionally embedded fibers for controlled dual actuation. Macromol Rapid Commun. 2018;39(10):1800082. DOI:10.1002/marc.201800082
  • Barbosa PM, Souza Campanholi K, Vilsinski BH, et al. Aluminum phthalocyanine hydroxide-loaded thermoresponsive biomedical hydrogel: a design for targeted photosensitizing drug delivery. J Mol Liq. 2021;341:117421.
  • Sharma A, Raghunathan K, Solhaug H, et al. Modulating acrylic acid content of nanogels for drug delivery & biocompatibility studies. J Colloid Interface Sci. 2022;607:76–88.
  • Hosseinzadeh H, Hosseinzadeh S, Pashaei S, et al. Synthesis of multiresponsive beta-cyclodextrin nanocomposite through surface RAFT polymerization for controlled drug delivery. Polym Adv Technol. 2019;30(11):2860–2871. DOI:10.1002/pat.4718
  • Kim YK, Kim E-J, Lim JH, et al. Dual stimuli-triggered nanogels in response to temperature and pH changes for controlled drug release. Nanoscale Res Lett. 2019;14:77.
  • Xu Y, Chen J, Tong L, et al. Ph/NIR/NIR-responsive semiconducting polymer nanoparticles for highly effective photoacoustic image guided chemo-photothermal synergistic therapy. J Controlled Release. 2019;293:94–103.
  • Xu X, Sun J, Bing L, et al. Fractal features of dual temperature/temperature/Ph-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels and resultant effects on the controlled drug delivery performances. Eur Polym J. 2022;171:111203.
  • Prusty K, Patra S, Swain SK. Nano ZnO imprinted dextran hybrid poly (N-isopropylacrylamide)/poly ethylene glycol composite hydrogels for in vitro release of ciprofloxacin. Mater Today Commun. 2021;26:101869.
  • Chan BQY, Cheng H, Liow SS, et al. Poly(carbonate urethane)-based thermogels with enhanced drug release efficacy for chemotherapeutic applications. Polymers. 2018;10(1):89. DOI:10.3390/polym10010089
  • Liu D-E, Chen Q, Long Y-B, et al. A thermo-responsive polyurethane organogel for norfloxacin delivery. Polym Chem. 2018;9(2):228–235. DOI:10.1039/C7PY01803G
  • Ma J, Wang C, Sun Y, et al. Comparative study of oral and intranasal puerarin for prevention of brain injury induced by acute high-altitude hypoxia. Int J Pharm. 2020;591:120002.
  • Han Y, Jiang L, Shi H, et al. Effectiveness of an ocular adhesive polyhedral oligomeric silsesquioxane hybrid thermo-responsive FK506 hydrogel in a murine model of dry eye. Bioact Mater. 2022;9:77–91.
  • Shi H, Chi H, Luo Z, et al. Self-healable, fast responsive Poly(omega-Pentadecalactone) thermogelling system for effective liver cancer therapy. Front Chem. 2019;7:683.
  • Liu D, Wu Q, Zhu Y, et al. Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization. Drug Deliv. 2019;26(1):522–531. DOI:10.1080/10717544.2019.1609623
  • Huang C, Fu C, Qi Z-P, et al. Localised delivery of quercetin by thermo-sensitive PLGA-PEG-PLGA hydrogels for the treatment of brachial plexus avulsion Artif Cells. Nanomed Biotechnol. 2020;48(1):1010–1021. DOI:10.1080/21691401.2020.1770265
  • Fan X, Cheng H, Wang X, et al. Thermoresponsive supramolecular chemotherapy by “V”-shaped armed beta-cyclodextrin star polymer to overcome drug resistance. Adv Healthcare Mater. 2018;7(7):1701143. DOI:10.1002/adhm.201701143
  • Palmese LL, Fan M, Scott RA, et al. Multi-stimuli-responsive, liposome-crosslinked poly(ethylene glycol) hydrogels for drug delivery. J Biomat Sci-Polym E. 2020;32(5):635–656. DOI:10.1080/09205063.2020.1855392
  • Ruan C, Liu C, Hu H, et al. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem Sci. 2019;10(17):4699–4706. DOI:10.1039/C9SC00375D
  • Zhao B, Zhuang Y, Liu Z, et al. Regulated extravascular microenvironment via reversible thermosensitive hydrogel for inhibiting calcium influx and vasospasm. Bioact Mater. 2023;21:422–435.
