624
Views
0
CrossRef citations to date
0
Altmetric
Review

Oral delivery of biomacromolecules by overcoming biological barriers in the gastrointestinal tract: an update

, , &
Pages 1333-1347 | Received 22 May 2023, Accepted 27 Jun 2023, Published online: 13 Jul 2023

References

  • Urquhart L. Top companies and drugs by sales in 2022. Nat Rev Drug Discov. 2023;22(4):260. doi: 10.1038/d41573-023-00039-3
  • Cao SJ, Xu S, Wang HM, et al. Nanoparticles: oral delivery for protein and peptide drugs. AAPS Pharm Sci Tech. 2019;20(5):190. doi: 10.1208/s12249-019-1325-z
  • Brayden DJ, Hill TA, Fairlie DP, et al. Systemic delivery of peptides by the oral route: formulation and medicinal chemistry approaches. Adv Drug Deliv Rev. 2020;157:2–36.
  • Chen G, Kang W, Li W, et al. Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies. Theranostics. 2022;12(3):1419–1439. doi: 10.7150/thno.61747
  • Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov. 2020;19(4):277–289. doi: 10.1038/s41573-019-0053-0
  • Cui Z, Qin L, Guo S, et al. Design of biotin decorated enterocyte targeting muco-inert nanocomplexes for enhanced oral insulin delivery. Carbohydr Polym. 2021;261:117873. doi: 10.1016/j.carbpol.2021.117873
  • Cheng H, Cui Z, Guo S, et al. Mucoadhesive versus mucopenetrating nanoparticles for oral delivery of insulin. Acta Biomater. 2021;135:506–519. doi: 10.1016/j.actbio.2021.08.046
  • Li J, Qiang H, Yang W, et al. Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles. J Control Release. 2022;341:31–43. doi: 10.1016/j.jconrel.2021.11.020
  • Duran-Lobato M, Lopez-Estevez AM, Cordeiro AS, et al. Nanotechnologies for the delivery of biologicals: historical perspective and current landscape. Adv Drug Deliv Rev. 2021;176:113899. doi: 10.1016/j.addr.2021.113899
  • Moroz E, Matoori S, Leroux JC. Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv Drug Deliv Rev. 2016;101:108–121.
  • Ahadian S, Finbloom JA, Mofidfar M, et al. Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev. 2020;157:37–62. doi: 10.1016/j.addr.2020.07.012
  • Liu C, Kou Y, Zhang X, et al. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin Drug Deliv. 2018;15(3):223–233. doi: 10.1080/17425247.2017.1395853
  • Zhu Q, Chen Z, Paul PK, et al. Oral delivery of proteins and peptides: challenges, status quo and future perspectives. Acta Pharm Sin B. 2021;11(8):2416–2448. doi: 10.1016/j.apsb.2021.04.001
  • Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2(4):289–295. doi: 10.1038/nrd1067
  • Han Y, Gao Z, Chen L, et al. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B. 2019;9(5):902–922. doi: 10.1016/j.apsb.2019.01.004
  • Jiang L, Sun Y, Lu A, et al. Ionic liquids: promising approach for oral drug delivery. Pharm Res. 2022;39(10):2353–2365. doi: 10.1007/s11095-022-03260-8
  • Elsayed A, Al-Remawi M, Jaber N, et al. Advances in buccal and oral delivery of insulin. Int J Pharm. 2023;633:122623. doi: 10.1016/j.ijpharm.2023.122623
  • Guo F, Lin L, He Z, et al. Storage stability of soy protein isolate powders containing soluble protein aggregates formed at varying pH. Food Sci Nutr. 2020;8(10):5275–5283. doi: 10.1002/fsn3.1759
  • Bryant C, Spencer DB, Miller A, et al. Acid stabilization of insulin. Biochemistry. 1993;32(32):8075–8082. doi: 10.1021/bi00083a004
  • Ryu K-W, Na D-H. Stability of octreotide acetate in aqueous solutions and PLGA films. J Korean Pharm Sci. 2009;39(5):353–357. doi: 10.4333/KPS.2009.39.5.353
  • Estey T, Kang J, Schwendeman SP, et al. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J Pharm Sci. 2006;95(7):1626–1639. doi: 10.1002/jps.20625
  • Sun Y, Wang M, Sun B, et al. An investigation into the gastrointestinal stability of exenatide in the presence of pure enzymes, everted intestinal rings and intestinal homogenates. Biol Pharm Bull. 2016;39(1):42–48. doi: 10.1248/bpb.b15-00442
  • Iyer G, Dyawanapelly S, Jain R, et al. An overview of oral insulin delivery strategies (OIDS). Int j biol macromol. 2022;208:565–585. doi: 10.1016/j.ijbiomac.2022.03.144
