320
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Oral administration of M13-loaded nanoliposomes is safe and effective to treat colitis-associated cancer in mice

, , ORCID Icon, ORCID Icon &
Pages 1443-1462 | Received 14 Apr 2023, Accepted 26 Jun 2023, Published online: 02 Jul 2023

References

  • Sussman D, Santaolalla R, Strobel S, et al. Cancer in inflammatory bowel disease: lessons from animal models. Curr Opin Gastroenterol. 2012;28(4):327. doi: 10.1097/MOG.0b013e328354cc36
  • Ingersoll SA, Ayyadurai S, Charania MA, et al. The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2012;302(5):G484–G492. doi: 10.1152/ajpgi.00477.2011
  • Long D, Merlin D. Micro-and nanotechnological delivery platforms for treatment of dysbiosis-related inflammatory bowel disease. Future Med. 2021;16:1741–1745. doi: 10.2217/nnm-2021-0167
  • Long AG, Lundsmith ET, Hamilton KE. Inflammation and colorectal cancer. Current Colorectal Cancer Reports. 2017;13(4):341–351. doi: 10.1007/s11888-017-0373-6
  • Kotelevets L, Chastre E, Desmaele D, et al. Nanotechnologies for the treatment of colon cancer: from old drugs to new hope. Int J Pharmaceut. 2016;514(1):24–40. doi: 10.1016/j.ijpharm.2016.06.005
  • Chen S, Yueh M-F, Bigo C, et al. Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11). Proc Nat Acad Sci. 2013;110(47):19143–19148. doi: 10.1073/pnas.1319123110
  • Hua S, Marks E, Schneider JJ, et al. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine. 2015;11(5):1117–1132. doi: 10.1016/j.nano.2015.02.018
  • Alqahtani MS, Kazi M, Alsenaidy MA, et al. Advances in oral drug delivery. Front Pharmacol. 2021;12:62. DOI:10.3389/fphar.2021.618411
  • Zhu Y, Warin RF, Soroka DN, et al. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation. PLoS One. 2013;8(1):e54677. doi: 10.1371/journal.pone.0054677
  • Chen H, Lv L, Soroka D, et al. Metabolism of [6]-shogaol in mice and in cancer cells. Drug Metab Dispos. 2012;40(4):742–753. doi: 10.1124/dmd.111.043331
  • Yang C, Zhang M, Merlin D. Advances in plant-derived edible nanoparticle-based lipid nano-drug delivery systems as therapeutic nanomedicines. J Mat Chem B. 2018;6(9):1312–1321. doi: 10.1039/C7TB03207B
  • Zhang M, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–340. DOI:10.1016/j.biomaterials.2016.06.018
  • Yang C, Zhang M, Lama S, et al. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J Controlled Release. 2020;323:293–310. DOI:10.1016/j.jconrel.2020.04.032
  • Zhang M, Xiao B, Wang H, et al. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol Ther. 2016;24(10):1783–1796. doi: 10.1038/mt.2016.159
  • Zhang M, Wang X, Han MK, et al. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine. 2017;12(16):1927–1943. doi: 10.2217/nnm-2017-0196
  • Zhang M, Xu C, Liu D, et al. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J Crohn’s & Colitis. 2018;12(2):217–229. doi: 10.1093/ecco-jcc/jjx115
  • Saal C, Petereit AC. Optimizing solubility: kinetic versus thermodynamic solubility temptations and risks. Eur J Pharm Sci. 2012 Oct 9;47(3):589–595. doi: 10.1016/j.ejps.2012.07.019
  • Sugiyama K, Yamada M, Awogi T, et al. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms. Genes And Environ. 2016;38(1):2. doi: 10.1186/s41021-016-0030-3
  • Sung J, Yang C, Viennois E, et al. Isolation, Purification, and Characterization of Ginger-derived Nanoparticles (GDNPs) from Ginger, Rhizome of Zingiber officinale. Bio Protoc. 2019 Oct 5;9(19). doi: 10.21769/BioProtoc.3390
  • Yue Z, Li C, Voth GA, et al. Dynamic Protonation Dramatically Affects the Membrane Permeability of Drug-like Molecules. J Am Chem Soc. 2019 Aug 28;141(34):13421–13433. doi: 10.1021/jacs.9b04387
  • Bennion BJ, Be NA, McNerney MW, et al. Predicting a Drug’s Membrane Permeability: a Computational Model Validated with in vitro Permeability Assay Data. J Phys Chem B. 2017 May 25;121(20):5228–5237. doi: 10.1021/acs.jpcb.7b02914
  • Dahlen R, Strid H, Lundgren A, et al. Infliximab inhibits activation and effector functions of peripheral blood T cells in vitro from patients with clinically active ulcerative colitis. Scand J Immunol. 2013 Sep;78(3):275–284.
  • Shen T, Huang S. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anti-Cancer Agent Med Chem. 2012;12(6):631–639. doi: 10.2174/187152012800617678
  • Barlow JH, Rothstein R. Timing is everything: cell cycle control of Rad52. Cell Div. 2010;5(1):1–8. doi: 10.1186/1747-1028-5-7
  • Liang K-H, Tso H-C, Hung S-H, et al. Extracellular domain of EpCAM enhances tumor progression through EGFR signaling in colon cancer cells. Cancer Lett. 2018;433:165–175. DOI:10.1016/j.canlet.2018.06.040
  • Sui Q, Zheng J, Liu D, et al. Dickkopf-related protein 1, a new biomarker for local immune status and poor prognosis among patients with colorectal liver Oligometastases: a retrospective study. BMC Cancer. 2019;19(1):1–10. doi: 10.1186/s12885-019-6399-1