  • Chen Y, Shi J, Zhang Y, et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J Mater Chem B. 2020;8(5):980–992. DOI:10.1039/C9TB02523E
  • Xu W-K, Tang J-Y, Yuan Z, et al. Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA-PEG-PLGA thermogel dressing. Chin J Polym Sci. 2019;37(6):548–559. DOI:10.1007/s10118-019-2212-5
  • Yuan B, Zhang Y, Wang Q, et al. Thermosensitive vancomycin@PLGA-PEG-PLGA/HA hydrogel as an all-in-one treatment for osteomyelitis. Int J Pharm. 2022;627:122225.
  • Steinhauff D, Jensen M, Talbot M, et al. Silk-elastinlike copolymers enhance bioaccumulation of semisynthetic glycosaminoglycan ethers for prevention of radiation induced proctitis. J Controlled Release. 2021;332:503–515.
  • Carreno G, Pereira A, Avila-Salas F, et al. Development of “on-demand” thermo-responsive hydrogels for anti-cancer drugs sustained release: rational design, in silico prediction and in vitro validation in colon cancer models. Mat Sci Eng C-Mater. 2021;131:112483.
  • Constantin M, Bucatariu S, Ascenzi P, et al. Smart drug delivery system activated by specific biomolecules. Mat Sci Eng C-Mater. 2020;108:110466.
  • Abedi F, Davaran S, Hekmati M, et al. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. J Nanobiotechnol. 2021;19(1):18. DOI:10.1186/s12951-020-00764-6
  • Ayari MG, Kadhirvel P, Favetta P, et al. Synthesis of imprinted hydrogel microbeads by inverse Pickering emulsion to controlled release of adenosine 5 ’-monophosphate. Mat Sci Eng C-Mater. 2019;101:254–263.
  • Ayari MG, Favetta P, Warszycki D, et al. Molecularly imprinted hydrogels selective to ribavirin as new drug delivery systems to improve efficiency of antiviral nucleoside analogue: a proof-of-concept study with influenza a virus. Macromol biosci. 2022;22(2):2100291. DOI:10.1002/mabi.202100291
  • Razavi B, Abdollahi A, Roghani-Mamaqani H, et al. Light- and temperature-responsive micellar carriers prepared by spiropyran-initiated atom transfer polymerization: investigation of photochromism kinetics, responsivities, and controlled release of doxorubicin. Polymer. 2020;187:122046.
  • Chen Y, Gao Y, da Silva LP, et al. A thermo-//Ph-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release. Polym Chem. 2018;9(29):4063–4072. DOI:10.1039/C8PY00838H
  • Giussi JM, Martinez Moro M, Iborra A, et al. A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(N-isopropylacrylamide-co-methacrylic acid) microgels. Soft Matter. 2020;16(4):881–890. DOI:10.1039/C9SM02070E
  • Wei W, Zarghami N, Abasi M, et al. Implantable magnetic nanofibers with ON-OFF switchable release of curcumin for possible local hyperthermic chemotherapy of melanoma. J Biomed Mater Res Part A. 2022;110(4):851–860. DOI:10.1002/jbm.a.37333
  • Cui X, Tang J, Hartanto Y, et al. NIPAM-based microgel microenvironment regulates the therapeutic function of cardiac stromal cells. ACS Appl Mater Interfaces. 2018;10(44):37783–37796. DOI:10.1021/acsami.8b09757
  • Fathi M, Alami-Milani M, Geranmayeh MH, et al. Dual thermo-and Ph-sensitive injectable hydrogels of chitosan/(poly(N-isopropylacrylamide-co-itaconic acid)) for doxorubicin delivery in breast cancer. Int j biol macromol. 2019;128:957–964.
