650
Views
0
CrossRef citations to date
0
Altmetric
Review

The crossroad of nanovesicles and oral delivery of insulin

, , &
Pages 1387-1413 | Received 26 Feb 2023, Accepted 02 Oct 2023, Published online: 18 Oct 2023

References

  • Taylor SI, Yazdi ZS, Beitelshees AL. Pharmacological treatment of hyperglycemia in type 2 diabetes. J Clin Investig. 2021;131(2):1–14. doi: 10.1172/JCI142243
  • Cho NH, Kirigia J, Ogurstova K, et al. IDF diabetes atlas (internet). 2017.
  • Health P. Standards of Medical care in diabetes — 2021 abridged for primary care providers. 2021.
  • JAMJL J. Hyperinsulinemia and its pivotal role in aging, obesity, type 2 diabetes, cardiovascular disease and cancer. Int J Mol Sci. 2021;22(15):7797. [cited. doi: 10.3390/ijms22157797.
  • Gentile S, Strollo F, Ceriello A, et al. Lipodystrophy in insulin-treated subjects and other injection-site Skin Reactions: are we sure everything is clear? Diabetes Therapy. 2016;7(3):401–409. doi: 10.1007/s13300-016-0187-6
  • García-Pérez LE, Álvarez M, Dilla T, et al. Adherence to therapies in patients with type 2 diabetes. Diabetes Therapy. 2013;4(2):175–194. doi: 10.1007/s13300-013-0034-y
  • Chellappan DK, Yenese Y, Wei CC, et al. Oral insulin: Current status, challenges, and future perspectives. J Environ Pathol Toxicol Oncol. 2017;36(4):283–291. doi: 10.1615/JEnvironPatholToxicolOncol.2017020182
  • Lopes M, Simões S, Veiga F, et al. Why most oral insulin formulations do not reach clinical trials therapeutic delivery oral. Ther Deliv. 2016;7(2):117–138. doi: 10.4155/TDE.15.47
  • Easa N, Alany RG, Carew M, et al. A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade. Drug Discovery Today. 2019;24(2):440–451. doi: 10.1016/j.drudis.2018.11.010
  • Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res. 2021;83(2):1–16. doi: 10.1002/ddr.21903
  • Wong CY, Al-Salami H, Dass CR. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. Int J Pharmaceut. 2018;549(1–2):201–217. doi: 10.1016/j.ijpharm.2018.07.041
  • Varshosaz J, Pardakhty A, Hajhashemi VI, et al. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv. 2003;10(4):251–262. doi: 10.1080/drd_10_4_251
  • Yuan X, Ping Y, Ling Z, et al. Vesicles from Pluronic/poly (lactic acid) block copolymers as new carriers for oral insulin delivery. JControlled Release. 2007;120(1–2):11–17. doi: 10.1016/j.jconrel.2007.04.004
  • Abnous K, Ramezani M, Hadizadeh F. Dextran-b-poly (lactide-co-glycolide) polymersome for oral delivery of insulin: in vitro and in vivo evaluation. JControlled Release. 2016;227:58–70. doi: 10.1016/j.jconrel.2016.02.031
  • Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharmaceut. 2007;328(2):130–141. doi: 10.1016/j.ijpharm.2006.08.002
  • Matoori S, Leroux JC. Twenty-five years of polymersomes: lost in translation? Materials Horizons. 2020;7(5):1297–1309. doi: 10.1039/C9MH01669D
  • Bhardwaj P, Tripathi P, Gupta R, et al. Niosomes: a review on niosomal research in the last decade. J Drug Delivery Sci Technol. 2020 Apr 01;56:101581. doi: 10.1016/j.jddst.2020.101581
  • Sharma VK, Agrawal MK. A historical perspective of liposomes-a bio nanomaterial. Mater Today Proc. 2021 Jan 01;45:2963–2966. doi: 10.1016/j.matpr.2020.11.952.
