794
Views
1
CrossRef citations to date
0
Altmetric
Review

The impact of common pharmaceutical excipients on the gut microbiota

ORCID Icon, , , & ORCID Icon
Pages 1297-1314 | Received 27 Apr 2023, Accepted 07 Jun 2023, Published online: 18 Jun 2023

References

  • Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330–339. doi:10.1136/gutjnl-2015-309990.
  • Saad R, Rizkallah MR, Aziz RK. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes, Gut pathogens. Gut Pathog. 2012;4(1):1–13. doi:10.1186/1757-4749-4-16.
  • Kamath S, Stringer AM, Prestidge CA, et al. Targeting the gut microbiome to control drug pharmacomicrobiomics: the next frontier in oral drug delivery, expert opinion on drug delivery, under review. 2023.
  • Pełka-Wysiecka J, Kaczmarczyk M, Bąba-Kubiś A, et al. Analysis of gut microbiota and their metabolic potential in patients with schizophrenia treated with olanzapine: results from a six-week observational prospective cohort study. J Clin Med. 2019;88(10):1605. doi:10.3390/jcm8101605.
  • Kemp DE, Correll CU, Tohen M, et al. Associations among obesity, acute weight gain, and response to treatment with olanzapine in adolescent schizophrenia. J Child Adolesc Psychopharmacol. 2013;23:522–530. doi: 10.1089/cap.2012.0099
  • van der Zwaal EM, Janhunen SK, La Fleur S, et al. Modelling olanzapine-induced weight gain in rats. Int J Neuropsychopharmacol. 2014;17(1):169–186. doi:10.1017/S146114571300093X
  • Eder U, Mangweth B, Ebenbichler C, et al. Association of olanzapine-induced weight gain with an increase in body fat. Am J Psychiatry. 2001;158(10):1719–1722. doi:10.1176/appi.ajp.158.10.1719
  • Davey KJ, O’Mahony SM, Schellekens H, et al. Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology. 2012;221(1):155–169. doi:10.1007/s00213-011-2555-2
  • Chang X, Shen Y, Yun L, et al. The antipsychotic drug olanzapine altered lipid metabolism in the common carp (Cyprinus carpio L.): insight from the gut microbiota-scfas-liver axis. Sci Total Environ. 2023;856:159054. doi:10.1016/j.scitotenv.2022.159054
  • Cussotto S, Walsh J, Golubeva AV, et al. The gut microbiome influences the bioavailability of olanzapine in rats. EBioMedicine. 2021;66:103307. doi: 10.1016/j.ebiom.2021.103307
  • Katdare A, Chaubal M, Katdare A, et al. Excipient development for pharmaceutical, biotechnology, and drug delivery systems. CRC Press: 2006. doi:10.1201/9781420004137
  • van der Merwe J, Steenekamp J, Steyn D, et al. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics. 2020;12:393. doi: 10.3390/pharmaceutics12050393
  • Ting JM, WW P III, Mecca JM, et al. Advances in polymer design for enhancing oral drug solubility and delivery. Bioconjugate Chem. 2018;29(4):939–952. doi:10.1021/acs.bioconjchem.7b00646.
  • Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Delivery Rev. 1997;25(1):103–128. doi:10.1016/S0169-409X(96)00494-2.
  • Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–96. doi:10.1038/nature14232
  • Singh RK, Wheildon N, Ishikawa S. Food additive p-80 impacts mouse gut microbiota promoting intestinal inflammation, obesity and liver dysfunction. SOJ Microbiol Infect Dis. 2016;4(1):01–10. doi:10.15226/sojmid/4/1/00148.
  • Naimi S, Viennois E, Gewirtz AT, et al. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome. 2021;9(1):66. doi:10.1186/s40168-020-00996-6.
