128
Views
0
CrossRef citations to date
0
Altmetric
Review

Multifunctional systems based on nano-in-microparticles as strategies for drug delivery: advances, challenges, and future perspectives

, , , , &
Pages 1231-1249 | Received 04 Jun 2023, Accepted 21 Sep 2023, Published online: 02 Oct 2023

References

  • Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26:5905. doi: 10.3390/molecules26195905
  • Pinto JF. Site-specific drug delivery systems within the gastro-intestinal tract: from the mouth to the colon. Int J Pharm. 2010;395:44–52. doi: 10.1016/j.ijpharm.2010.05.003
  • Hu Q, Chen Q, Gu Z. Advances in transformable drug delivery systems. Biomaterials. 2018;178:546–558. doi: 10.1016/j.biomaterials.2018.03.056
  • Qin S-Y, Zhang A-Q, Cheng S-X, et al. Drug self-delivery systems for cancer therapy. Biomaterials. 2017;112:234–247. doi: 10.1016/j.biomaterials.2016.10.016
  • Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543–557. doi: 10.1038/nmat2442
  • Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–2381. doi: 10.1021/acsnano.6b06040
  • dos Santos AM, Carvalho SG, Meneguin AB, et al. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: challenges, advances and future perspectives. J Controlled Release. 2021;334:353–366. doi: 10.1016/j.jconrel.2021.04.026
  • Yang J, Zhao Y, Zhou Y, et al. Advanced nanomedicines for the regulation of cancer metabolism. Biomaterials. 2022;286:121565. doi: 10.1016/j.biomaterials.2022.121565
  • Liu J, Huang Y, Kumar A, et al. PH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32:693–710. doi: 10.1016/j.biotechadv.2013.11.009
  • Anton N, Jakhmola A, Vandamme TF. Trojan microparticles for drug delivery. Pharmaceutics. 2012;4:1–25. doi: 10.3390/pharmaceutics4010001
  • Abdelaziz MM, Hefnawy A, Anter A, et al. Respirable spray dried vancomycin coated magnetic nanoparticles for localized lung delivery. Int J Pharm. 2022;611:121318. doi: 10.1016/j.ijpharm.2021.121318
  • Spindler LM, Feuerhake A, Ladel S, et al. Nano-in-micro-particles consisting of PLGA nanoparticles embedded in chitosan microparticles via spray-drying enhances their uptake in the olfactory mucosa. Front Pharmacol. 2021;12:1–19. doi: 10.3389/fphar.2021.732954
  • Forest V, Pourchez J. Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient? Adv Drug Deliv Rev. 2022;183:114173.
  • Elbaz NM, Khalil IA, Abd-Rabou AA, et al. Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int j biol macromol. 2016;92:254–269. doi: 10.1016/j.ijbiomac.2016.07.024
  • Li Q, Xue F, Qu J, et al. Nano-in-micro delivery system prepared by co-axial air flow for oral delivery of conjugated linoleic acid. Mar Drugs. 2019;17:15. doi: 10.3390/md17010015
  • Ramakrishna S, Mayer J, Wintermantel E, et al. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61:1189–1224. doi: 10.1016/S0266-3538(00)00241-4
  • Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65:104–120. doi: 10.1016/j.addr.2012.10.003
  • Kanamala M, Wilson WR, Yang M, et al. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials. 2016;85:152–167. doi: 10.1016/j.biomaterials.2016.01.061
  • Li X, Yu M, Zhu Z, et al. Oral delivery of infliximab using nano-in-microparticles for the treatment of inflammatory bowel disease. Carbohydr Polym. 2021;273:118556. doi: 10.1016/j.carbpol.2021.118556
  • Soudry-Kochavi L, Naraykin N, Di Paola R, et al. Pharmacodynamical effects of orally administered exenatide nanoparticles embedded in gastro-resistant microparticles. Eur J Pharm Biopharm. 2018;133:214–223. doi: 10.1016/j.ejpb.2018.10.013
  • Zhang H, Liu D, Shahbazi M-A, et al. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv Mater. 2014;26:4497–4503. doi: 10.1002/adma.201400953