  • He H, Lu Y, Qi J, et al. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019 Jan 01;9(1):36–48. doi: 10.1016/j.apsb.2018.06.005
  • Zhang X, Qi J, Lu Y, et al. Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomedicine. 2014;10(1):167–176. doi: 10.1016/j.nano.2013.07.011
  • Ayogu I, Ogbonna O, Ayolugbe C, et al. Evaluation of the pharmacodynamic activity of insulin from bilosomal formulation. Curr Drug Deliv. 2009;6(4):415–418. doi: 10.2174/156720109789000573
  • Niu M, Lu Y, Hovgaard L, et al. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int J Nanomed. 2011 Dec 01;6:1155–1166. doi: 10.2147/IJN.S19917
  • Niu M, Lu Y, Hovgaard L, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm. 2012;81(2):265–272. doi: 10.1016/j.ejpb.2012.02.009
  • Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. JControlled Release. 2014;185:22–36. doi: 10.1016/j.jconrel.2014.04.015
  • Christian DA, Cai S, Bowen DM, et al. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm. 2009;71(3):463–474. doi: 10.1016/j.ejpb.2008.09.025
  • Blanazs A, Armes SP, Ryan AJ. Self‐assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun. 2009;30(4‐5):267–277. doi: 10.1002/marc.200800713
  • Mohammadi M, Ramezani M, Abnous K, et al. Biocompatible polymersomes-based cancer theranostics: towards multifunctional nanomedicine. Int J Pharmaceut. 2017;519(1–2):287–303. doi: 10.1016/j.ijpharm.2017.01.037
  • Rideau E, Dimova R, Schwille P, et al. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev. 2018;47(23):8572–8610. doi: 10.1039/C8CS00162F
  • Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. JControlled Release. 2012;161(2):473–483. doi: 10.1016/j.jconrel.2011.10.005
  • Maghsoudi S, Shahraki BT, Rabiee N, et al. Burgeoning polymer nano blends for improved controlled drug release: a review. Int J Nanomed. 2020;15:4363–4392. doi: 10.2147/IJN.S252237
  • Chouhan R, Goswami S, Bajpai AK. Recent advancements in oral delivery of insulin: from challenges to solutions. Nanostructures for Oral Medicine. Amsterdam, The Netherlands: Elsevier Inc; 2017. p. 435–465.
  • Heinemann L, Jacques Y. Oral insulin and buccal insulin: a critical reappraisal. J Diabetes Sci Technol. 2009;3(3):568–584. doi: 10.1177/193229680900300323
  • Seyam S, Nordin NA, Alfatama M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals. 2020;13(10):1–29. doi: 10.3390/ph13100307
  • Gedawy A, Martinez J, Al-Salami H, et al. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol. 2018;70(2):197–213. doi: 10.1111/jphp.12852
  • Lopes MA, Abrahim BA, Cabral LM, et al. Intestinal absorption of insulin nanoparticles: contribution of M cells. Nanomedicine. 2014;10(6):1139–1151. doi: 10.1016/j.nano.2014.02.014
  • Yamamoto A, Taniguchi T, Rikyuu K, et al. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm Res. 1994;11(10):1496–1500. doi: 10.1023/A:1018968611962
  • Petrus AK, Vortherms AR, Fairchild TJ, et al. Vitamin B12 as a carrier for the oral delivery of insulin. ChemMedchem. 2007;2(12):1717–1721. doi: 10.1002/cmdc.200700239
  • Uchiyama T, Sugiyama T, Quan Y-S, et al. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: their intestinal mucosal toxicity and absorption-enhancing mechanism of n-lauryl-β-D-maltopyranoside. J Pharm Pharmacol. 2010;51(11):1241–1250. doi: 10.1211/0022357991776976
  • Sarmento B, Martins S, Ferreira D, et al. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomed. 2007;2(4):743–749.
  • Fonte P, Araújo F, Silva C, et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv. 2015;33(6, Part 3):1342–1354. doi: 10.1016/j.biotechadv.2015.02.010
  • Seyam S, Nordin NA, Alfatama M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals. 2020;13(10):307. [cited. doi: 10.3390/ph13100307.