  • Miclotte L, De Paepe E, Li Q, et al. Long term exposure of human gut microbiota with high and low emulsifier sensitivity to soy lecithin in M-SHIME model, bioRxiv. 2021.2012. 2016.472798. 2021 doi: 10.1101/2021.12.16.472798
  • Chassaing B, Compher C, Bonhomme B, et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology. 2022;162(3):743–756. doi:10.1053/j.gastro.2021.11.006.
  • Cox LM, Cho I, Young SA, et al. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. Faseb J. 2013;27(2):692–702. doi:10.1096/fj.12-219477
  • Bouhnik Y, Neut C, Raskine L, et al. Prospective, randomized, parallel‐group trial to evaluate the effects of lactulose and polyethylene glycol‐4000 on colonic flora in chronic idiopathic constipation. Aliment Pharmacol Ther. 2004;19:889–899. doi: 10.1111/j.1365-2036.2004.01918.x
  • Yang B, Zhang X, Gong H, et al. High stearic acid diet modulates gut microbiota and aggravates acute graft-versus-host disease. Signal Transduct Target Ther. 2021;6(1):277. doi:10.1038/s41392-021-00600-9.
  • Ghezzal S, Postal BG, Quevrain E, et al. Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2020;1865(2):158530. doi:10.1016/j.bbalip.2019.158530
  • Li Q, Chen G, Zhu D, et al. Effects of dietary phosphatidylcholine and sphingomyelin on DSS-induced colitis by regulating metabolism and gut microbiota in mice. J Nutr Biochem. 2022;105:109004. doi:10.1016/j.jnutbio.2022.109004
  • Hu S, Du M, Su L, et al. Phosphatidylserine from portunus trituberculatus eggs alleviates insulin resistance and alters the gut microbiota in high-fat-diet-fed mice. Marine Drugs. 2020;18(9):483 doi: 10.3390/md18090483
  • Zhou S, Wang Y, Jacoby JJ, et al. Effects of medium- and long-chain triacylglycerols on lipid metabolism and gut microbiota composition in c57bl/6j mice. J Agric Food Chemistry. 2017;65(31):6599–6607. doi:10.1021/acs.jafc.7b01803.
  • Lai W, Yen H, Lin C, et al. The effects of dietary medium-chain triacylglycerols on growth performance and intestinal microflora in young pigs. Journal Of Animal And Feed Sciences. 2014;23(4):331–336. doi:10.22358/jafs/65669/2014.
  • Nihei N, Okamoto H, Furune T, et al. Dietary α‐cyclodextrin modifies gut microbiota and reduces fat accumulation in high‐fat‐diet‐fed obese mice. BioFactors. 2018;44(4):336–347. doi:10.1002/biof.1429
  • Lv S, Zhang X, Feng Y, et al. Gut microbiota combined with metabolomics reveals the repeated dose oral toxicity of β-cyclodextrin in mice. Front Pharmacol. 2021;11:574607. doi:10.3389/fphar.2020.574607
  • Kosnicki KL, Penprase JC, P. Cintora P, Torres J, Harris GL, Brasser SM, Kelley ST. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome. Addict Biol. 2019;24:617–630. doi: 10.1111/adb.12626
  • LeBrun ES, Nighot M, Dharmaprakash V, et al. The Gut Microbiome and Alcoholic Liver Disease: Ethanol Consumption Drives Consistent and Reproducible Alteration in Gut Microbiota in Mice. Life. 2021;11(1):7 doi: 10.3390/life11010007
  • Chassaing B, Van de Wiele T, De Bodt J, et al. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66:1414–1427.
  • Viennois E, Merlin D, Gewirtz AT, et al. Dietary emulsifier–induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 2017;77(1):27–40. doi:10.1158/0008-5472.CAN-16-1359
  • Viennois E, Bretin A, Dubé PE, et al. Dietary emulsifiers directly impact adherent-invasive E. coli gene expression to drive chronic intestinal inflammation. Cell Rep. 2020;33(1):108229. doi:10.1016/j.celrep.2020.108229.