  • dos Santos AM, Meneguin AB, Akhter DT, et al. Understanding the role of colon-specific microparticles based on retrograded starch/pectin in the delivery of chitosan nanoparticles along the gastrointestinal tract. Eur J Pharm Biopharm. 2021;158:371–378. doi: 10.1016/j.ejpb.2020.12.004
  • Abdelrady H, Hathout RM, Osman R, et al. Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. Eur J Pharmaceut Sci. 2019;133:115–126. doi: 10.1016/j.ejps.2019.03.016
  • Price DN, Stromberg LR, Kunda NK, et al. In vivo pulmonary delivery and magnetic-targeting of dry powder nano-in-microparticles. Mol Pharm. 2017;14:4741–4750. doi: 10.1021/acs.molpharmaceut.7b00532
  • Zheng Z, Pan X, Luo L, et al. Advances in oral absorption of polysaccharides: mechanism, affecting factors, and improvement strategies. Carbohydr Polym. 2022;282. doi: 10.1016/j.carbpol.2022.119110
  • Yuan H, Guo C, Liu L, et al. Progress and prospects of polysaccharide-based nanocarriers for oral delivery of proteins/peptides. Carbohydr Polym. 2023;312:120838. doi: 10.1016/j.carbpol.2023.120838
  • Ferreira LMB, dos Santosdos Santos AM, Boni FI, et al. Design of chitosan-based particle systems: a review of the physicochemical foundations for tailored properties. Carbohydr Polym. 2020;250:116968. doi: 10.1016/j.carbpol.2020.116968
  • Carvalho SG, dos Santos AM, Silvestre ALP, et al. New insights into physicochemical aspects involved in the formation of polyelectrolyte complexes based on chitosan and dextran sulfate. Carbohydr Polym. 2021;271:118436.
  • Akhter DT, Simpson JD, Fletcher NL, et al. Oral delivery of multicompartment nanomedicines for colorectal cancer therapeutics: combining loco‐regional delivery with cell‐target specificity. Adv Ther. 2020;3:1900171. doi: 10.1002/adtp.201900171
  • Musa N, Wong TW. Design of polysaccharidic nano-in-micro soft agglomerates as primary oral drug delivery vehicle for colon-specific targeting. Carbohydr Polym. 2020;247. doi: 10.1016/j.carbpol.2020.116673
  • Du J, El-Sherbiny IM, Smyth HD. Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery. AAPS Pharm Sci Tech. 2014;15:1535–1544. doi: 10.1208/s12249-014-0176-x
  • Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33:3279–3305. doi: 10.1016/j.biomaterials.2012.01.007
  • Santos C, de Araújo Gonçalves M, de Macedo LF, et al. Green nanotechnology for the development of nanoparticles based on alginate associated with essential and vegetable oils for application in fruits and seeds protection. Int j biol macromol. 2023;232:123351. doi: 10.1016/j.ijbiomac.2023.123351
  • Ma Y, Fuchs AV, Boase NRB, et al. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: evaluation of their potential for colon-specific delivery. Eur J Pharm Biopharm. 2015;94:393–403. doi: 10.1016/j.ejpb.2015.06.014
  • Restani RB, Pires RF, Tolmatcheva A, et al. Poxylated Dendrimer-based nano-in-micro dry powder formulations for inhalation chemotherapy. ChemistryOpen. 2018;7:772–779. doi: 10.1002/open.201800093
  • Silva AS, Sousa AM, Cabral RP, et al. Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery. Int J Pharm. 2017;519:240–249. doi: 10.1016/j.ijpharm.2017.01.032
  • Ferreira LMB, Cardoso VMO, dos Santos Pedriz I, et al. Understanding mucus modulation behavior of chitosan oligomers and dextran sulfate combining light scattering and calorimetric observations. Carbohydr Polym. 2023;306:120613. doi: 10.1016/j.carbpol.2023.120613
  • Li W, Liu D, Zhang H, et al. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomater. 2017;48:238–246. doi: 10.1016/j.actbio.2016.10.042
  • Li W, Li Y, Liu Z, et al. Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials. 2018;185:322–332. doi: 10.1016/j.biomaterials.2018.09.024
  • Costa C, Liu Z, Martins JP, et al. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci. 2020;8:3270–3277. doi: 10.1039/d0bm00743a