  • Gedawy A, Martinez J, Al-Salami H, et al. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol. 2018;70(2):197–213. doi: 10.1111/jphp.12852
  • Moughan PJ, Rutherfurd SM, Montoya CA, et al. Food-derived bioactive peptides–a new paradigm. Nutr Res Rev. 2014;27(1):16–20. doi: 10.1017/S0954422413000206
  • Wang J, Yadav V, Smart AL, et al. Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Mol Pharm. 2015;12(3):966–973. doi: 10.1021/mp500809f
  • Klepach A, Tran H, Ahmad Mohammed F, et al. Characterization and impact of peptide physicochemical properties on oral and subcutaneous delivery. Adv Drug Deliv Rev. 2022;186:114322. doi: 10.1016/j.addr.2022.114322
  • Bernkop-Schnurch A. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J Control Release. 1998;52(1–2):1–16. doi: 10.1016/S0168-3659(97)00204-6
  • Wang F, Sangfuang N, McCoubrey LE, et al. Advancing oral delivery of biologics: machine learning predicts peptide stability in the gastrointestinal tract. Int J Pharm. 2023;634:122643. doi: 10.1016/j.ijpharm.2023.122643
  • Pechenov S, Revell J, Will S, et al. Development of an orally delivered GLP-1 receptor agonist through peptide engineering and drug delivery to treat chronic disease. Sci Rep. 2021;11(1):22521. doi: 10.1038/s41598-021-01750-0
  • McShane A, Bath J, Jaramillo AM, et al. Mucus. Curr Biol. 2021;31(15):R938–R945. doi: 10.1016/j.cub.2021.06.093
  • Padhye T, Maravajjala K, Swetha KL, et al. A comprehensive review of the strategies to improve oral drug absorption with special emphasis on the cellular and molecular mechanisms. J Drug Delivery Sci Technol. 2021;61:61. doi: 10.1016/j.jddst.2020.102178
  • Haddadzadegan S, Dorkoosh F, Bernkop-Schnurch A. Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev. 2022;182:114097. doi: 10.1016/j.addr.2021.114097
  • Zhang JY, Liu XX, Lin JY, et al. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. Int J Pharm. 2022;624:121979. doi: 10.1016/j.ijpharm.2022.121979
  • Wang X, Sherman A, Liao G, et al. Mechanism of oral tolerance induction to therapeutic proteins. Adv Drug Deliv Rev. 2013;65(6):759–773. doi: 10.1016/j.addr.2012.10.013
  • Ouyang J, Zhang ZY, Deng B, et al. Oral drug delivery platforms for biomedical applications. Mater Today. 2023;62:296–326. doi: 10.1016/j.mattod.2023.01.002
  • Camenisch G, Alsenz J, van de Waterbeemd H, et al. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci. 1998;6(4):317–324. doi: 10.1016/S0928-0987(97)10019-7
  • Sharma A, Vaghasiya K, Ray E, et al. Lysosomal targeting strategies for design and delivery of bioactive for therapeutic interventions. J Drug Target. 2018;26(3):208–221. doi: 10.1080/1061186X.2017.1374390
  • Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev. 2013;65(6):822–832. doi: 10.1016/j.addr.2012.10.007
  • Tomita M, Shiga M, Hayashi M, et al. Enhancement of colonic drug absorption by the paracellular permeation route. Pharm Res. 1988;5(6):341–346. doi: 10.1023/A:1015999309353
  • Doak BC, Over B, Giordanetto F, et al. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol. 2014;21(9):1115–1142. doi: 10.1016/j.chembiol.2014.08.013
  • Lopes M, Shrestha N, Correia A, et al. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Release. 2016;232:29–41. doi: 10.1016/j.jconrel.2016.04.012
  • Mazumdar S, Chitkara D, Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharm Sin B. 2021;11(4):903–924. doi: 10.1016/j.apsb.2021.02.019
  • Lu W, Tian H, Qian P, et al. An orally available hypoglycaemic peptide taken up by caveolae transcytosis displays improved hypoglycaemic effects and body weight control in db/db mice. Br J Pharmacol. 2020;177(15):3473–3488. doi: 10.1111/bph.15069
  • Damm EM, Pelkmans L, Kartenbeck J, et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Bio. 2005;168(3):477–488. doi: 10.1083/jcb.200407113
  • Pan Y, Zheng JM, Zhao HY, et al. Relationship between drug effects and particle size of insulin-loaded bioadhesive microspheres. Acta Pharmacol Sin. 2002;23(11):1051–1056.