  • Bancil AS, Sandall AM, Rossi M, et al. Food additive emulsifiers and their impact on gut microbiome, permeability, and inflammation: mechanistic insights in inflammatory bowel disease. J Crohn’s & Colitis. 2021;15(6):1068–1079. doi:10.1093/ecco-jcc/jjaa254
  • Roberts CL, Keita ÅV, Duncan SH, et al. Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut. 2010;59:1331–1339. doi: 10.1136/gut.2009.195370
  • Joneja S, Harcum W, Skinner G, et al. Investigating the fundamental effects of binders on pharmaceutical tablet performance. Drug Dev Ind Pharm. 1999;25(10):1129–1135. doi:10.1081/DDC-100102279.
  • Pharma Excipients. Binder excipients in the pharmaceutical industry. 2023. [Accessed 12 April 2023]. https://www.pharmaexcipients.com/binders/
  • PharmaCentral. Pharmaceutical thickeners (viscosity-increasing agents): overview, types, and functions. 2021. https://pharmacentral.com/learning-hub/technical-guides/pharmaceutical-thickeners-and-viscosity-increasing-agents/#Types_of_Pharmaceutical_Thickening_Agents
  • Wang Y, Li L, Ye C, et al. Alginate oligosaccharide improves lipid metabolism and inflammation by modulating gut microbiota in high-fat diet fed mice. Appl Microbiol Biotechnol. 2020;104(8):3541–3554. doi:10.1007/s00253-020-10449-7
  • Li M, Li G, Shang Q, et al. In vitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe. 2016;39:19–25. doi: 10.1016/j.anaerobe.2016.02.003
  • Fu T, Pan L, Shang Q, et al. Fermentation of alginate and its derivatives by different enterotypes of human gut microbiota: towards personalized nutrition using enterotype-specific dietary fibers. Int j biol macromol. 2021;183:1649–1659. doi:10.1016/j.ijbiomac.2021.05.135
  • Zheng W, Duan M, Jia J, et al. Low-molecular alginate improved diet-induced obesity and metabolic syndrome through modulating the gut microbiota in BALB/c mice. Int j biol macromol. 2021;187:811–820. doi:10.1016/j.ijbiomac.2021.08.003
  • Wang Q, Zhang L, He Y, et al. Effect of κ-carrageenan on glucolipid metabolism and gut microbiota in high-fat diet-fed mice. J Funct Foods. 2021;86:104707. doi: 10.1016/j.jff.2021.104707
  • Munyaka PM, Sepehri S, Ghia J-E, et al. Carrageenan gum and adherent invasive escherichia coli in a piglet model of inflammatory bowel disease: impact on intestinal mucosa-associated microbiota. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.00462
  • Miao M, Shi Y, Li Y, et al. Non-digestible galactomannan oligosaccharides from Cassia seed gum modulate microbiota composition and metabolites of human fecal inoculum. J Funct Foods. 2021;86:104705. doi: 10.1016/j.jff.2021.104705
  • Fåk F, Jakobsdottir G, Kulcinskaja E, et al. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS ONE. 2015;10(5):e0127252. doi:10.1371/journal.pone.0127252
  • Rawi MH, Abdullah A, Ismail A, et al. Manipulation of gut microbiota using acacia gum polysaccharide. ACS Omega. 2021;6:17782–17797. doi: 10.1021/acsomega.1c00302
  • Al-Asmakh M, Sohail MU, Al-Jamal O, et al. The effects of gum acacia on the composition of the gut microbiome and plasma levels of short-chain fatty acids in a rat model of chronic kidney disease. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.569402
  • Chung WSF, Meijerink M, Zeuner B, et al. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol. 2017;93(11). doi:10.1093/femsec/fix127
  • Wei Y, Gong J, Zhu W, et al. Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss of diversity of gut flora. BMC Microbiol. 2016;16:255. doi: 10.1186/s12866-016-0869-2
  • Bang S-J, Lee E-S, Song E-J, et al. Effect of raw potato starch on the gut microbiome and metabolome in mice. Int j biol macromol. 2019;133:37–43. doi:10.1016/j.ijbiomac.2019.04.085
  • González-Bermúdez CA, López-Nicolás R, Peso-Echarri P, et al. Effects of different thickening agents on infant gut microbiota. Food Funct. 2018;9(3):1768–1778. doi:10.1039/C7FO01992K.