  • Liu L, Fishman ML, Kost J, et al. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials. 2003;24:3333–3343. doi: 10.1016/S0142-9612(03)00213-8
  • Varki A, Cummings RD, Aebi M, et al. Symbol nomenclature for graphical representations of glycans. Glycobiology. 2015;25:1323–1324. doi: 10.1093/glycob/cwv091
  • Valente SA, Silva LM, Lopes GR, et al. Polysaccharide-based formulations as potential carriers for pulmonary delivery – a review of their properties and fates. Carbohydr Polym. 2022;277. doi: 10.1016/j.carbpol.2021.118784
  • de Oliveira Cardoso VM, Stringhetti Ferreira Cury B, Evangelista RC, et al. Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. J Mech Behav Biomed Mater. 2017;65:317–333. doi: 10.1016/j.jmbbm.2016.08.005
  • Meneguin AB, Beyssac E, Garrait G, et al. Retrograded starch/pectin coated gellan gum-microparticles for oral administration of insulin: a technological platform for protection against enzymatic degradation and improvement of intestinal permeability. Eur J Pharm Biopharm. 2018;123:84–94. doi: 10.1016/j.ejpb.2017.11.012
  • He Y, Liang Y, Han R, et al. Rational particle design to overcome pulmonary barriers for obstructive lung diseases therapy. J Controlled Release. 2019;314:48–61. doi: 10.1016/j.jconrel.2019.10.035
  • Lee Y-S, Johnson PJ, Robbins PT, et al. Production of nanoparticles-in-microparticles by a double emulsion method: a comprehensive study. Eur J Pharm Biopharm. 2013;83:168–173. doi: 10.1016/j.ejpb.2012.10.016
  • Huck BC, Thiyagarajan D, Bali A, et al. Nano‐in‐microparticles for aerosol delivery of antibiotic‐loaded, fucose‐derivatized, and macrophage‐targeted liposomes to combat mycobacterial infections: In Vitro deposition, pulmonary barrier interactions, and targeted delivery. Adv Healthc Mater. 2022;11:2102117. doi: 10.1002/adhm.202102117
  • Soukoulis C, Bohn T. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit Rev Food Sci Nutr. 2018;58:1–36. doi: 10.1080/10408398.2014.971353
  • Sharma A, Vaghasiya K, Gupta P, et al. Reclaiming hijacked phagosomes: hybrid nano-in-micro encapsulated MIAP peptide ensures host directed therapy by specifically augmenting phagosome-maturation and apoptosis in TB infected macrophage cells. Int J Pharm. 2018;536:50–62. doi: 10.1016/j.ijpharm.2017.11.046
  • Cid-Samamed A, Rakmai J, Mejuto JC, et al. Cyclodextrins inclusion complex: preparation methods, analytical techniques and food industry applications. Food Chem. 2022;384:132467. doi: 10.1016/j.foodchem.2022.132467
  • Bamidele OP, Emmambux MN. Encapsulation of bioactive compounds by “extrusion” technologies: a review. Crit Rev Food Sci Nutr. 2021;61:3100–3118. doi: 10.1080/10408398.2020.1793724
  • Li Y, Xu M, Xia Y, et al. Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensitivity. Chem Eng J. 2020;388:124205. doi: 10.1016/j.cej.2020.124205
  • Arshad MS, Mujeeb M, Zafar S, et al. EHDA engineering of piroxicam-PVP components for pharmaceutical dosages. J Drug Deliv Sci Technol. 2022;78:103927. doi: 10.1016/j.jddst.2022.103927
  • Zhang C, Li Y, Hu Y, et al. Porous yolk–shell particle engineering via nonsolvent-assisted trineedle coaxial electrospraying for burn-related wound healing. ACS Appl Mater Interfaces. 2019;11:7823–7835. doi: 10.1021/acsami.8b22112
  • Yao Z-C, Zhang C, Ahmad Z, et al. Microparticle formation via tri-needle coaxial electrospray at stable jetting modes. Ind Eng Chem Res. 2020;59:14423–14432. doi: 10.1021/acs.iecr.0c02677
  • Wang B, Liu F, Xiang J, et al. A critical review of spray-dried amorphous pharmaceuticals: synthesis, analysis and application. Int J Pharm. 2021;594:120165. doi: 10.1016/j.ijpharm.2020.120165
  • Party P, Bartos C, Farkas Á, et al. Formulation and in vitro and in silico characterization of “nano-in-micro” dry powder inhalers containing meloxicam. Pharmaceutics. 2021;13:1–18. doi: 10.3390/pharmaceutics13020211
