133
Views
0
CrossRef citations to date
0
Altmetric
Review

Intravenous nanocrystals: fabrication, solidification, in vivo fate, and applications for cancer therapy

, , , , , & show all
Pages 1467-1488 | Received 13 Mar 2023, Accepted 05 Oct 2023, Published online: 17 Oct 2023

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi: 10.3322/caac.21708
  • Jung W, Kwon J, Cho W, et al. Chiral biomaterials for Nanomedicines: from molecules to Supraparticles. Pharmaceutics. 2022;14(9):1951. doi: 10.3390/pharmaceutics14091951
  • Jermain SV, Brough C, Williams RO 3rd. Amorphous solid dispersions and nanocrystals technologies for poorly water-soluble drug delivery - an update. Int J Pharm. 2018;535(1–2):379–392. doi: 10.1016/j.ijpharm.2017.10.051
  • Ma Y, Cong Z, Gao P, et al. Nanosuspensions technology as a master key for nature products drug delivery and in vivo fate. Eur J Pharm Sci. 2023;185:106425. doi: 10.1016/j.ejps.2023.106425
  • Zhu Y, Ouyang Z, Du H, et al. New opportunities and challenges of natural products research: when target identification meets single-cell multiomics. Acta Pharm Sin B. 2022;12(11):4011–4039. doi: 10.1016/j.apsb.2022.08.022
  • Yeom J, Guimaraes PPG, Ahn HM, et al. Chiral supraparticles for controllable Nanomedicine. Adv Mater. 2020;32(1):e1903878. doi: 10.1002/adma.201903878
  • Dhaval M, Makwana J, Sakariya E, et al. Drug nanocrystals: a comprehensive review with Current regulatory guidelines. Curr Drug Deliv. 2020;17(6):470–482. doi: 10.2174/1567201817666200512104833
  • Li J, Wang Z, Zhang H, et al. Progress in the development of stabilization strategies for nanocrystals preparations. Drug Deliv. 2021;28(1):19–36. doi: 10.1080/10717544.2020.1856224
  • Ren X, Qi J, Wu W, et al. Development of carrier-free nanocrystals of poorly water-soluble drugs by exploring metastable zone of nucleation. Acta Pharm Sin B. 2019;9(1):118–127. doi: 10.1016/j.apsb.2018.05.004
  • Yang X, Liu Y, Zhao Y, et al. A stabilizer-free and organic solvent-free method to prepare 10-hydroxycamptothecin nanocrystals: in vitro and in vivo evaluation. Int J Nanomedicine. 2016;11:2979–2994. doi: 10.2147/IJN.S102726
  • Liu F, Park JY, Zhang Y, et al. Targeted cancer therapy with novel high drug-loading nanocrystals. J Pharm Sci. 2010;99(8):3542–3551. doi: 10.1002/jps.22112
  • Yang L, Hong J, Di J, et al. 10-hydroxycamptothecin (HCPT) nanosuspensions stabilized by mPEG(1000)-HCPT conjugate: high stabilizing efficiency and improved antitumor efficacy. Int J Nanomedicine. 2017;12:3681–3695. doi: 10.2147/IJN.S134005
  • Park J, Sun B, Yeo Y. Albumin-coated nanocrystals for carrier-free delivery of paclitaxel. J Control Release. 2017;263:90–101.