  • Meneguin AB, Silvestre ALP, Sposito L, et al. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of diabetes mellitus: a review. Carbohydr Polym. 2021 Mar 15;256:117504. doi: 10.1016/j.carbpol.2020.117504
  • Chellathurai MS, Yong CL, Sofian ZM, et al. Self-assembled chitosan-insulin oral nanoparticles — a critical perspective review. Int j biol macromol. 2023 Jul 15;243:125125. doi: 10.1016/j.ijbiomac.2023.125125
  • Gallarate M, Trotta M, Battaglia L, et al. Preparation of solid lipid nanoparticles from W/O/W emulsions: preliminary studies on insulin encapsulation. J Microencapsul. 2009 Aug 01;26(5):394–402. doi: 10.1080/02652040802390156
  • Trotta M, Carlotti ME, Gallarate M, et al. Insulin-loaded SLN prepared with the emulsion dilution technique: in vivo tracking of nanoparticles after oral administration to rats. J Dispers Sci Technol. 2011 Jul 01;32(7):1041–1045. doi: 10.1080/01932691.2010.488497
  • Kwon YM, Baudys M, Knutson K, et al. In situ study of insulin aggregation induced by water-organic solvent interface. Pharm Res. 2001 Dec 01;18(12):1754–1759. doi: 10.1023/A:1013334916162
  • Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharmaceut. 2005 Jan 31;289(1):1–30. doi: 10.1016/j.ijpharm.2004.11.014
  • Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Delivery Rev. 2023 Aug 01;199:114904. doi: 10.1016/j.addr.2023.114904
  • Sarhadi S, Moosavian SA, Mashreghi M, et al. B12-functionalized PEGylated liposomes for the oral delivery of insulin: in vitro and in vivo studies. J Drug Delivery Sci Technol. 2022;69(September 2021):103141–103141. doi: 10.1016/j.jddst.2022.103141
  • Yazdi JR, Tafaghodi M, Sadri K, et al. Folate targeted PEGylated liposomes for the oral delivery of insulin: in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2020;194(March):111203–111203. doi: 10.1016/j.colsurfb.2020.111203
  • Mirchandani Y, Patravale VB. Solid lipid nanoparticles for hydrophilic drugs. JControlled Release. 2021 Jul 10;335:457–464. doi: 10.1016/j.jconrel.2021.05.032
  • Eloy JO, Claro de Souza M, Petrilli R, et al. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces. 2014 Nov 01;123:345–363. doi: 10.1016/j.colsurfb.2014.09.029
  • Agrawal AK, Harde H, Thanki K, et al. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules. 2014;15(1):350–360. doi: 10.1021/bm401580k
  • Barenholz YC. Doxil®—the first FDA-approved nano-drug: from an idea to a product. In: Handbook of harnessing biomaterials in nanomedicine. Jenny Stanford Publishing; 2021. p. 463–528.
  • Geho WB, Geho HC, Lau JR, et al. Hepatic-directed vesicle insulin: a review of formulation development and preclinical evaluation. J Diabetes Sci Technol. 2009;3(6):1451–1459. doi: 10.1177/193229680900300627
  • Mohammadi M, Taghavi S, Abnous K, et al. Hybrid vesicular drug delivery systems for cancer therapeutics. Adv Funct Mater. 2018;28(36):1–18. doi: 10.1002/adfm.201802136
  • Apolinário AC, Hauschke L, Nunes JR, et al. Lipid nanovesicles for biomedical applications: ‘what is in a name’? Progress Lipid Res. 2021;82(September 2020). doi: 10.1016/j.plipres.2021.101096
  • Jash A, Ubeyitogullari A, Rizvi SSH. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J Mat Chem B. 2021;9(24):4773–4792. doi: 10.1039/D1TB00126D
  • Sonju JJ, Dahal A, Jois SD. Liposome nanocarriers for peptide drug delivery. In: Jois S, editor. Peptide therapeutics: fundamentals of design, development, and delivery. Cham: Springer International Publishing; 2022. p. 203–235. doi: 10.1007/978-3-031-04544-8_6
  • Dapergolas G, Gregoriadis G. Hypoglycaemic effect of liposome-entrapped insulin administered intragastrically into rats. Lancet. 1976 Oct 16;308(7990):824–827. doi: 10.1016/s0140-6736(76)91209-5.