  • Narupai B, Smith PT, Nelson A. 4D printing of multi-stimuli responsive protein-based hydrogels for autonomous shape transformations. Adv Funct Mater. 2021;31(23):2011012.
  • Eyigor A, Bahadori F, Yenigun VB, et al. Beta-Glucan based temperature responsive hydrogels for 5-ASA delivery. Carbohydr Polym. 2018;201:454–463.
  • Hao F, Wang L, Chen B, et al. Bifunctional smart hydrogel dressing with strain sensitivity and NIR-Responsive performance. ACS Appl Mater Interfaces. 2021;13(39):46938–46950. DOI:10.1021/acsami.1c15312
  • Yu B, Song N, Hu H, et al. A degradable triple temperature-, Ph-, and redox-responsive drug system for cancer chemotherapy. J Biomed Mater Res Part A. 2018;106(12):3203–3210. DOI:10.1002/jbm.a.36515
  • Chen Z, Song S, Ma J, et al. Fabrication of magnetic core/shell hydrogels via microfluidics for controlled drug delivery. Chem Eng Sci. 2022;248:117216.
  • Kim S, Kim J, Lee J. Fast and opposite temperature responsivity in release behavior of cocontinuous hydrogel composites. J Ind Eng Chem. 2021;104:514–520.
  • Kim BS, Chen Y-T, Srinoi P, et al. Hydrogel-encapsulated mesoporous silica-coated gold nanoshells for smart drug delivery. Int J Mol Sci. 2019;20(14):3422. DOI:10.3390/ijms20143422
  • Chalanqui MJ, Pentlavalli S, McCrudden C, et al. Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P (NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. Mat Sci Eng C-Mater. 2019;95:409–421.
  • Zheng A, Wu D, Fan M, et al. Injectable zwitterionic thermosensitive hydrogels with low-protein adsorption and combined effect of photothermal-chemotherapy. J Mater Chem B. 2020;8(46):10637–10649. DOI:10.1039/D0TB01763A
  • Ter Boo GJA, Schmid T, Zderic I, et al. Local application of a gentamicin-loaded thermo- responsive hydrogel allows for fracture healing upon clearance of a high staphylococcus aureus load in a rabbit model. Eur Cells Mater. 2018;35:151–164.
  • Fathi M, Barar J, Erfan-Niya H, et al. Methotrexate-conjugated chitosan-grafted Ph- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int j biol macromol. 2020;154:1175–1184.
  • Li Z, Liang B. Modulation of phase transition of poly(N-isopropylacrylamide)-based microgels for pulsatile drug release. Polym Adv Technol. 2022;33(3):710–722.
  • Strachota B, Strachota A, Slouf M, et al. Monolithic intercalated PNIPAm/starch hydrogels with very fast and extensive one-way volume and swelling responses to temperature and pH: prospective actuators and drug release systems. Soft Matter. 2019;15(4):752–769. DOI:10.1039/C8SM02153H
  • Pang Q, Zhao J, Zhang S, et al. Near-infrared triggered on-demand local anesthesia using a jammed microgels system. J Biomat Sci-Polym E. 2020;31(17):2252–2267. DOI:10.1080/09205063.2020.1800904
  • Liu LZ, Sun XY, Yan ZY, et al. NIR responsive AuNR/pNIPAM/PEGDA inverse opal hydrogel microcarriers for controllable drug delivery. New J Chem. 2021;45(17):7893–7899. DOI:10.1039/D0NJ06289H
  • Wang T, Liu J, Nie F. Non-dye cell viability monitoring by using Ph-responsive inverse opal hydrogels. J Mater Chem B. 2018;6(7):1055–1065.