  • Mei D, Gong LD, Zou YR, et al. Platelet membrane-cloaked paclitaxel- nanocrystals augment postoperative chemotherapeutical efficacy. J Controll Release. 2020;324:341–353. doi: 10.1016/j.jconrel.2020.05.016
  • Kalhapure RS, Palekar S, Patel K, et al. Nanocrystals for controlled delivery: state of the art and approved drug products. Expert Opin Drug Deliv. 2022;19(10):1303–1316. doi: 10.1080/17425247.2022.2110579
  • Bai M, Yang M, Gong J, et al. Progress and principle of drug INCs for tumor targeted delivery. AAPS Pharm Sci Tech. 2021;23(1):41. doi: 10.1208/s12249-021-02200-w
  • Soisuwan S, Teeranachaideekul V, Wongrakpanich A, et al. Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. Eur J Pharm Biopharm. 2019;137:68–76. doi: 10.1016/j.ejpb.2019.02.004
  • Li Y, Wang Y, Yue PF, et al. A novel high-pressure precipitation tandem homogenization technology for drug nanocrystals production - a case study with ursodeoxycholic acid. Pharm Dev Technol. 2014;19(6):662–670. doi: 10.3109/10837450.2013.819015
  • Sreeharsha N, Prasanthi S, Mahalakshmi S, et al. Enhancement of anti-tumoral properties of paclitaxel nano-crystals by conjugation of Folic acid to pluronic F127: formulation optimization. Vitro And In Vivo Study Molecules. 2022;27(22):7914. doi: 10.3390/molecules27227914
  • Zingale E, Bonaccorso A, Carbone C, et al. Drug nanocrystals: focus on brain delivery from therapeutic to diagnostic applications. Pharmaceutics. 2022;14(4):691. doi: 10.3390/pharmaceutics14040691
  • Mohammad IS, Hu H, Yin L, et al. Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm. 2019;562:187–202. doi: 10.1016/j.ijpharm.2019.02.045
  • Wang J, Muhammad N, Li T, et al. Hyaluronic acid-coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer efficacy. Mol Pharm. 2020;17(7):2411–2425. doi: 10.1021/acs.molpharmaceut.0c00161
  • Muller RH, Gohla S, Keck CM. State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9. doi: 10.1016/j.ejpb.2011.01.007
  • Liu T, Yu XX, Yin HP, et al. Advanced modification of drug nanocrystals by using novel fabrication and downstream approaches for tailor-made drug delivery. Drug Deliv. 2019;26(1):1092–1103. doi: 10.1080/10717544.2019.1682721
  • Peltonen L, Hirvonen J. Drug nanocrystals - versatile option for formulation of poorly soluble materials. Int J Pharm. 2018;537(1–2):73–83. doi: 10.1016/j.ijpharm.2017.12.005
  • Chen ML, John M, Lee SL, et al. Development considerations for nanocrystal drug products. AAPS J. 2017;19(3):642–651. doi: 10.1208/s12248-017-0064-x
  • Patel D, Zode SS, Bansal AK. Formulation aspects of intravenous nanosuspensions. Int J Pharm. 2020;586:119555. doi: 10.1016/j.ijpharm.2020.119555
  • Chen Z, Wu W, Lu Y. What is the future for nanocrystals-based drug-delivery systems? Ther Deliv. 2020;11(4):225–229. doi: 10.4155/tde-2020-0016
  • Chai Z, Ran D, Lu L, et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to Glioma. ACS Nano. 2019;13(5):5591–5601. doi: 10.1021/acsnano.9b00661
  • Boushehri MAS, Dietrich D, Lamprecht A. Nanotechnology as a platform for the development of injectable parenteral formulations: a comprehensive review of the know-hows and state of the art. Pharmaceutics. 2020;12(6):510. doi: 10.3390/pharmaceutics12060510
  • Wong J, Brugger A, Khare A, et al. Suspensions for intravenous (IV) injection: a review of development, preclinical and clinical aspects. Adv Drug Delivery Rev. 2008;60(8):939–954. doi: 10.1016/j.addr.2007.11.008
  • Pawar VK, Singh Y, Meher JG, et al. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release. 2014;183:51–66. doi: 10.1016/j.jconrel.2014.03.030