  • Czuba E, Diop M, Mura C, et al. Oral insulin delivery, the challenge to increase insulin bioavailability: influence of surface charge in nanoparticle system. Int J Pharm. 2018;542(1–2):47–55. doi: 10.1016/j.ijpharm.2018.02.045
  • Managuli RS, Raut SY, Reddy MS, et al. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv. 2018;15(8):787–804. doi: 10.1080/17425247.2018.1503249
  • Jin CH, Chae SY, Son S, et al. A new orally available glucagon-like peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic effects in db/db mice. J Control Release. 2009;133(3):172–187. doi: 10.1016/j.jconrel.2008.09.091
  • Ohlsson L, Kohan AB, Tso P, et al. GLP-1 released to the mesenteric lymph duct in mice: effects of glucose and fat. Regul Pept. 2014;189:40–45. doi: 10.1016/j.regpep.2014.02.001
  • Soudry-Kochavi L, Naraykin N, Nassar T, et al. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J Control Release. 2015;217:202–210. doi: 10.1016/j.jconrel.2015.09.012
  • Deng F, Bae YH. Bile acid transporter-mediated oral drug delivery. J Control Release. 2020;327:100–116. doi: 10.1016/j.jconrel.2020.07.034
  • Nemati M, Fathi-Azarbayjani A, Al-Salami H, et al. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem Funct. 2022;40(6):623–635. doi: 10.1002/cbf.3732
  • Zhang Z, Li H, Xu G, et al. Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids. Drug Deliv. 2018;25(1):1224–1233. doi: 10.1080/10717544.2018.1469685
  • Pang H, Huang X, Xu ZP, et al. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today. 2023;28(1):103393. doi: 10.1016/j.drudis.2022.103393
  • Tuvia S, Pelled D, Marom K, et al. A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharm Res. 2014;31(8):2010–2021. doi: 10.1007/s11095-014-1303-9
  • Tran H, Aihara E, Mohammed FA, et al. In vivo mechanism of action of sodium caprate for improving the intestinal absorption of a GLP1/GIP coagonist peptide. Mol Pharmaceut. 2023;20(2):929–941. doi: 10.1021/acs.molpharmaceut.2c00443
  • Fattah S, Ismaiel M, Murphy B, et al. Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers. Eur J Pharm Sci. 2020;154:105509. doi: 10.1016/j.ejps.2020.105509
  • Dahlgren D, Olander T, Sjoblom M, et al. Effect of paracellular permeation enhancers on intestinal permeability of two peptide drugs, enalaprilat and hexarelin, in rats. Acta Pharm Sin B. 2021;11(6):1667–1675. doi: 10.1016/j.apsb.2020.12.019
  • Welling SH, Hubalek F, Jacobsen J, et al. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition. Eur J Pharm Biopharm. 2014;86(3):544–551. doi: 10.1016/j.ejpb.2013.12.017
  • Alama T, Kusamori K, Morishita M, et al. Mechanistic studies on the absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs in rats. Pharmaceutics. 2019;11(4):170. doi: 10.3390/pharmaceutics11040170
  • McCartney F, Rosa M, Brayden DJ. Evaluation of sucrose laurate as an intestinal permeation enhancer for macromolecules: ex vivo and in vivo studies. Pharmaceutics. 2019;11(11):565. doi: 10.3390/pharmaceutics11110565
  • McCartney F, Jannin V, Chevrier S, et al. Labrasol(r) is an efficacious intestinal permeation enhancer across rat intestine: ex vivo and in vivo rat studies. J Control Release. 2019;310:115–126. doi: 10.1016/j.jconrel.2019.08.008
  • Lin PY, Chuang EY, Chiu YH, et al. Safety and efficacy of self-assembling bubble carriers stabilized with sodium dodecyl sulfate for oral delivery of therapeutic proteins. J Control Release. 2017;259:168–175. doi: 10.1016/j.jconrel.2016.12.018
  • Kim JC, Park EJ, Na DH. Gastrointestinal permeation enhancers for the development of oral peptide pharmaceuticals. Pharmaceuticals (Basel). 2022;15(12):1585. doi: 10.3390/ph15121585