  • Montaser AS, Rehan M, El-Naggar ME. Ph-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. Int j biol macromol. 2019;124:1016–1024.
  • Li P, Hou X, Qu L, et al. PNIPAM-MAPOSS hybrid hydrogels with excellent swelling behavior and enhanced mechanical performance: preparation and drug release of 5-fluorouracil. Polymers. 2018;10(2):137. DOI:10.3390/polym10020137
  • Duan J, Huang Y, Zong S, et al. Preparation and drug release properties of a thermo sensitive GA hydrogel. Polymers. 2021;13(1):119. DOI:10.3390/polym13010119
  • Monfared AH, Zamanian A, Sharifi I, et al. Reversible multistimuli-responsive manganese zinc ferrite/P(NIPAAM-AAc-AAm) core-shell nanoparticles: a programmed ferrogel system. Mater Chem Phys. 2019;226:44–50.
  • Perez-Kohler B, Pascual G, Benito-Martinez S, et al. Thermo-responsive antimicrobial hydrogel for the in-situ coating of mesh materials for hernia repair. Polymers. 2020;12(6):1245. DOI:10.3390/polym12061245
  • Yang Z, Fu K, Yu J, et al. Thermo- and Ph-responsive copolymer poly(t-butyl acrylate)-b-poly{[2-(dimethylamino) ethyl methacrylate]-co-[poly(ethylene glycol) methyl ether methacrylate]}: preparation, characterization, and their applications as organic dye adsorbents and drug delivery systems. React Funct Polym. 2018;131:342–349.
  • Huynh Nguyen Anh T, Vo Thi Thu N. Synthesis and properties of Ph-thermo dual responsive semi-IPN hydrogels based on N,N’-diethylacrylamide and itaconamic acid. Polymers. 2020;12(5):1139.
  • Wu J, Wu Z, Sun X, et al. Effect of sodium alginate on the properties of thermosensitive hydrogels. J Chin Chem Soc. 2017;64(2):231–238. DOI:10.1002/jccs.201600152
  • Qu B, Luo Y. Chitosan-based hydrogel beads: preparations, modifications and applications in food and agriculture sectors – a review. Int J Biol Macromol. 2020;152:437–448.
  • Kojima H. Studies on the phase transition of hydrogels and aqueous solutions of thermosensitive polymers. Polym J. 2018;50(6):411–418.
  • Jung HY, Le Thi P, HwangBo K-H, et al. Tunable and high tissue adhesive properties of injectable chitosan based hydrogels through polymer architecture modulation. Carbohydr Polym. 2021;261:117810.
  • Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Controlled Release. 2020;326:150–163.
  • Yan S, Wang Q, Tariq Z, et al. Facile preparation of bioactive silk fibroin/hyaluronic acid hydrogels. Int j biol macromol. 2018;118:775–782.
  • Sarker B, Singh R, Silva R, et al. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS ONE. 2014;9(9):e107952. DOI:10.1371/journal.pone.0107952
  • Zhang H, Sun X, Wang J, et al. Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: enhancing biomineralization strategy. Adv Funct Mater. 2021;31(23):2100093. DOI:10.1002/adfm.202100093
  • Ribeiro JS, Bordini EAF, Ferreira JA, et al. Injectable MMP-Responsive nanotube-modified gelatin hydrogel for dental infection ablation. ACS Appl Mater Interfaces. 2020;12(14):16006–16017. DOI:10.1021/acsami.9b22964
  • Mhiri S, Abid M, Abid S, et al. Green synthesis of covalent hybrid hydrogels containing PEG/PLA-based thermoreversible networks. J Polym Res. 2022;29(8):328. DOI:10.1007/s10965-022-03153-9
  • James R, Manoukian OS, Kumbar SG. Poly(lactic acid) for delivery of bioactive macromolecules. Adv Drug Del Rev. 2016;107:277–288.