  • Gadalla HH, Lee S, Kim H, et al. Size optimization of carfilzomib nanocrystals for systemic delivery to solid tumors. J Control Release. 2022;352:637–651. doi: 10.1016/j.jconrel.2022.10.041
  • Wang Y, Zheng Y, Zhang L, et al. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–1141. doi: 10.1016/j.jconrel.2013.08.006
  • Ahire E, Thakkar S, Darshanwad M, et al. Parenteral nanosuspensions: a brief review from solubility enhancement to more novel and specific applications. Acta Pharm Sin B. 2018;8(5):733–755. doi: 10.1016/j.apsb.2018.07.011
  • He W, Zhang J, Ju J, et al. Preparation, characterization, and evaluation of the antitumor effect of kaempferol nanosuspensions. Drug Deliv Transl Res. 2023;13(11):2885–2902. doi: 10.1007/s13346-023-01357-0
  • Long J, Song J, Zhang X, et al. Tea saponins as natural stabilizers for the production of hesperidin nanosuspensions. Int J Pharm. 2020;583:119406. doi: 10.1016/j.ijpharm.2020.119406
  • Frank KJ, Boeck G. Development of a nanosuspension for iv administration: from miniscale screening to a freeze dried formulation. Eur J Pharm Sci. 2016;87:112–117. doi: 10.1016/j.ejps.2016.03.003
  • Kim W, Ly NK, He Y, et al. Protein corona: friend or foe? co-opting serum proteins for nanoparticle delivery. Adv Drug Deliv Rev. 2023;192:114635. doi: 10.1016/j.addr.2022.114635
  • Luo Z, Lu L, Xu W, et al. In vivo self-assembled drug nanocrystals for metastatic breast cancer all-stage targeted therapy. J Control Release. 2022;346:32–42. doi: 10.1016/j.jconrel.2022.03.058
  • Sigfridsson K, Skantze P, Skantze U, et al. Nanocrystal formulations of a poorly soluble drug. 2. Evaluation of nanocrystal liver uptake and distribution after intravenous administration to mice. Int J Pharm. 2017 May 30;524(1–2):248–256. doi: 10.1016/j.ijpharm.2017.03.062
  • Zong L, Li X, Wang H, et al. Formulation and characterization of biocompatible and stable I.V. itraconazole nanosuspensions stabilized by a new stabilizer polyethylene glycol-poly(beta-benzyl-l-aspartate) (PEG-PBLA). Int J Pharm. 2017;531(1):108–117. doi: 10.1016/j.ijpharm.2017.08.082
  • Manaargadoo-Catin M, Ali-Cherif A, Pougnas JL, et al. Hemolysis by surfactants–A review. Adv Colloid Interface Sci. 2016;228:1–16. doi: 10.1016/j.cis.2015.10.011
  • Ancic D, Orsolic N, Odeh D, et al. Resveratrol and its nanocrystals: a promising approach for cancer therapy? Toxicol Appl Pharmacol. 2022;435:435. doi: 10.1016/j.taap.2021.115851
  • Wu Q, Tong L, Zou ZR, et al. Herceptin-functionalized SK-BR-3 cell membrane-wrapped paclitaxel nanocrystals for enhancing the targeted therapy effect of HER2-positive breast cancer. Mater Des. 2022;219:110818. doi: 10.1016/j.matdes.2022.110818
  • Huang TT, Wang Y, Shen YP, et al. Preparation of high drug-loading celastrol nanosuspensions and their anti-breast cancer activities in vitro and in vivo. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-65773-9
  • Fu J, Lu L, Li M, et al. A γ-glutamyl transpeptidase (GGT)-triggered charge reversal drug-delivery system for cervical cancer treatment: In Vitro and in vivo investigation. Pharmaceutics. 2023;15(5):1335. doi: 10.3390/pharmaceutics15051335
  • Gao L, Liu G, Ma J, et al. Drug nanocrystals: in vivo performances. J Control Release. 2012;160(3):418–430. doi: 10.1016/j.jconrel.2012.03.013
  • Bernal-Chavez SA, Del Prado-Audelo ML, Caballero-Floran IH, et al. Insights into terminal sterilization processes of nanoparticles for biomedical applications. Molecules. 2021;26(7):2068. doi: 10.3390/molecules26072068