  • Mori S, Matsuura A, Rama Prasad YV, et al. Studies on the intestinal absorption of low molecular weight heparin using saturated fatty acids and their derivatives as an absorption enhancer in rats. Biol Pharm Bull. 2004;27(3):418–421. doi: 10.1248/bpb.27.418
  • Padula C, Pescina S, Nicoli S, et al. New insights on the mechanism of fatty acids as buccal permeation enhancers. Pharmaceutics. 2018;10(4):201. doi: 10.3390/pharmaceutics10040201
  • Wang L, Li L, Sun Y, et al. In vitro and in vivo evaluation of chitosan graft glyceryl monooleate as peroral delivery carrier of enoxaparin. Int J Pharm. 2014;471(1–2):391–399. doi: 10.1016/j.ijpharm.2014.05.050
  • Wang L, Sun Y, Shi C, et al. Uptake, transport and peroral absorption of fatty glyceride grafted chitosan copolymer-enoxaparin nanocomplexes: influence of glyceride chain length [Article]. Acta Biomater. 2014;10(8):3675–3685. doi: 10.1016/j.actbio.2014.05.003
  • Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Delivery Rev. 2016;106(Null). doi: 10.1016/j.addr.2016.06.005
  • Fein KC, Gleeson JP, Cochran K, et al. Long‐term daily oral administration of intestinal permeation enhancers is safe and effective in mice. Bioengineering Transla Med. 2022;8(1): doi: 10.1002/btm2.10342
  • Kommineni N, Sainaga Jyothi VGS, Butreddy A, et al. SNAC for enhanced oral bioavailability: an updated review. Pharm Res. 2023;40(3):633–650. doi: 10.1007/s11095-022-03459-9
  • Twarog C, Fattah S, Heade J, et al. Intestinal Permeation enhancers for oral delivery of macromolecules: a comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C(10)). Pharmaceutics. 2019;11(2):78. doi: 10.3390/pharmaceutics11020078
  • Alani AW, Robinson JR. Mechanistic understanding of oral drug absorption enhancement of cromolyn sodium by an amino acid derivative. Pharm Res. 2008;25(1):48–54. doi: 10.1007/s11095-007-9438-6
  • Weng H, Hu L, Hu L, et al. The complexation of insulin with sodium N‐[8‐(2‐hydroxybenzoyl)amino]‐caprylate for enhanced oral delivery: effects of concentration, ratio, and pH. Chin Chem Lett. 2022;33(4):1889–1894. doi: 10.1016/j.cclet.2021.10.023
  • Brown TD, Whitehead KA, Mitragotri S. Materials for oral delivery of proteins and peptides. Nature Rev Mater. 2019;5(2):127–148. doi: 10.1038/s41578-019-0156-6
  • Ukai H, Kawagoe A, Sato E, et al. Propylene glycol caprylate as a novel potential absorption enhancer for improving the intestinal absorption of insulin: efficacy, safety, and absorption-enhancing mechanisms. J Pharm Sci. 2020;109(4):1483–1492. doi: 10.1016/j.xphs.2019.12.012
  • Azman M, Sabri AH, Anjani QK, et al. Intestinal absorption study: challenges and absorption enhancement strategies in improving oral drug delivery. Pharmaceuticals. 2022;15(8):975. doi: 10.3390/ph15080975
  • Yewale C, Patil S, Kolate A, et al. Oral absorption promoters: opportunities, issues, and challenges. Crit Rev Ther Drug Carrier Syst. 2015;32(5):363–387. doi: 10.1615/CritRevTherDrugCarrierSyst.2015011865
  • Bao X, Qian K, Yao P. Insulin- and cholic acid-loaded zein/casein-dextran nanoparticles enhance the oral absorption and hypoglycemic effect of insulin. J Mater Chem B. 2021;9(31):6234–6245. doi: 10.1039/D1TB00806D
  • Tran H, ElSayed MEH. Progress and limitations of oral peptide delivery as a potentially transformative therapy. Expert Opin Drug Deliv. 2022;19(2):163–178. doi: 10.1080/17425247.2022.2051476
  • Su FY, Lin KJ, Sonaje K, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33(9):2801–2811. doi: 10.1016/j.biomaterials.2011.12.038