  • Wen J-J, Li M-Z, Hu J-L, et al. Different dietary fibers unequally remodel gut microbiota and charge up anti-obesity effects. Food Hydrocolloids. 2023;140:108617.
  • Olano-Martin E, Mountzouris KC, Gibson GR, et al. In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. British Journal Of Nutrition. 2000;83(3):247–255. doi:10.1017/S0007114500000325
  • Mai V, Burns AM, Solch RJ, et al. Resistant maltodextrin consumption in adouble-blind, randomized, crossover clinical trial induces specific changes in potentially beneficial gut bacteria Nutrients. 2022;14(11):2192. doi: 10.3390/nu14112192
  • Burns AM, Solch RJ, Dennis-Wall JC, et al. In healthy adults, resistant maltodextrin produces a greater change in fecal bifidobacteria counts and increases stool wet weight: a double-blind, randomized, controlled crossover study. Nutr Res. 2018;60:33–42. doi: 10.1016/j.nutres.2018.09.007
  • Lu H, Gui Y, Guo T, et al. Effect of the particle size of cellulose from sweet potato residues on lipid metabolism and cecal conditions in ovariectomized rats. Food Funct. 2015;6(4):1185–1193. doi:10.1039/C4FO00799A
  • Wu W, Xie J, Zhang H. Dietary fibers influence the intestinal SCFAs and plasma metabolites profiling in growing pigs. Food Funct. 2016;7(11):4644–4654. doi:10.1039/C6FO01406B.
  • Lee ES, Song EJ, Lee SY, et al. Effects of bentonite Bgp35b‐p on the gut microbiota of mice fed a high‐fat diet. J Sci Food Agric. 2018;98(11):4369–4373. doi:10.1002/jsfa.8934.
  • Cremonini E, Wang Z, Bettaieb A, et al. )-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: implications for steatosis and insulin resistance. Redox Biol. 2018;14:588–599. doi: 10.1016/j.redox.2017.11.002
  • PharmaCentral. Pharmaceutical Diluents and Fillers: overview, Types, and Uses. 2021. [Accessed 20 April 2023]. https://pharmacentral.com/learning-hub/technical-guides/pharmaceutical-diluents-and-fillers/
  • American Pharmaceutical Review. Diluent Excipients. 2023. [Accessed 20 April 2023]. https://www.americanpharmaceuticalreview.com/182392-Diluent-Excipients/
  • Jakobsen LMA, Sundekilde UK, Andersen HJ, et al. Lactose and bovine milk oligosaccharides synergistically stimulate b. longum subsp. longum growth in a simplified model of the infant gut microbiome. J Proteome Res. 2019;18(8):3086–3098. doi:10.1021/acs.jproteome.9b00211.