  • Arpagaus C, Collenberg A, Rütti D, et al. Nano spray drying for encapsulation of pharmaceuticals. Int J Pharm. 2018;546:194–214. doi: 10.1016/j.ijpharm.2018.05.037
  • Vishali DA, Monisha J, Sivakamasundari SK, et al. Spray freeze drying: emerging applications in drug delivery. JControlled Release. 2019;300:93–101. doi: 10.1016/j.jconrel.2019.02.044
  • Carvalho SG, Cipriano F, Checon JC, et al. 2020;10:1788–1809. doi: 10.1007/s13346-020-00841-1
  • Richter Ł, Stevens CA, Silva PJ, et al. Peptide-grafted nontoxic cyclodextrins and nanoparticles against bacteriophage infections. ACS Nano. 2022;16:18990–19001. doi: 10.1021/acsnano.2c07896
  • Shelley H, Babu RJ. Role of cyclodextrins in nanoparticle-based drug delivery systems. J Pharm Sci. 2018;107:1741–1753. doi: 10.1016/j.xphs.2018.03.021
  • Banerjee SL, Das S, Bhattacharya K, et al. Ag NPs incorporated self-healable thermoresponsive hydrogel using precise structural “interlocking” complex of polyelectrolyte BCPs: a potential new wound healing material. Chem Eng J. 2021;405:126436. doi: 10.1016/j.cej.2020.126436
  • Pedroso-Santana S, Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69:443–447. doi: 10.1002/pi.5970
  • Leissinger M, Kulkarni R, Zemans RL, et al. Investigating the role of nucleotide-binding oligomerization domain–like receptors in bacterial lung infection. Am J Respir Crit Care Med. 2014;189:1461–1468. doi: 10.1164/rccm.201311-2103PP
  • Pragman AA, Berger JP, Williams BJ. Understanding persistent bacterial lung infections. Clin Pulm Med. 2016;23:57–66. doi: 10.1097/CPM.0000000000000108
  • Hoe S, Semler DD, Goudie AD, et al. Respirable bacteriophages for the treatment of bacterial lung infections. J Aerosol Med Pulm Drug Deliv. 2013;26:317–335. doi: 10.1089/jamp.2012.1001
  • Lee SH, Bajracharya R, Min JY, et al. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics. 2020;12:68. doi: 10.3390/pharmaceutics12010068
  • Cohen TS, Hilliard JJ, Jones-Nelson O, et al. Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections. Sci Transl Med. 2016;8: doi: 10.1126/scitranslmed.aad9922
  • Cipolla D, Blanchard J, Gonda I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 2016;8:6. doi: 10.3390/pharmaceutics8010006
  • Entezari M, Ghanbarirad M, Taheriazam A, et al. Long non-coding RNAs and exosomal lncRnas: potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed Pharmacother. 2022;150:112963. doi: 10.1016/j.biopha.2022.112963
  • Lee W-H, Loo C-Y, Ghadiri M, et al. The potential to treat lung cancer via inhalation of repurposed drugs. Adv Drug Deliv Rev. 2018;133:107–130. doi: 10.1016/j.addr.2018.08.012
  • Wang Z, Kim J, Zhang P, et al. Current therapy and development of therapeutic agents for lung cancer. Cell Insight. 2022;1:100015. doi: 10.1016/j.cellin.2022.100015
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. doi: 10.3322/caac.21332
  • Baghdan E, Duse L, Schüer JJ, et al. Development of inhalable curcumin loaded nano-in-microparticles for bronchoscopic photodynamic therapy. Eur J Pharmaceut Sci. 2019;132:63–71. doi: 10.1016/j.ejps.2019.02.025
  • Liu Q, Guan J, Qin L, et al. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today. 2020;25:150–159. doi: 10.1016/j.drudis.2019.09.023
  • Jain H, Bairagi A, Srivastava S, et al. Recent advances in the development of microparticles for pulmonary administration. Drug Discov Today. 2020;25:1865–1872. doi: 10.1016/j.drudis.2020.07.018
  • Hu D, Pan Y, Chen G. Colorectal cancer liver metastases: an update of treatment strategy and future perspectives, surgery in practice and science. 2021;7:100042. doi: 10.1016/j.sipas.2021.100042