  • Arrieta-Molero JF, Aleck K, Sinha MK, et al. Orally administered liposome-entrapped insulin in diabetic animals. Hormone Res Paediatrics. 1982;16(4):249–256. doi: 10.1159/000179509
  • Grit M, Crommelin DJA. Chemical-stability-of-liposomes-implications-for-their-physical-stability_1993_Chemistry-and-Physics-of-lipids. Chem Phys Lipids. 1993;64:3–18. doi: 10.1016/0009-3084(93)90053-6
  • Kokkona M, Kallinteri P, Fatouros D, et al. Stability of SUV liposomes in the presence of cholate salts and pancreatic lipases: effect of lipid composition. Eur J Pharmaceut Sci. 2000;9(3):245–252. doi: 10.1016/S0928-0987(99)00064-0
  • Li P, Nielsen HM, Müllertz A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin Drug Delivery. 2012;9(10):1289–1304. doi: 10.1517/17425247.2012.717068
  • Hu S, Niu M, Hu F, et al. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int J Pharmaceut. 2013 Jan 30;441(1):693–700. doi: 10.1016/j.ijpharm.2012.10.025
  • Šeremet D, Štefančić M, Petrović P, et al. Development, characterization and incorporation of alginate-plant protein covered liposomes containing ground ivy (glechoma hederacea L.) extract into candies. Foods. 2022;11(12):1816–1816. doi: 10.3390/foods11121816
  • Kari OK, Tavakoli S, Parkkila P, et al. Light-activated liposomes coated with hyaluronic acid as a potential drug delivery system. Pharmaceutics. 2020;12(8):1–24. doi: 10.3390/pharmaceutics12080763
  • Cámara CI, Lurgo FE, Fanani ML, et al. Mechanical stability of lipid membranes decorated with dextran sulfate. ACS Omega. 2018;3(9):11673–11683. doi: 10.1021/acsomega.8b01537
  • Bonechi C, Tamasi G, Donati A, et al. Physicochemical characterization of hyaluronic acid and chitosan liposome coatings. Applied Sciences (Switzerland). 2021;11(24):1–12. doi: 10.3390/app112412071
  • Zhou F, Xu T, Zhao Y, et al. Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocolloids. 2018;83:17–24. doi: 10.1016/j.foodhyd.2018.04.040
  • Hamedinasab H, Rezayan AH, Mellat M, et al. Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int j biol macromol. 2020;156:1455–1463. doi: 10.1016/j.ijbiomac.2019.11.190
  • Gheybi F, Rezayat SM, Jaafari MR. Liposomal formulation containing poly ethylene glycol-phospholipid conjugated molecules with cytotoxic effects. Mater Today Proc. 2019;42:1555–1558. doi: 10.1016/j.matpr.2020.01.361
  • Dana P, Bunthot S, Suktham K, et al. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B Biointerfaces. 2020;196(July 2020):111270–111270. doi: 10.1016/j.colsurfb.2020.111270
  • Mastrotto F, Brazzale C, Bellato F, et al. In vitro and in vivo behavior of liposomes decorated with PEGs with different chemical features. Mol Pharmaceut. 2020;17. doi: 10.1021/acs.molpharmaceut.9b00887
  • Zalba S, ten Hagen TLM, Burgui C, et al. Stealth nanoparticles in oncology: facing the PEG dilemma. JControlled Release. 2022 Nov 01;351:22–36. doi: 10.1016/j.jconrel.2022.09.002
  • Ingle SG, Pai RV, Monpara JD, et al. Liposils: an effective strategy for stabilizing paclitaxel loaded liposomes by surface coating with silica. Eur J Pharmaceut Sci. 2018 Sep 15;122:51–63. doi: 10.1016/j.ejps.2018.06.025
  • Mohanraj VJ, Barnes TJ, Prestidge CA. Silica nanoparticle coated liposomes: a new type of hybrid nanocapsule for proteins. Int J Pharmaceut. 2010;392(1–2):285–293. doi: 10.1016/j.ijpharm.2010.03.061
  • Bellare J, Dwivedi N, Arunagirinathan MA, et al. Silica-coated liposomes for insulin delivery. J Nanomater. 2010;2010:1–8. doi: 10.1155/2010/652048
  • Frenzel M, Steffen-Heins A. Whey protein coating increases bilayer rigidity and stability of liposomes in food-like matrices. Food Chem. 2015;173(October):1090–1099. doi: 10.1016/j.foodchem.2014.10.076
  • Wang A, Yang T, Fan W, et al. Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers. Adv Healthcare Mater. 2019;8(12):1–11. doi: 10.1002/adhm.201801123