  • Pengnam S, Charoensuksai P, Yingyongnarongkul BE, et al. siRNA targeting mcl-1 potentiates the anticancer activity of andrographolide nanosuspensions via apoptosis in breast cancer cells. Pharmaceutics. 2022;14(6):1196. doi: 10.3390/pharmaceutics14061196
  • Wang LL, Du J, Zhou YQ, et al. Safety of nanosuspensions in drug delivery. Nanomed-Nanotechnol. 2017;13(2):455–469. doi: 10.1016/j.nano.2016.08.007
  • Fontana F, Figueiredo P, Zhang P, et al. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev. 2018;131:3–21. doi: 10.1016/j.addr.2018.05.002
  • Funahashi I, Kondo K, Ito Y, et al. Novel contamination-free wet milling technique using ice beads for poorly water-soluble compounds. Int J Pharm. 2019;563:413–425. doi: 10.1016/j.ijpharm.2019.04.008
  • Siewert C, Moog R, Alex R, et al. Process and scaling parameters for wet media milling in early phase drug development: a knowledge based approach. Eur J Pharm Sci. 2018;115:126–131. doi: 10.1016/j.ejps.2017.12.022
  • Juhnke M, Märtin D, John E. Generation of wear during the production of drug nanosuspensions by wet media milling. Eur J Pharm Biopharm. 2012;81(1):214–. doi: 10.1016/j.ejpb.2012.01.005
  • Nakach M, Authelin JR, Perrin MA, et al. Comparison of high pressure homogenization and stirred bead milling for the production of nano-crystalline suspensions. Int J Pharm. 2018;547(1–2):61–71. doi: 10.1016/j.ijpharm.2018.05.042
  • Ma P, Seguin J, Ly NK, et al. Designing fisetin nanocrystals for enhanced in cellulo anti-angiogenic and anticancer efficacy. Int J Pharm X. 2022;4:100138. doi: 10.1016/j.ijpx.2022.100138
  • Padrela L, Rodrigues MA, Duarte A, et al. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - a comprehensive review. Adv Drug Deliv Rev. 2018;131:22–78. doi: 10.1016/j.addr.2018.07.010
  • Pinar SG, Oktay AN, Karakucuk AE, et al. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics. 2023;15(5):1520. doi: 10.3390/pharmaceutics15051520
  • Salazar J, Müller RH, Möschwitzer JP. Combinative particle size Reduction technologies for the production of drug nanocrystals. J Pharm (Cairo). 2014;2014:265754. doi: 10.1155/2014/265754
  • Kalvakuntla S, Deshpande M, Attari Z, et al. Preparation and characterization of nanosuspension of Aprepitant by H96 process. Adv Pharm Bull. 2016;6(1):83–90. doi: 10.15171/apb.2016.013
  • Liu T, Müller RH, Möschwitzer JP. Systematical investigation of a combinative particle size reduction technology for production of resveratrol nanosuspensions. AAPS Pharm Sci Tech. 2017;18(5):1683–1691. doi: 10.1208/s12249-016-0612-1
  • Sinha B, Staufenbiel S, Müller RH, et al. Sub-50 nm ultra-small organic drug nanosuspension prepared by cavi-precipitation and its brain targeting potential. Int J Pharm. 2021;607:120983. doi: 10.1016/j.ijpharm.2021.120983
  • Junghanns JU, Muller RH. INC technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–309. doi: 10.2147/IJN.S595
  • Li M, Yaragudi N, Afolabi A, et al. Sub-100nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification. Chem Eng Sci. 2015 Jul 7;130:207–220. doi: 10.1016/j.ces.2015.03.020
  • Peltonen L. Design space and QbD approach for production of drug nanocrystals by wet media milling techniques. Pharmaceutics. 2018;10(3):104. doi: 10.3390/pharmaceutics10030104
  • Ouranidis A, Gkampelis N, Vardaka E, et al. Overcoming the solubility barrier of ibuprofen by the rational process design of a nanocrystal formulation. Pharmaceutics. 2020;12(10):969. doi: 10.3390/pharmaceutics12100969