  • Cai Y, Ma W, Huang X, et al. Effect of survivin on tumor growth of colorectal cancer in vivo. Int J Clin Exp Pathol. 2015;8(10):13267.
  • Gao S-J, Ren S-N, Liu Y-T, et al. Targeting EGFR sensitizes 5-Fu-resistant colon cancer cells through modification of the lncRNA-FGD5-AS1-miR-330-3p-Hexokinase 2 axis. Molecular Therapy-Oncolytics. 2021;23:14–25. DOI:10.1016/j.omto.2021.06.012
  • Ramesh P, Di Franco S, Taboada LA, et al. BCL-XL inhibition induces an FGFR4-mediated rescue response in colorectal cancer. Cell Rep. 2022;38(7):110374. doi: 10.1016/j.celrep.2022.110374
  • Asami A, Shimada T, Mizuhara Y, et al. Pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe (Part I). J Nat Med. 2010;64(3):281–287. doi: 10.1007/s11418-010-0404-y
  • Funderburg NT, Stubblefield Park SR, Sung HC, et al. Circulating CD 4+ and CD 8+ T cells are activated in inflammatory bowel disease and are associated with plasma markers of inflammation. Immunology. 2013;140(1):87–97. doi: 10.1111/imm.12114
  • Bachmann MF, Oxenius A. Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Rep. 2007;8(12):1142–1148. doi: 10.1038/sj.embor.7401099
  • Ames BN, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. (Netherlands): Mutat Res; 1975. p. 31.
  • Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839–845. doi: 10.1038/nrm2236
  • Samy KE, Levy ES, Phong K, et al. Human intestinal spheroids cultured using Sacrificial Micromolding as a model system for studying drug transport. Sci Rep. 2019;9(1):1–12. doi: 10.1038/s41598-019-46408-0
  • Kim MO, Lee M-H, Oi N, et al. [6]-Shogaol inhibits growth and induces apoptosis of non-small cell lung cancer cells by directly regulating Akt1/2. Carcinogenesis. 2014;35(3):683–691. doi: 10.1093/carcin/bgt365
  • Liang T, He Y, Chang Y, et al. 6-shogaol a active component from ginger inhibits cell proliferation and induces apoptosis through inhibition of STAT-3 translocation in ovarian cancer cell lines (A2780). Biotechnol Bioprocess Eng. 2019;24(3):560–567. doi: 10.1007/s12257-018-0502-3
  • Koveitypour Z, Panahi F, Vakilian M, et al. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019;9(1):1–14. doi: 10.1186/s13578-019-0361-4
  • Rajendran DT, Subramaniyan B, Ganeshan M. Role of Notch signaling in colorectal cancer. Role of transcription factors in gastrointestinal malignancies. Springer Singapore. 2017;p. 307–314. 10.1007/978-981-10-6728-0_21.
  • Grabowska K, Galanty A, Koczurkiewicz-Adamczyk P, et al. Multidirectional anti-melanoma effect of galactolipids (MGDG-1 and DGDG-1) from Impatiens parviflora DC. and their synergy with doxorubicin. Toxicol Vitro. 2021 Oct;76:105231.
  • Abedin MR, Barua S. Isolation and purification of glycoglycerolipids to induce apoptosis in breast cancer cells. Sci Rep. 2021 Jan 14;11(1):1298. doi: 10.1038/s41598-020-80484-x
  • Akasaka H, Mizushina Y, Yoshida K, et al. MGDG extracted from spinach enhances the cytotoxicity of radiation in pancreatic cancer cells. Radiat Oncol. 2016 Nov 22;11(1):153. doi: 10.1186/s13014-016-0729-0
  • Sliva D, Harvey K, Mason R, et al. Effect of phosphatidic acid on human breast cancer cells exposed to doxorubicin. Cancer Invest. 2001;19(8):783–790. doi: 10.1081/CNV-100107739
  • Tanaka T, Kohno H, Suzuki R, et al. A novel inflammation‐related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 2003;94(11):965–973. doi: 10.1111/j.1349-7006.2003.tb01386.x
  • De Robertis M, Massi E, Poeta ML, et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog. 2011;10:10. DOI:10.4103/1477-3163.78279
  • Chen Y, Wang B, Yuan X, et al. Vitexin prevents colitis-associated carcinogenesis in mice through regulating macrophage polarization. Phytomedicine. 2021;83:153489. DOI:10.1016/j.phymed.2021.153489
  • Osman J, Savari S, Chandrashekar NK, et al. Cysteinyl leukotriene receptor 1 facilitates tumorigenesis in a mouse model of colitis-associated colon cancer. Oncotarget. 2017;8(21):34773. doi: 10.18632/oncotarget.16718
  • Lee M, Chang EB. Inflammatory bowel diseases (IBD) and the microbiome—searching the crime scene for clues. Gastroenterology. 2021;160(2):524–537. doi: 10.1053/j.gastro.2020.09.056
  • Khan I, Ullah N, Zha L, et al. Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome. Pathogens. 2019;8(3):126. doi: 10.3390/pathogens8030126
  • Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690–704. doi: 10.1038/s41575-019-0209-8
  • Yang C, Long D, Sung J, et al. Orally Administered Natural Lipid Nanoparticle-Loaded 6-Shogaol Shapes the Anti-Inflammatory Microbiota and Metabolome. Pharmaceutics. 2021;13(9):1355. doi: 10.3390/pharmaceutics13091355
  • Sartor RB, Mazmanian SK. Intestinal microbes in inflammatory bowel diseases. Am J Gastroenterol Suppl. 2012;1(1):15. doi: 10.1038/ajgsup.2012.4
  • Lin C-H, Chen C-C, Chiang H-L, et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation. 2019;16(1):1–9. doi: 10.1186/s12974-019-1528-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.