  • Javier Lopez-Cano J, Sigen A, Andres-Guerrero V, et al. Thermo-responsive PLGA-PEG-PLGA hydrogels as novel injectable platforms for neuroprotective combined therapies in the treatment of retinal degenerative diseases. Pharmaceutics. 2021;13(2):234. DOI:10.3390/pharmaceutics13020234
  • Daly AC, Riley L, Segura T, et al. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5(1):20–43. DOI:10.1038/s41578-019-0148-6
  • Pawlowska S, Rinoldi C, Nakielski P, et al. Ultraviolet light-assisted electrospinning of core-shell fully cross-linked P(NIPAAm-co-NIPMAAm) Hydrogel-based nanofibers for thermally induced drug delivery self-regulation. Adv Mater Interfaces. 2020;7(12):2000247. DOI:10.1002/admi.202000247
  • Zhao X, Wu H, Guo B, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34–47.
  • Song L, Zhang B, Gao G, et al. Single component Pluronic F127-lipoic acid hydrogels with self-healing and multi-responsive properties. Eur Polym J. 2019;115:346–355.
  • Wei J, Yu H, Liu H, et al. Facile synthesis of thermo-responsive nanogels less than 50 nm in diameter via soap- and heat-free precipitation polymerization. J Mater Sci. 2018;53(17):12056–12064. DOI:10.1007/s10853-018-2495-x
  • Xu Y, Zhu H, Denduluri A, et al. Recent advances in microgels: from biomolecules to functionality. small. 2022;18(34):2200180. DOI:10.1002/smll.202200180
  • Luo Y, Li J, Hu Y, et al. Injectable thermo-responsive nano-hydrogel loading triptolide for the anti-breast cancer enhancement via localized treatment based on “two strikes. Effects Acta Pharm Sin B. 2020;10(11):2227–2245. DOI:10.1016/j.apsb.2020.05.011
  • Li D, van Nostrum CF, Mastrobattista E, et al. Nanogels for intracellular delivery of biotherapeutics. J Controlled Release. 2017;259:16–28.
  • Stawicki B, Schacher T, Cho H. Nanogels as a versatile drug delivery system for brain cancer. Gels. 2021;7(2):63.
  • Choi YH, Jeon S-J, Kim S-H. Swelling and deswelling kinetics of thermo-responsive microcapsules with ultrathin membrane. Adv Mater Interfaces. 2021;8(19):2100538.
  • Oroojalian F, Babaei M, Taghdisi SM, et al. Encapsulation of Thermo-responsive gel in Ph-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin. J Controlled Release. 2018;288:45–61.
  • Ghosh T, Das T, Purwar R. Review of electrospun hydrogel nanofiber system: synthesis, properties and applications. Polym Eng Sci. 2021;61(7):1887–1911.
  • Alberto Bernal-Chavez S, Alcala-Alcala S, Cerecedo D, et al. Platelet lysate-loaded PLGA nanoparticles in a thermo-responsive hydrogel intended for the treatment of wounds. Eur J Pharm Sci. 2020;146:105231.
  • Segredo-Morales E, Garcia-Garcia P, Reyes R, et al. Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic-alginate composite thermogel. Int J Pharm. 2018;543(1–2):160–168. DOI:10.1016/j.ijpharm.2018.03.034
  • Tipa C, Cidade MT, Vieira T, et al. A new long-term composite drug delivery system based on thermo-responsive hydrogel and nanoclay. Nanomaterials. 2021;11(1):25. DOI:10.3390/nano11010025
  • Zhan J, He F, Chen S, et al. Preparation and antibacterial activity of thermo-responsive nanohydrogels from qiai essential oil and pluronic F108. Molecules. 2021;26(19):5771. DOI:10.3390/molecules26195771
  • Jung JM, Kim SH, Giang Phan VH, et al. Therapeutic effects of boronate ester cross-linked injectable hydrogels for the treatment of hepatocellular carcinoma. Biomater Sci. 2021;9(21):7275–7286. DOI:10.1039/D1BM00881A
  • Deliormanli AM, Tuerk M. Flow behavior and drug release study of injectable pluronic f-127 hydrogels containing bioactive glass and carbon-based nanopowders. J Inorg Organomet Polym Mater. 2020;30(4):1184–1196.