  • Paredes AJ, Camacho NM, Schofs L, et al. Ricobendazole nanocrystals obtained by media milling and spray drying: pharmacokinetic comparison with the micronized form of the drug. Int J Pharm. 2020;585:119501. doi: 10.1016/j.ijpharm.2020.119501
  • Karadag A, Ozcelik B, Huang Q. Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem. 2014;62(8):1852–1859. doi: 10.1021/jf404065p
  • Hu X, Chen X, Zhang L, et al. A combined bottom-up/top-down approach to prepare a sterile injectable nanosuspension. Int J Pharm. 2014;472(1–2):130–139. doi: 10.1016/j.ijpharm.2014.06.018
  • Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24(1):3. doi: 10.1186/s40824-020-0184-8
  • Sinha B, Muller RH, Moschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453(1):126–141. doi: 10.1016/j.ijpharm.2013.01.019
  • Zhou YQ, Du J, Wang LL, et al. State of the art of nanocrystals technology for delivery of poorly soluble drugs. J Nanopart Res. 2016;18(9). doi: 10.1007/s11051-016-3575-y
  • Ali HS, York P, Blagden N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int J Pharm. 2009;375(1–2):107–113. doi: 10.1016/j.ijpharm.2009.03.029
  • Ahmadi Tehrani A, Omranpoor MM, Vatanara A, et al. Formation of nanosuspensions in bottom-up approach: theories and optimization. DARU, J Pharm Sci. 2019;27(1):451–473. doi: 10.1007/s40199-018-00235-2
  • Yao L, Zhao X, Li Q, et al. In vitro and in vivo evaluation of camptothecin nanosuspension: a novel formulation with high antitumor efficacy and low toxicity. Int J Pharm. 2012;423(2):586–588. doi: 10.1016/j.ijpharm.2011.11.031
  • Saadati Ardestani N, Sodeifian G, Sajadian SA. Preparation of phthalocyanine green nano pigment using supercritical CO2 gas antisolvent (GAS): experimental and modeling. Heliyon. 2020;6(9):e04947. doi: 10.1016/j.heliyon.2020.e04947
  • Patel V, Sharma OP, Mehta T. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv. 2018;15(4):351–368. doi: 10.1080/17425247.2018.1444025
  • Salazar J, Muller RH, Moschwitzer JP. Combinative particle size reduction technologies for the production of drug nanocrystals. J Pharm (Cairo). 2014;2014:265754. doi: 10.1155/2014/265754
  • Al Shaal L, Shegokar R, Müller RH. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int J Pharm. 2011;420(1):133–140. doi: 10.1016/j.ijpharm.2011.08.018
  • Zhang X, Guan J, Ni R, et al. Preparation and solidification of redispersible nanosuspensions. J Pharm Sci. 2014;103(7):2166–2176. doi: 10.1002/jps.24015
  • Wei Q, Keck CM, Muller RH. Solidification of hesperidin nanosuspension by spray drying optimized by design of experiment (DoE). Drug Dev Ind Pharm. 2018;44(1):1–12. doi: 10.1080/03639045.2017.1285309
  • Medarevic D, Djuris J, Ibric S, et al. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int J Pharm. 2018;540(1–2):150–161. doi: 10.1016/j.ijpharm.2018.02.011
  • Toziopoulou F, Malamatari M, Nikolakakis I, et al. Production of aprepitant nanocrystals by wet media milling and subsequent solidification. Int J Pharm. 2017;533(2):324–334. doi: 10.1016/j.ijpharm.2017.02.065
  • Czyz S, Wewers M, Finke JH, et al. Spray drying of API nanosuspensions: importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development. Eur J Pharm Biopharm. 2020;152:63–71. doi: 10.1016/j.ejpb.2020.04.021
  • Thakkar S, Sharma D, Misra M. Comparative evaluation of electrospraying and lyophilization techniques on solid state properties of Erlotinib nanocrystals: assessment of in-vitro cytotoxicity. Eur J Pharm Sci. 2018;111:257–269. doi: 10.1016/j.ejps.2017.10.008
  • Ho H, Lee J. Redispersible drug nanoparticles prepared without dispersant by electro-spray drying. Drug Dev Ind Pharm. 2012;38(6):744–751. doi: 10.3109/03639045.2011.624522