  • Salli K, Anglenius H, Hirvonen J, et al. The effect of 2′-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose. Sci Rep. 2019;9(1):13232. doi:10.1038/s41598-019-49497-z
  • Magnusson KR, Hauck L, Jeffrey BM, et al. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience. 2015;300:128–140. doi:10.1016/j.neuroscience.2015.05.016
  • Sun S, Araki Y, Hanzawa F, et al. High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. J Nutr Biochem. 2021;93:108621. doi: 10.1016/j.jnutbio.2021.108621
  • Xiang S, Ye K, Li M, et al. Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota. Microbiome. 2021;9:62. doi: 10.1186/s40168-021-01029-6
  • Uebanso T, Kano S, Yoshimoto A, et al. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice Nutrients.2017;9(7):756. doi: 10.3390/nu9070756
  • Maekawa M, Maekawa M, Ushida K, et al. Butyrate and propionate production from D-mannitol in the large intestine of pig and rat. Microb Ecol Health Dis. 2005;17:169–176. doi: 10.1080/08910600500430730
  • Jiang M, Dong F-Y, Pan X-Y, et al. Boric acid was orally toxic to different instars of Blattella germanica (L.) (Blattodea: blattellidae) and caused dysbiosis of the, gut microbiota. Pestic Biochem Physiol. 2021;172:104756. doi: 10.1016/j.pestbp.2020.104756
  • Metzler-Zebeli BU, Vahjen W, Baumgärtel T, et al. Ileal microbiota of growing pigs fed different dietary calcium phosphate levels and phytase content and subjected to ileal pectin infusion. J Anim Sci. 2010;88(1):147–158. doi:10.2527/jas.2008-1560
  • Fuhren J, Schwalbe M, Boekhorst J, et al. Dietary calcium phosphate strongly impacts gut microbiome changes elicited by inulin and galacto-oligosaccharides consumption. Microbiome. 2021;9(1):218. doi:10.1186/s40168-021-01148-0.
  • Gerasimidis K, Bryden K, Chen X, et al. The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. Eur J Nutr. 2020;59(7):3213–3230. doi:10.1007/s00394-019-02161-8.
  • Dong Y, Ding Z, Song L, et al. Sodium benzoate delays the development of drosophila melanogaster larvae and alters commensal microbiota in adult flies. Front Microbiol. 2022;13:911928. doi:10.3389/fmicb.2022.911928
  • Li C-H, Wang C-T, Lin Y-J, et al. Long-term consumption of the sugar substitute sorbitol alters gut microbiome and induces glucose intolerance in mice. Life Sci. 2022;305:120770.
  • Chen H, Zhao R, Wang B, et al. The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact. 2017;8:80–88. doi: 10.1016/j.impact.2017.07.005
  • Bredeck G, Kämpfer AAM, Sofranko A, et al. Effects of dietary exposure to the engineered nanomaterials CeO2, SiO2, Ag, and TiO2 on the murine gut microbiome. Nanotoxicology. 2021;15:1–17. doi: 10.1080/17435390.2021.1940339
  • Diao J, Xia Y, Jiang X, et al. Silicon dioxide nanoparticles induced neurobehavioral impairments by disrupting microbiota–gut–brain axis. J Nanobiotechnol. 2021;19(1):174. doi:10.1186/s12951-021-00916-2.
  • Ogawa T, Okumura R, Nagano K, et al. Oral intake of silica nanoparticles exacerbates intestinal inflammation. Biochem Biophys Res Commun. 2021;534:540–546. doi:10.1016/j.bbrc.2020.11.047
  • Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–186. doi: 10.1038/nature13793
  • Palmnäs MS, Cowan TE, Bomhof MR, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE. 2014;9(10):e109841. doi:10.1371/journal.pone.0109841.
  • Ruiz-Ojeda FJ, Plaza-Díaz J, Sáez-Lara MJ, et al. Effects of sweeteners on the gut microbiota: a review of experimental studies and clinical trials. Adv Nutr. 2019;10:S31–S48.
  • Etxeberria U, Arias N, Boqué N, et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem. 2015;26:651–660. doi: 10.1016/j.jnutbio.2015.01.002
  • Tzounis X, Rodriguez-Mateos A, Vulevic J, et al. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr. 2011;93(1):62–72. doi:10.3945/ajcn.110.000075
  • Wang M, Firrman J, Liu L, et al. A review on flavonoid apigenin: dietary intake, adme, antimicrobial effects, and interactions with human gut microbiota. Bio Med Res Int. 2019;2019:7010467. doi: 10.1155/2019/7010467
  • Ortiz AC, Fideles SOM, Reis CHB, et al. Therapeutic effects of citrus flavonoids neohesperidin, hesperidin and its aglycone, hesperetin on bone health. Biomolecules. 2022;12(5):626. doi:10.3390/biom12050626.