  • Matos AI, Carreira B, Peres C, et al. Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. JControlled Release. 2019;307:108–138. doi: 10.1016/j.jconrel.2019.06.017
  • Kawczyk-Krupka A, Bugaj AM, Latos W, et al. Photodynamic therapy in colorectal cancer treatment: the state of the art in clinical trials. Photodiagnosis Photodyn Ther. 2015;12:545–553. doi: 10.1016/j.pdpdt.2015.04.004
  • Huang CQ, Min Y, Wang SY, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy improves survival for peritoneal carcinomatosis from colorectal cancer: a systematic review and meta-analysis of current evidence. Oncotarget. 2017;8:55657–55683. doi: 10.18632/oncotarget.17497
  • Hani U, Honnavalli YK, Begum MY, et al. Colorectal cancer: a comprehensive review based on the novel drug delivery systems approach and its management. J Drug Deliv Sci Technol. 2021;63:102532. doi: 10.1016/j.jddst.2021.102532
  • dos Santos AM, Carvalho SG, Ferreira LMB, et al. Understanding the role of electrostatic interactions on the association of 5-fluorouracil to chitosan-TPP nanoparticles, Colloids Surf a Physicochem Eng Asp. Colloids Surf A Physicochem Eng Asp. 2022;640:640. doi: 10.1016/j.colsurfa.2022.128417
  • Saeid Seyedian S, Nokhostin F, Dargahi Malamir M. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. JMedLife. 2019;12(2):113–122. doi: https://doi.org/10.25122/jml-2018-0075
  • Kotla NG, Rana S, Sivaraman G, et al. Bioresponsive drug delivery systems in intestinal inflammation: state-of-the-art and future perspectives. Adv Drug Deliv Rev. 2019;146:248–266. doi: 10.1016/j.addr.2018.06.021
  • Danese S, Vuitton L, Peyrin-Biroulet L. Biologic agents for IBD: practical insights. Nat Rev Gastroenterol Hepatol. 2015;12:537–545. doi: 10.1038/nrgastro.2015.135
  • Fakhoury M, Al-Salami H, Negrulj R, et al. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014;113. doi: 10.2147/JIR.S65979
  • Teruel AH, Gonzalez-Alvarez I, Bermejo M, et al. New insights of oral colonic drug delivery systems for inflammatory bowel disease therapy. Int J Mol Sci. 2020;21:6502. doi: 10.3390/ijms21186502
  • Meneguin AB, Silvestre ALP, Sposito L, et al. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of diabetes mellitus: a review. Carbohydr Polym. 2021;256:117504. doi: 10.1016/j.carbpol.2020.117504
  • Wang Y, Wang C, Li K, et al. Recent advances of nanomedicine-based strategies in diabetes and complications management: diagnostics, monitoring, and therapeutics. J Controlled Release. 2021;330:618–640. doi: 10.1016/j.jconrel.2021.01.002
  • Delivery D. Fluorescent aliphatic hyperbranched polyether: chromophores-free and without any N and P atoms. Phys Chem Chem Phys. 2016. doi: 10.1039/x0xx00000x
  • Chen M-C, Sonaje K, Chen K-J, et al. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;32:9826–9838. doi: 10.1016/j.biomaterials.2011.08.087
  • Katta M, Mathew BA, Chaturvedi P, et al. Advanced molecular therapies for neurological diseases: focus on stroke, alzheimer’s disease, and parkinson’s disease. Neurol Sci. 2023;44:19–36. doi: 10.1007/s10072-022-06356-6
  • Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Controlled Release. 2018;281:139–177. doi: 10.1016/j.jconrel.2018.05.011
  • Wang Z, Xiong G, Tsang WC, et al. Nose-to-brain delivery. J Pharmacol Exp Ther. 2019;370:593–601. doi: 10.1124/jpet.119.258152
  • André EM, Passirani C, Seijo B, et al. Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: application to Huntington’s disease. Biomaterials. 2016;83:347–362. doi: 10.1016/j.biomaterials.2015.12.008
  • Dimiou S, Lopes RM, Kubajewska I, et al. Particulate levodopa nose-to-brain delivery targets dopamine to the brain with no plasma exposure. Int J Pharm. 2022;618. doi: 10.1016/j.ijpharm.2022.121658
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014;75:81–91. doi: 10.1016/j.addr.2014.05.017