  • Farooq MA, Jabeen A, Wang B. Formulation, optimization, and characterization of whey protein isolate nanocrystals for celecoxib delivery. J Microencapsul. 2021;38(5):314–323. doi: 10.1080/02652048.2021.1915398
  • Wang L, Ma Y, Gu Y, et al. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers. J Microencapsul. 2018;35(3):241–248. doi: 10.1080/02652048.2018.1462416
  • Sverdlov Arzi R, Sosnik A. Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals. Adv Drug Deliv Rev. 2018;131:79–100. doi: 10.1016/j.addr.2018.07.012
  • Salama AH. Spray drying as an advantageous strategy for enhancing pharmaceuticals bioavailability. Drug Deliv Transl Res. 2020;10(1):1–12. doi: 10.1007/s13346-019-00648-9
  • Ziaee A, Albadarin AB, Padrela L, et al. Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019;127:300–318. doi: 10.1016/j.ejps.2018.10.026
  • Abla KK, Mehanna MM. Freeze-drying: a flourishing strategy to fabricate stable pharmaceutical and biological products. Int J Pharm. 2022;628:122233. doi: 10.1016/j.ijpharm.2022.122233
  • Mohammady M, Mohammadi Y, Yousefi G. Freeze-drying of pharmaceutical and nutraceutical nanoparticles: the effects of formulation and technique parameters on nanoparticles characteristics. J Pharm Sci. 2020;109(11):3235–3247. doi: 10.1016/j.xphs.2020.07.015
  • Ma YQ, Zhang ZZ, Li G, et al. Solidification drug nanosuspensions into nanocrystals by freeze-drying: a case study with ursodeoxycholic acid. Pharm Dev Technol. 2016;21(2):180–188. doi: 10.3109/10837450.2014.982822
  • Vishali DA, Monisha J, Sivakamasundari SK, et al. Spray freeze drying: emerging applications in drug delivery. J Control Release. 2019;300:93–101. doi: 10.1016/j.jconrel.2019.02.044
  • Schonfeld B, Westedt U, Wagner KG. Vacuum drum drying - a novel solvent-evaporation based technology to manufacture amorphous solid dispersions in comparison to spray drying and hot melt extrusion. Int J Pharm. 2021;596:120233. doi: 10.1016/j.ijpharm.2021.120233
  • Schonfeld BV, Westedt U, Keller BL, et al. Transformation of ritonavir nanocrystals suspensions into a redispersible drug product via Vacuum drum drying. AAPS Pharm Sci Tech. 2022;23(5):137. doi: 10.1208/s12249-022-02283-z
  • Lu Y, Qi J, Dong X, et al. The in vivo fate of nanocrystals. Drug Discov Today. 2017;22(4):744–750. doi: 10.1016/j.drudis.2017.01.003
  • Liu Y, Ma Y, Xu J, et al. Apolipoproteins adsorption and brain-targeting evaluation of baicalin nanocrystals modified by combination of Tween80 and TPGS. Colloids Surf B Biointerfaces. 2017;160:619–627. doi: 10.1016/j.colsurfb.2017.10.009
  • Guo M, Fu Q, Wu C, et al. Rod shaped nanocrystals exhibit superior in vitro dissolution and in vivo bioavailability over spherical like nanocrystals: a case study of lovastatin. Colloids Surf B Biointerfaces. 2015;128:410–418. doi: 10.1016/j.colsurfb.2015.02.039
  • Chu KS, Hasan W, Rawal S, et al. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine. 2013;9(5):686–693. doi: 10.1016/j.nano.2012.11.008
  • Lv Y, Wu W, Corpstein CD, et al. Biological and intracellular fates of drug nanocrystals through different delivery routes: recent development enabled by bioimaging and PK modeling. Adv Drug Deliv Rev. 2022;188:114466. doi: 10.1016/j.addr.2022.114466
  • Deng F, Zhang H, Wang X, et al. Transmembrane pathways and mechanisms of rod-like paclitaxel nanocrystals through MDCK polarized monolayer. ACS Appl Mater Interfaces. 2017;9(7):5803–5816. doi: 10.1021/acsami.6b15151