  • Sato H, Nakhaei E, Kawano T, et al. Ligand-mediated coating of liposomes with Human Serum albumin. Langmuir. 2018;34(6):2324–2331. doi: 10.1021/acs.langmuir.7b04024
  • Liu W, Ye A, Han F, et al. Advances and challenges in liposome digestion: surface interaction, biological fate, and GIT modeling. Adv Colloid Interface Sci. 2019;263:52–67. doi: 10.1016/j.cis.2018.11.007
  • Venkatesan N, Vyas S. Polysaccharide coated liposomes for oral immunization—development and characterization. Int J Pharmaceut. 2000;203(1–2):169–177. doi: 10.1016/S0378-5173(00)00442-7
  • Lee C-M, Lee H-C, Lee K-Y. O-palmitoylcurdlan sulfate (OPCurS)-coated liposomes for oral drug delivery. J Biosci Bioeng. 2005;100(3):255–259. doi: 10.1263/jbb.100.255
  • Carafa M, Marianecci C, Annibaldi V, et al. Novel O-palmitoylscleroglucan-coated liposomes as drug carriers: development, characterization and interaction with leuprolide. Int J Pharmaceut. 2006;325(1–2):155–162. doi: 10.1016/j.ijpharm.2006.06.040
  • Park J, Khan T. Other microbial polysaccharides: Pullulan, scleroglucan, elsinan, levan, alternant, dextran. In: Handbook of hydrocolloids. Elsevier; 2009. p. 592–614. doi: 10.1533/9781845695873.592
  • Sehgal S, Rogers J. Polymer-coated liposomes: improved liposome stability and release of cytosine arabinoside (ara-C). J Microencapsul. 1995;12(1):37–47. doi: 10.3109/02652049509051125
  • Guadarrama-Escobar OR, Serrano-Castañeda P, Anguiano-Almazán E, et al. Chitosan nanoparticles as oral drug carriers. Int J Mol Sci. 2023;24(5):4289. [cited. doi: 10.3390/ijms24054289
  • Shalaby TI, El-Refaie WM. Bioadhesive chitosan-coated cationic nanoliposomes with improved insulin encapsulation and prolonged oral hypoglycemic effect in diabetic mice. Journal of Pharmaceutical Sciences. 2018;107(8): 2136–2143. doi: 10.1016/j.xphs.2018.04.011
  • Bhumkar DR, Joshi HM, Sastry M, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007 Aug;24(8):1415–1426. doi: 10.1007/s11095-007-9257-9
  • Costa C, Liu Z, Martins JP, et al. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci. 2020;8(12):3270–3277. doi: 10.1039/D0BM00743A
  • Wu P, Chen L, Chen M, et al. Use of sodium alginate coatings to improve bioavailability of liposomes containing DPP-IV inhibitory collagen peptides. Food Chem. 2023 Jul 15;414:135685. doi: 10.1016/j.foodchem.2023.135685
  • Li H, Song J-H, Park J-S, et al. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int J Pharmaceut. 2003;258(1–2):11–19. doi: 10.1016/S0378-5173(03)00158-3
  • Iwanaga K, Ono S, Narioka K, et al. Oral delivery of insulin by using surface coating liposomes: improvement of stability of insulin in GI tract. Int J Pharmaceut. 1997 Nov 14;157(1):73–80. doi: 10.1016/S0378-5173(97)00237-8
  • Reineke J, Cho D, Dingle Y, et al. Can bioadhesive nanoparticles allow for more effective particle uptake from the small intestine? JControlled Release. 2013;170(3):477–484. doi: 10.1016/j.jconrel.2013.05.043
  • Azagury A, Baptista C, Milovanovic K, et al. Biocoating—A critical step governing the oral delivery of polymeric nanoparticles. Small. 2022;18(26):2107559. doi: 10.1002/smll.202107559
  • Palchetti S, Colapicchioni V, Digiacomo L, et al. Biochimica et biophysica Acta the protein corona of circulating PEGylated liposomes. BBA - Biomembr. 2016;1858(2):189–196. doi: 10.1016/j.bbamem.2015.11.012
  • Bégu S, Pouëssel AA, Lerner DA, et al. Liposil, a promising composite material for drug storage and release. JControlled Release. 2007 Mar 12;118(1):1–6. doi: 10.1016/j.jconrel.2006.11.022
  • Iwanaga K, Ono S, Narioka K, et al. Oral delivery of insulin by using surface coating liposomes. Improvement of stability of insulin in GI tract. Int J Pharmaceut. 1997;157(1):73–80. doi: 10.1016/S0378-5173(97)00237-8
  • Vlachou M, Karalis V. An in vitro–in vivo simulation approach for the prediction of bioequivalence. Materials. 2021;14(3):1–27. doi: 10.3390/ma14030555
  • Alibolandi M, Abnous K, Mohammadi M, et al. Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation. JControlled Release. 2017;264:228–236. doi: 10.1016/j.jconrel.2017.08.030