  • Zhang D, Wang J, Xu D. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J Control Release. 2016;229:130–139. doi: 10.1016/j.jconrel.2016.03.020
  • Kristensen M, Nielsen HM. Cell-penetrating peptides as carriers for oral delivery of biopharmaceuticals. Basic Clin Pharmacol Toxicol. 2016;118(2):99–106. doi: 10.1111/bcpt.12515
  • Yang L, Li M, Sun Y, et al. A cell-penetrating peptide conjugated carboxymethyl-β-cyclodextrin to improve intestinal absorption of insulin. Int j biol macromol. 2018;111:685–695. doi: 10.1016/j.ijbiomac.2018.01.077
  • Hristov D, McCartney F, Beirne J, et al. Silica-coated nanoparticles with a core of zinc, l-arginine, and a peptide designed for oral delivery. ACS Appl Mater Interfaces. 2020;12(1):1257–1269. doi: 10.1021/acsami.9b16104
  • Li Y, Ji W, Peng H, et al. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Theranostics. 2021;11(9):4452–4466. doi: 10.7150/thno.54176
  • Fox LJ, Richardson RM, Briscoe WH. PAMAM dendrimer - cell membrane interactions. Adv Colloid Interface Sci. 2018;257:1–18. doi: 10.1016/j.cis.2018.06.005
  • Lin Y, Fujimori T, Kawaguchi N, et al. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats. J Control Release. 2011;149(1):21–28. doi: 10.1016/j.jconrel.2010.02.017
  • Yan C, Gu J, Lv Y, et al. Improved intestinal absorption of water-soluble drugs by acetylation of G2 PAMAM dendrimer nanocomplexes in rat. Drug Deliv Transl Res. 2017;7(3):408–415. doi: 10.1007/s13346-017-0373-8
  • Murgia X, Loretz B, Hartwig O, et al. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev. 2018;124:82–97. doi: 10.1016/j.addr.2017.10.009
  • TM MW, Lau WM, Khutoryanskiy VV. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers. 2018;10(3):267. doi: 10.3390/polym10030267
  • Duggan S, Cummins W, OD O, et al. Thiolated polymers as mucoadhesive drug delivery systems. Eur J Pharm Sci. 2017;100:64–78. doi: 10.1016/j.ejps.2017.01.008
  • Millotti G, Laffleur F, Perera G, et al. In vivo evaluation of thiolated chitosan tablets for oral insulin delivery. J Pharm Sci. 2014;103(10):3165–3170. doi: 10.1002/jps.24102
  • Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol. 2022;19(4):219–238. doi: 10.1038/s41575-021-00539-w
  • Yamazoe E, Fang JY, Tahara K. Oral mucus-penetrating PEGylated liposomes to improve drug absorption: differences in the interaction mechanisms of a mucoadhesive liposome. Int J Pharm. 2021;593:120148. doi: 10.1016/j.ijpharm.2020.120148
  • Shan W, Zhu X, Tao W, et al. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl Mater Interfaces. 2016;8(38):25444–25453. doi: 10.1021/acsami.6b08183
  • Han X, Lu Y, Xie J, et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat Nanotech. 2020;15(7):605–614. doi: 10.1038/s41565-020-0693-6
  • Uhl P, Pantze S, Storck P, et al. Oral delivery of vancomycin by tetraether lipid liposomes. Eur J Pharm Sci. 2017;108:111–118. doi: 10.1016/j.ejps.2017.07.013
  • Uhl P, Helm F, Hofhaus G, et al. A liposomal formulation for the oral application of the investigational hepatitis B drug Myrcludex B. Eur J Pharm Biopharm. 2016;103:159–166. doi: 10.1016/j.ejpb.2016.03.031
  • Parmentier J, Hofhaus G, Thomas S, et al. Improved oral bioavailability of human growth hormone by a combination of liposomes containing bio-enhancers and tetraether lipids and omeprazole. J Pharm Sci. 2014;103(12):3985–3993. doi: 10.1002/jps.24215
  • He Y, Huang Y, Xu H, et al. Aptamer-modified M cell targeting liposomes for oral delivery of macromolecules. Colloids Surf B Biointerfaces. 2023;222:113109. doi: 10.1016/j.colsurfb.2022.113109