  • Ullah A, Munir S, Badshah SL, et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25(22):5243. doi:10.3390/molecules25225243.
  • Pei R, Liu X, Bolling B. Flavonoids and gut health. Curr Opin Biotechnol. 2020;61:153–159. doi: 10.1016/j.copbio.2019.12.018
  • Gil-Cardoso K, Ginés I, Pinent M, et al. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev. 2016;29(2):234–248. doi:10.1017/S0954422416000159.
  • Li Z, Ren Z, Zhao L, et al. Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: current understanding and future perspectives. Food Chem. 2022;399:133959. doi: 10.1016/j.foodchem.2022.133959
  • Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol. 2011;9(1):34. doi:10.1186/1477-3155-9-34.
  • Waller T, Chen C, Walker SL. Food and industrial grade titanium dioxide impacts gut microbiota. Environ Eng Sci. 2017;34(8):537–550. doi:10.1089/ees.2016.0364.
  • Chen Z, Han S, Zhou D, et al. Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo. Nanoscale. 2019;11:22398–22412. doi: 10.1039/C9NR07580A
  • Zheng H, You Y, Hua M, et al. Chlorophyllin modulates gut microbiota and inhibits intestinal inflammation to ameliorate hepatic fibrosis in mice. Front Physiol. 2018;9. doi:10.3389/fphys.2018.01671
  • Mercier-Bonin M, Despax B, Raynaud P, et al. Mucus and microbiota as emerging players in gut nanotoxicology: the example of dietary silver and titanium dioxide nanoparticles. Crit Rev Food Sci Nutr. 2018;58(6):1023–1032. doi:10.1080/10408398.2016.1243088
  • Chung E, Elmassry MM, Kottapalli P, et al. Metabolic benefits of annatto-extracted tocotrienol on glucose homeostasis, inflammation, and gut microbiome. Nutr Res. 2020;77:97–107. doi: 10.1016/j.nutres.2020.04.001
  • Xie Y, Li W, Zhu L, et al. Effects of phycocyanin in modulating the intestinal microbiota of mice. Microbiologyopen. 2019;8:e00825. doi: 10.1002/mbo3.825
  • Yang Q-Y, Ma L-L, Zhang C, et al. Exploring the mechanism of indigo naturalis in the treatment of ulcerative colitis based on TLR4/MyD88/NF-κB signaling pathway and gut microbiota. Front Pharmacol. 2021;12:674416. doi:10.3389/fphar.2021.674416
  • Kwon YH, Banskota S, Wang H, et al. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat Commun. 2022;13(1):7617. doi:10.1038/s41467-022-35309-y
  • Abu-Ghazaleh BM. Pretreatment with allura red or tartrazine increase resistance of e. coli and staphylococcus aureus to some preservatives. J Pure Appl Microbiol. 2022;16(1):389–394. doi:10.22207/JPAM.16.1.33.
  • Wu L, Xu Y, Lv X, et al. Impacts of an azo food dye tartrazine uptake on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in crucian carp (Carassius auratus). Ecotoxicol Environ Saf. 2021;223:112551. doi: 10.1016/j.ecoenv.2021.112551
  • Rasooly R. Expanding the bactericidal action of the food color additive phloxine B to gram-negative bacteria. FEMS Immunol Med Microbiol. 2005;45(2):239–244. doi:10.1016/j.femsim.2005.04.004.
  • Feng J, Cerniglia CE, Chen H. Toxicological significance of azo dye metabolism by human intestinal microbiota. Front Biosci (Elite. 2012;4(2):568–586. doi:10.2741/e400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.