  • Haidari H, Bright R, Strudwick XL, et al. Multifunctional ultrasmall AgNP hydrogel accelerates healing of S. aureus infected wounds. Acta Biomater. 2021;128:420–434.
  • Liao A-H, Shih C-P, Li M-W, et al. Development of thermosensitive poloxamer 407-based microbubble gel with ultrasound mediation for inner ear drug delivery. Drug Deliv. 2021;28(1):1256–1271. DOI:10.1080/10717544.2021.1938758
  • Elkomy MH, El-Menshawe SF, Ali AA, et al. Betahistine dihydrochloride transdermal delivery via optimized thermosensitive gels: percutaneous absorption evaluation using rat growth as a biomarker. Drug Delivery Transl Res. 2018;8(1):165–177. DOI:10.1007/s13346-017-0449-5
  • Park YE, Chandramouli K, Watson M, et al. Sustained delivery of lactoferrin using poloxamer gels for local bone regeneration in a rat calvarial defect model. Materials. 2022;15(1):212. DOI:10.3390/ma15010212
  • Pastor Y, Ting I, Luisa Martinez A, et al. Intranasal delivery system of bacterial antigen using thermosensitive hydrogels based on a Pluronic-Gantrez conjugate. Int J Pharm. 2020;579:119154.
  • Zhang Y, Wang X, Chen J, et al. Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J Nanobiotechnol. 2022;20(1):56. DOI:10.1186/s12951-022-01245-8
  • Havanur S, Batish I, Cheruku SP, et al. Poly(n,n-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. Mat Sci Eng C-Mater. 2019;105:110094.
  • Wang R, Wang X, Mu X, et al. Reducing thermal damage to adjacent normal tissue with dual thermo-responsive polymer via thermo-induced phase transition for precise photothermal theranosis. Acta Biomater. 2022;148:142–151.
  • Panyamao P, Ruksiriwanich W, Sirisa-Ard P, et al. Injectable thermosensitive chitosan/pullulan-based hydrogels with improved mechanical properties and swelling capacity. Polymers. 2020;12(11):2514. DOI:10.3390/polym12112514
  • Wang D, Luo M, Huang B, et al. Localized co-delivery of CNTF and FK506 using a thermosensitive hydrogel for retina ganglion cells protection after traumatic optic nerve injury. Drug Deliv. 2020;27(1):556–564. DOI:10.1080/10717544.2020.1748759
  • Ni Z, Hu J, Zhu H, et al. In situ formation of a near-infrared controlled dual-antibacterial platform. New J Chem. 2022;46(4):1569–1576. DOI:10.1039/D1NJ05028A
  • Mukhopadhyay RD, Das G, Ajayaghosh A. Stepwise control of host-guest interaction using a coordination polymer gel. Nat Commun. 2018;9:1987.
  • Zhao X, Guo BL, Ma PX. Single component thermo-gelling electroactive hydrogels from poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone)-graft-aniline tetramer amphiphilic copolymers. J Mater Chem B. 2015;3(43):8459–8468.
  • Garcia-Del Rio L, Diaz-Rodriguez P, Pedersen GK, et al. Sublingual Boosting With A Novel Mucoadhesive Thermogelling Hydrogel Following Parenteral CAF01 priming as a strategy against chlamydia trachomatis. Adv Healthcare Mater. 2022;11(11):2102508. DOI:10.1002/adhm.202102508
  • Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery. Adv Healthcare Mater. 2021;10(1):2001341.
  • Ma M, Zhong Y, Jiang X. Thermosensitive and Ph-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr Polym. 2020;236:116096.