  • Xie S, Gong YC, Xiong XY, et al. Targeted folate-conjugated pluronic P85/poly(lactide-co-glycolide) polymersome for the oral delivery of insulin. Nanomedicine. 2018;13(19):2527–2544. doi: 10.2217/nnm-2017-0372
  • Liu C, Shan W, Liu M, et al. A novel ligand conjugated nanoparticles for oral insulin delivery. Drug Delivery. 2016;23(6):2015–2025. doi: 10.3109/10717544.2015.1058433
  • Xu Y, Shrestha N, Préat V, et al. Overcoming the intestinal barrier: a look into targeting approaches for improved oral drug delivery systems. JControlled Release. 2020;322(April):486–508. doi: 10.1016/j.jconrel.2020.04.006
  • Gabor F, Bogner E, Weissenboeck A, et al. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Delivery Rev. 2004;56(4):459–480. doi: 10.1016/j.addr.2003.10.015
  • Zhang N, Ping QN, Huang GH, et al. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharmaceut. 2005;294(1–2):247–259. doi: 10.1016/j.ijpharm.2005.01.018
  • Rini JM. Lectin structure. Annu Rev Biophys Biomol Struct. 1995;24(1):551–577. doi: 10.1146/annurev.bb.24.060195.003003
  • Balan V, Dodi G, Mihai CT, et al. Biotinylated chitosan macromolecule based nanosystems: a review from chemical design to biological targets. Int j biol macromol. 2021 Oct 01;188:82–93. doi: 10.1016/j.ijbiomac.2021.07.197
  • Zempleni J, Wijeratne SS, Hassan YI. Biotin. BioFactors. 2009;35(1):36–46. doi: 10.1002/biof.8
  • Ren WX, Han J, Uhm S, et al. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem Comm. 2015;51(52):10403–10418. doi: 10.1039/C5CC03075G
  • Fernandez-Mejia C. Pharmacological effects of biotin. J Nutr Biochem. 2005;16(7):424–427. doi: 10.1016/j.jnutbio.2005.03.018
  • Arbit E, Kidron M. Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol. 2009;3(3):562–567. doi: 10.1177/193229680900300322
  • Geho WB, Rosenberg LN, Schwartz SL, et al. A single-blind, placebo-controlled, dose-ranging trial of oral hepatic-directed vesicle insulin add-on to oral antidiabetic treatment in patients with type 2 diabetes mellitus. J Diabetes Sci Technol. 2014;8(3):551–559. doi: 10.1177/1932296814524871
  • Naserifar M, Hosseinzadeh H, Abnous K, et al. Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci. 2020;262:118555–118555. doi: 10.1016/j.lfs.2020.118555
  • Tamai I, Tsuji A. Carrier-mediated approaches for oral drug delivery. Adv Drug Delivery Rev. 1996;20(1):5–32. doi: 10.1016/0169-409X(95)00128-T
  • Anderson KE, Eliot LA, Stevenson BR, et al. Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form. Pharm Res. 2001;18(3):316–322. doi: 10.1023/A:1011002913601
  • Sheue S, Ling N, Hay K, et al. Oral bioavailability enhancement of a hydrophilic drug delivered via folic acid-coupled liposomes in rats. J Pharm Pharmacol. 2009;61(4):445–449. doi: 10.1211/jpp.61.04.0005
  • Ciobanu M, Heurtault B, Schultz P, et al. Layersome: development and optimization of stable liposomes as drug delivery system. Int J Pharmaceut. 2007;344(1–2):154–157. doi: 10.1016/j.ijpharm.2007.05.037
  • He H, Lu Y, Qi J, et al. Biomimetic thiamine- and niacin-decorated liposomes for enhanced oral delivery of insulin. Acta Pharm Sin B. 2018;8(1):97–105. doi: 10.1016/j.apsb.2017.11.007
  • Chalasani KB, Russell-Jones GJ, Jain AK, et al. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. JControlled Release. 2007;122(2):141–150. doi: 10.1016/j.jconrel.2007.05.019
  • Singh P, Prabakaran D, Jain S, et al. Cholera toxin B subunit conjugated bile salt stabilized vesicles (bilosomes) for oral immunization. Int J Pharmaceut. 2004;278(2):379–390. doi: 10.1016/j.ijpharm.2004.03.014
  • Mann JFS, Scales HE, Shakir E, et al. Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods. 2006;38(2):90–95. doi: 10.1016/j.ymeth.2005.11.002
  • Shukla A, Khatri K, Gupta PN, et al. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci. 2008;11(1):59–66. doi: 10.18433/J3K01M