  • He S, Gui J, Xiong K, et al. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology. 2022;20:1–22. doi: 10.1186/s12951-022-01307-x
  • Naeem M, Awan UA, Subhan F, et al. Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Arch Pharm Res. 2020;43:153–169. doi: 10.1007/s12272-020-01219-0
  • Imperiale JC, Nejamkin P, Del Sole MJ, et al. Novel protease inhibitor-loaded nanoparticle-in-microparticle delivery system leads to a dramatic improvement of the oral pharmacokinetics in dogs. Biomaterials. 2014;37:1–12. doi: 10.1016/j.biomaterials.2014.10.026
  • Arévalo-Pérez R, Maderuelo C, Lanao JM. Recent advances in colon drug delivery systems. J Controlled Release. 2020;327:703–724. doi: 10.1016/j.jconrel.2020.09.026
  • Zeeshan M, Ali H, Khan S, et al. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int J Pharm. 2019;558:201–214. doi: 10.1016/j.ijpharm.2018.12.074
  • Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS Pharm Sci Tech. 2015;16:731–741. doi: 10.1208/s12249-015-0350-9
  • Hua S, Marks E, Schneider JJ, et al. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine. 2015;11:1117–1132. doi: 10.1016/j.nano.2015.02.018
  • Carvalho FC, Bruschi ML, Evangelista RC, et al. Mucoadhesive drug delivery systems. Braz J Pharm Sci. 2010;46:1–17. doi: 10.1590/S1984-82502010000100002
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64:557–570. doi: 10.1016/j.addr.2011.12.009
  • Carvalho FC, Calixto G, Hatakeyama IN, et al. Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems. Drug Dev Ind Pharm. 2013;39:1750–1757. doi: 10.3109/03639045.2012.734510
  • Wang D, Wu Q, Guo R, et al. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. Nanoscale. 2021;13:8817–8836. doi: 10.1039/d1nr01268a
  • Hatanaka T, Arai H, Kakizaki S. Balloon-occluded transcatheter arterial chemoembolization for hepatocellular carcinoma. World J Hepatol. 2018;10:485–495. doi: 10.4254/wjh.v10.i7.485
  • Wang K, Yu H-M, Xiang Y-J, et al. Transcatheter arterial chemoembolization plus atezolizumab and bevacizumab for unresectable hepatocellular carcinoma: a single-arm, phase II trial. Future Oncol. 2022;18:3367–3375. doi: 10.2217/fon-2022-0188
  • Bi Y, Du T, Pan W, et al. Transcatheter arterial chemoembolization is safe and effective for patients with late-stage or recurrent oral carcinoma. Front Oncol. 2022;12: doi: 10.3389/fonc.2022.831583
  • Ruggeri M, Vigani B, Boselli C, et al. Smart nano-in-microparticles to tackle bacterial infections in skin tissue engineering. Mater Today Bio. 2022;16:100418. doi: 10.1016/j.mtbio.2022.100418
  • Yandrapu SK, Upadhyay AK, Petrash JM, et al. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol Pharm. 2013;10:4676–4686. doi: 10.1021/mp400487f
  • Wang H, Agarwal P, Xiao Y, et al. A nano-in-micro system for enhanced stem cell therapy of ischemic diseases. ACS Cent Sci. 2017;3:875–885. doi: 10.1021/acscentsci.7b00213
  • Cardoso VMDO, de Brito NAP, Ferreira NN, et al. Design of mucoadhesive gellan gum and chitosan nanoparticles intended for colon-specific delivery of peptide drugs. Colloids Surf A Physicochem Eng Asp. 2021;628:127321. doi: 10.1016/j.colsurfa.2021.127321
  • de Oliveira Cardoso VM, Evangelista RC, Daflon Gremião MP, et al. Insights into the impact of cross-linking processes on physicochemical characteristics and mucoadhesive potential of gellan gum/retrograded starch microparticles as a platform for colonic drug release. J Drug Deliv Sci Technol. 2020;55:101445. doi: 10.1016/j.jddst.2019.101445
  • Carvalho S, Silveira MJ, Domingues M, et al. Multicellular quadruple colorectal cancer spheroids as an in vitro tool for antiangiogenic potential evaluation of nanoparticles. Adv Ther. 2023;6. doi: 10.1002/adtp.202200282

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.