  • Wang S, Attah R, Li J, et al. A Ph-responsive amphiphilic hydrogel based on pseudopeptides and poly(ethylene glycol) for oral delivery of hydrophobic. Drugs ACS Biomater Sci Eng. 2018;4(12):4236–4243. DOI:10.1021/acsbiomaterials.8b01040
  • Youn J, Choi JH, Lee S, et al. Pluronic F-127/silk fibroin for enhanced mechanical property and sustained release drug for tissue engineering biomaterial. Materials. 2021;14(5):1287. DOI:10.3390/ma14051287
  • Zhao Y, Luo L, Huang L, et al. In situ hydrogel capturing nitric oxide microbubbles accelerates the healing of diabetic foot. J Controlled Release. 2022;350:93–106.
  • Yao Y, Cao S, Yang Q, et al. Thermo-gelling dendronized chitosans for modulating protein activity. ACS Appl Bio Mater. 2022;5(11):5377–5385. DOI:10.1021/acsabm.2c00755
  • Chen X, Zhou C, Wang J, et al. Improving the hemocompatibility of antimicrobial peptidomimetics through amphiphilicity masking using a secondary amphiphilic polymer. Adv Healthcare Mater. 2022;11(15):2200546. DOI:10.1002/adhm.202200546
  • Zhang Z, Zhang X, Wang C, et al. Enhancement of motor functional recovery using immunomodulatory extracellular vesicles-loaded injectable thermosensitive hydrogel post spinal cord injury. Chem Eng J. 2022;433:134465.
  • Luo L-J, Lai J-Y. Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems. Mat Sci Eng C-Mater. 2019;98:897–909.
  • Dehghan-Baniani D, Mehrjou B, Chu PK, et al. A biomimetic nano-engineered platform for functional tissue engineering of cartilage superficial zone. Adv Healthcare Mater. 2021;10(4):2001018. DOI:10.1002/adhm.202001018
  • Yang F, Shi K, Jia Y, et al. A biodegradable thermosensitive hydrogel vaccine for cancer immunotherapy. Appl Mater Today. 2020;19:100608.
  • Maulvi FA, Parmar RJ, Shukla MR, et al. Plackett-Burman design for screening of critical variables and their effects on the optical transparency and swelling of gatifloxacin-Pluronic-loaded contact lens. Int J Pharm. 2019;566:513–519.
  • Liang Y, Li M, Yang Y, et al. pH/Glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano. 2022;16(2):3194–3207. DOI:10.1021/acsnano.1c11040
  • Jia B, Li G, Cao E, et al. Recent progress of antibacterial hydrogels in wound dressings. Materials Today Bio. 2023;19:100582.
  • Nilforoushzadeh MA, Khodadadi Yazdi M, Baradaran Ghavami S, et al. Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: an in situ drug formation platform for accelerated wound healing. ACS Biomater Sci Eng. 2020;6(9):5096–5109. DOI:10.1021/acsbiomaterials.0c00988
  • Chen G, Zhou Y, Dai J, et al. Calcium alginate/PNIPAAm hydrogel with body temperature response and great biocompatibility: application as burn wound dressing. Int j biol macromol. 2022;216:686–697.
  • Zhang Y, Yu J, Ren K, et al. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules. 2019;20(4):1478–1492. DOI:10.1021/acs.biomac.9b00043
  • Ilic-Stojanovic S, Nikolic L, Nikolic V, et al. Semi-crystalline copolymer hydrogels as smart drug carriers: in vitro thermo-responsive naproxen release study. Pharmaceutics. 2021;13(2):158. DOI:10.3390/pharmaceutics13020158
  • Zhou J-F, Duan L, Wang Y-X, et al. Design, characterization of resveratrol-thermosensitive hydrogel system (Res-THS) and evaluation of its anti-depressant effect via intranasal administration. Mater Des. 2022;216:110597.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.