  • Palekar-Shanbhag P, Lande S, Chandra R, et al. Bilosomes: superior vesicular carriers. Curr Drug Ther. 2020;15(4):312–320. doi: 10.2174/1574885514666190917145510
  • Schubert R, Jaroni H, Schoelmerich J, et al. Studies on the mechanism of bile salt-induced liposomal membrane damage. Digestion. 1983;28(3):181–190. doi: 10.1159/000198984
  • Chen Y, Lu Y, Chen J, et al. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharmaceut. 2009 Jul 06;376(1):153–160. doi: 10.1016/j.ijpharm.2009.04.022
  • Gupta PN, Mishra V, Rawat A, et al. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharmaceut. 2005 Apr 11;293(1):73–82. doi: 10.1016/j.ijpharm.2004.12.022
  • Niu M, Tan Y, Guan P, et al. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study. Int J Pharmaceut. 2014;460(1–2):119–130. doi: 10.1016/j.ijpharm.2013.11.028
  • Zhang B, Xue A, Zhang C, et al. Bile salt liposomes for enhanced lymphatic transport and oral bioavailability of paclitaxel. Die Pharmazie- Int J Pharm Sci. 2016;71(6):320–326. doi: 10.1691/ph.2016.5184
  • Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20(8):14451–14473. doi: 10.3390/molecules200814451
  • Ajera RR, Agpal KN, Ingh SKS, et al. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34(7):945–953. doi: 10.1248/bpb.34.945
  • Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B. 2011 Dec 01;1(4):208–219. doi: 10.1016/j.apsb.2011.09.002
  • Rathod S, Desai H, Patil R, et al. Non-ionic surfactants as a P-Glycoprotein(P-gp) efflux inhibitor for optimal drug delivery—A concise outlook. AAPS Pharm Sci Tech. 2022 Jan 18;23(1):55. doi: 10.1208/s12249-022-02211-1
  • Pardakhty A, Moazeni E, Varshosaz J, et al. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. DARU J Pharma Sci. 2011;19(6):404–411.
  • Moghassemi S, Parnian E, Hakamivala A, et al. Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. Mater Sci Eng C. 2015;46:333–340. doi: 10.1016/j.msec.2014.10.070
  • Sharma PK, Kushwaha A, Repka MA, et al. Formulation development and pharmacokinetic investigation of self-assembled hybrid niosomes for oral delivery of 17-hydroxyprogesterone caproate. J Drug Delivery Sci Technol. 2021;61(November):102215–102215. doi: 10.1016/j.jddst.2020.102215
  • Chem P, Rutjes FPJT, van Hest JCM. Polymer chemistry polymeric vesicles in biomedical applications †. Polym Chem. 2011;2(7):1449–1462. doi: 10.1039/c1py00061f
  • Otrin L, Marušič N, Bednarz C, et al. Toward artificial mitochondrion: mimicking oxidative phosphorylation in polymer and hybrid membranes. Nano Lett. 2017;17(11):6816–6821. doi: 10.1021/acs.nanolett.7b03093
  • Yu J, Qiu H, Yin S, et al. Polymeric drug delivery system based on pluronics for cancer treatment. Molecules. 2021 Jun 12;26(12):3610. doi: 10.3390/molecules26123610
  • Pardeshi SR, Nikam A, Chandak P, et al. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. Int J Polym Mater Polym Biomater. 2023 Jan 02;72(1):49–78. doi: 10.1080/00914037.2021.1985495
  • Narmani A, Jahedi R, Bakhshian-Dehkordi E, et al. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opin Drug Delivery. 2023;20(7):937–954. doi: 10.1080/17425247.2023.2223941
  • Ramadas M. Lipoinsulin encapsulated alginate-chitosan capsules: intestinal delivery in diabetic rats. J Microencapsul. 2000 Jan 01;17(4):405–411. doi: 10.1080/026520400405660
  • MURAMATSU K, MAITANI Y, NAGAI T. Dipalmitoylphosphatidylcholine liposomes with soybean-derived sterols and cholesterol as a carrier for the oral administration of insulin in rats. Biol Pharm Bull. 1996;19(8):1055–1058. doi: 10.1248/bpb.19.1055
  • Colletier J-P, Chaize B, Winterhalter M, et al. Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. 2002 May 10;2(1):9. doi: 10.1186/1472-6750-2-9
  • Weingarten C, Moufti A, Delattre J, et al. Protection of insulin from enzymatic degradation by its association to liposomes. Int J Pharmaceut. 1985 Oct 01;26(3):251–257. doi: 10.1016/0378-5173(85)90234-0