  • Guo S, Liang Y, Liu L, et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology. 2021;19(1):32. doi: 10.1186/s12951-021-00770-2
  • Shi Y, Sun X, Zhang L, et al. Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Sci Rep. 2018;8(1):726. doi: 10.1038/s41598-018-19170-y
  • Zhang L, Shi Y, Song Y, et al. Tf ligand-receptor-mediated exenatide-Zn(2+) complex oral-delivery system for penetration enhancement of exenatide. J Drug Target. 2018;26(10):931–940. doi: 10.1080/1061186X.2018.1455839
  • He H, Lu Y, Qi J, et al. Biomimetic thiamine- and niacin-decorated liposomes for enhanced oral delivery of insulin. Acta Pharm Sin B. 2018;8(1):97–105. doi: 10.1016/j.apsb.2017.11.007
  • Ren T, Zheng X, Bai R, et al. Utilization of PLGA nanoparticles in yeast cell wall particle system for oral targeted delivery of exenatide to improve its hypoglycemic efficacy. Int J Pharm. 2021;601:120583. doi: 10.1016/j.ijpharm.2021.120583
  • Zhang X, Cheng H, Dong W, et al. Design and intestinal mucus penetration mechanism of core-shell nanocomplex. J Control Release. 2018;272:29–38. doi: 10.1016/j.jconrel.2017.12.034
  • Wu J, Zheng Y, Liu M, et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces. 2018;10(12):9916–9928. doi: 10.1021/acsami.7b16524
  • Cheng H, Guo S, Cui Z, et al. Design of folic acid decorated virus-mimicking nanoparticles for enhanced oral insulin delivery. Int J Pharm. 2021;596:120297. doi: 10.1016/j.ijpharm.2021.120297
  • Cao Y, Janjua TI, Qu Z, et al. Virus-like silica nanoparticles enhance macromolecule permeation in vivo. Biomater Sci. 2023;11(13):4508–4521. doi: 10.1039/D3BM00137G
  • Shen D, Yu H, Wang L, et al. Glucose-responsive nanoparticles designed via a molecular-docking-driven method for insulin delivery. J Control Release. 2022;352:527–539. doi: 10.1016/j.jconrel.2022.10.044
  • Hu WY, Wu ZM, Yang QQ, et al. Smart Ph-responsive polymeric micelles for programmed oral delivery of insulin. Colloids Surf B Biointerfaces. 2019;183:110443. doi: 10.1016/j.colsurfb.2019.110443
  • Yang T, Wang A, Nie D, et al. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat Commun. 2022;13(1):6649. doi: 10.1038/s41467-022-34357-8
  • Shashni B, Tajika Y, Nagasaki Y. Design of enzyme-responsive short-chain fatty acid-based self-assembling drug for alleviation of type 2 diabetes mellitus. Biomaterials. 2021;275:120877. doi: 10.1016/j.biomaterials.2021.120877
  • Shan W, Zhu X, Liu M, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano. 2015;9(3):2345–2356. doi: 10.1021/acsnano.5b00028
  • Sun L, Zhang XG, Wu ZM, et al. Oral glucose- and Ph-sensitive nanocarriers for simulating insulin release in vivo. Polym Chem. 2014;5(6):1999–2009. doi: 10.1039/C3PY01416A
  • Kaffash E, Shahbazi MA, Hatami H, et al. An insight into gastrointestinal macromolecule delivery using physical oral devices. Drug Discovery Today. 2022;27(8):2309–2321. doi: 10.1016/j.drudis.2022.04.014
  • Peng K, Shi Y, LaBarbiera A, et al. Mucoadhesive ionic liquid gel patches for oral delivery. ACS Biomater Sci Eng. 2023;9(6):2838–2845. doi: 10.1021/acsbiomaterials.0c01024
  • Banerjee A, Chen R, Arafin S, et al. Intestinal iontophoresis from mucoadhesive patches: a strategy for oral delivery. J Control Release. 2019;297:71–78. doi: 10.1016/j.jconrel.2019.01.037
  • Abramson A, Caffarel-Salvador E, Khang M, et al. An ingestible self-orienting system for oral delivery of macromolecules. Science. 2019;363(6427):611–615. doi: 10.1126/science.aau2277

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.