  • Judy E, Lopus M, Kishore N. Mechanistic insights into encapsulation and release of drugs in colloidal niosomal systems: biophysical aspects. RSC Adv. 2021;11(56):35110–35126. doi: 10.1039/D1RA06057K
  • Manosroi A, Khanrin P, Werner RG, et al. Entrapment enhancement of peptide drugs in niosomes. J Microencapsul. 2010;27(3):272–280. doi: 10.3109/02652040903131293
  • Nakhaei P, Margiana R, Bokov DO, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886. doi: 10.3389/fbioe.2021.705886
  • Moghassemi S, Hadjizadeh A, Omidfar K. Formulation and characterization of Bovine Serum albumin-loaded niosome. AAPS Pharm Sci Tech. 2017 Jan 01;18(1):27–33. doi: 10.1208/s12249-016-0487-1
  • Lee S-C, Lee K-E, Kim J-J, et al. The effect of cholesterol in the liposome bilayer on the stabilization of incorporated retinol. J Liposome Res. 2005 Jan 01;15(3–4):157–166. doi: 10.1080/08982100500364131
  • Fritzsching KJ, Kim J, Holland GP. Probing lipid–cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13C solid-state NMR. Biochim Biophys Acta - Biomembr. 2013 Aug 01;1828(8):1889–1898. doi: 10.1016/j.bbamem.2013.03.028
  • Tamai N, Uemura M, Takeichi T, et al. A new interpretation of eutectic behavior for distearoylphosphatidylcholine–cholesterol binary bilayer membrane. Biophys Chem. 2008 Jun 01;135(1):95–101. doi: 10.1016/j.bpc.2008.03.008
  • Nicholas AR, Scott MJ, Kennedy NI, et al. Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles. Biochim Biophys Acta - Biomembr. 2000 Jan 15;1463(1):167–178. doi: 10.1016/S0005-2736(99)00192-3
  • Ullmann K, Leneweit G, Nirschl H. How to achieve high encapsulation efficiencies for macromolecular and sensitive APIs in liposomes. Pharmaceutics. 2021;13(5):691. doi: 10.3390/pharmaceutics13050691
  • Niu Z, Conejos-Sánchez I, Griffin BT, et al. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Delivery Rev. 2016 Nov 15;106:337–354. doi: 10.1016/j.addr.2016.04.001
  • Yu B, Lee RJ, Lee LJ. Microfluidic methods for production of liposomes. Methods Enzymol. 2009;465(C):129–141. doi: 10.1016/S0076-6879(09)65007-2
  • Mohammadi M, Mousavi Shaegh SA, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration: recent advances and emerging designs. JControlled Release. 2018;274(November 2017):35–55. doi: 10.1016/j.jconrel.2018.01.032
  • Machado ND, García-Manrique P, Fernández MA, et al. Cholesterol free niosome production by microfluidics: comparative with other conventional methods. Chem Eng Res Des. 2020 Oct 01;162:162–171. doi: 10.1016/j.cherd.2020.08.002
  • Shah VM, Nguyen DX, Patel P, et al. Liposomes produced by microfluidics and extrusion: a comparison for scale-up purposes. Nanomedicine. 2019;18:146–156. doi: 10.1016/j.nano.2019.02.019
  • Fang E, Liu X, Li M, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Ther. 2022 Mar 23;7(1):94. doi: 10.1038/s41392-022-00950-y
  • Li C, Zhang Y, Su T, et al. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomed. 2012:7:5995–6002. doi: 10.2147/IJN.S38043
  • Wu H, Nan J, Yang L, et al. Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. JControlled Release. 2023 Jan 01;353:51–62. doi: 10.1016/j.jconrel.2022.11.032
  • Spoorthi Shetty S, Halagali P, Johnson AP, et al. Oral insulin delivery: barriers, strategies, and formulation approaches: a comprehensive review. Int j biol macromol. 2023 Jul 01;242:125114. doi: 10.1016/j.ijbiomac.2023.125114
  • Tai W, Mo R, Di J, et al. Bio-Inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules. 2014 Oct 13;15(10):3495–3502. doi: 10.1021/bm500364a
  • Chen Z, Wang J, Sun W, et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat Chem Biol. 2018 Jan 01;14(1):86–93. doi: 10.1038/nchembio.2511
  • Rodríguez-Morales B, Antunes-Ricardo M, González-Valdez J. Exosome-mediated insulin delivery for the potential treatment of diabetes mellitus. Pharmaceutics. 2021;13(11):1870. doi: 10.3390/pharmaceutics13111870

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.