  • Sujai PT, Joseph MM, Saranya G, et al. Surface charge modulates the internalization vs. penetration of gold nanoparticles: comprehensive scrutiny on monolayer cancer cells, multicellular spheroids and solid tumors by SERS modality. Nanoscale. 2020;12(13):6971–6975. doi: 10.1039/D0NR00809E
  • Han D, Qi H, Huang K, et al. The effects of surface charge on the intra-tumor penetration of drug delivery vehicles with tumor progression. J Mater Chem B. 2018;6(20):3331–3339. doi: 10.1039/C8TB00038G
  • Chen L, Glass JJ, De Rose R, et al. Influence of charge on hemocompatibility and immunoreactivity of polymeric nanoparticles. ACS Appl Bio Mater. 2018;1(3):756–767. doi: 10.1021/acsabm.8b00220
  • Bi C, Miao XQ, Chow SF, et al. Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution. Nanomed-Nanotechnol. 2017;13(3):943–953. doi: 10.1016/j.nano.2016.11.004
  • Zhao JH, Du JL, Wang J, et al. Folic acid and poly(ethylene glycol) decorated paclitaxel INCs exhibit enhanced stability and breast cancer-targeting capability. ACS Appl Mater Inter. 2021;13(12):14590–14599. doi: 10.1021/acsami.1c00184
  • Leone F, Cavalli R. Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opin Drug Deliv. 2015;12(10):1607–1625. doi: 10.1517/17425247.2015.1043886
  • Hollis CP, Weiss HL, Leggas M, et al. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release. 2013;172(1):12–21. doi: 10.1016/j.jconrel.2013.06.039
  • Liu T, Yao G, Liu X, et al. Preparation nanocrystals of poorly soluble plant compounds using an ultra-small-scale approach. AAPS Pharm Sci Tech. 2017;18(7):2610–2617. doi: 10.1208/s12249-017-0742-0
  • Kingston BR, Lin ZP, Ouyang B, et al. Specific endothelial cells govern nanoparticle entry into solid tumors. ACS Nano. 2021;15(9):14080–14094. doi: 10.1021/acsnano.1c04510
  • Zhang J, Corpstein CD, Li T. Intracellular uptake of nanocrystals: probing with aggregation-induced emission of fluorescence and kinetic modeling. Acta Pharm Sin B. 2021;11(4):1021–1029. doi: 10.1016/j.apsb.2020.09.017
  • Han X, Su R, Huang X, et al. Triphenylphosphonium-modified mitochondria-targeted paclitaxel nanocrystals for overcoming multidrug resistance. Asian J Pharm Sci. 2019;14(5):569–580. doi: 10.1016/j.ajps.2018.06.006
  • Lu L, Xu Q, Wang J, et al. Drug nanocrystals for active tumor-targeted drug delivery. Pharmaceutics. 2022;14(4):797. doi: 10.3390/pharmaceutics14040797
  • Haddad R, Alrabadi N, Altaani B, et al. Paclitaxel drug delivery systems: focus on nanocrystals’ surface modifications. Polymers. 2022;14(4):658. doi: 10.3390/polym14040658
  • Zhang WS, Mehta A, Tong ZQ, et al. Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges. Adv Sci. 2021;8(10). doi: 10.1002/advs.202003937
  • Liu P, Jiang C. Brain-targeting drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(5):e1818. doi: 10.1002/wnan.1818
  • Abouelmagd SA, Sun B, Chang AC, et al. Release kinetics study of poorly water-soluble drugs from nanoparticles: are we doing it right? Mol Pharm. 2015;12(3):997–1003. doi: 10.1021/mp500817h
  • Li W, Li Z, Wei L, et al. Evaluation of paclitaxel nanocrystals in vitro and in vivo. Drug Res (Stuttg). 2018;68(4):205–212. doi: 10.1055/s-0043-119461
  • Hong JY, Sun ZH, Li YJ, et al. Folate-modified annonaceous acetogenins nanosuspensions and their improved antitumor efficacy. Int J Nanomed. 2017;12:5053–5067. doi: 10.2147/IJN.S134284
  • Li HW, Li YJ, Ao H, et al. Folate-targeting annonaceous acetogenins nanosuspensions: significantly enhanced antitumor efficacy in HeLa tumor-bearing mice. Drug Deliv. 2018;25(1):880–887. doi: 10.1080/10717544.2018.1455761
  • Wang L, Liu Y, Zhao J, et al. In vitro and in vivo evaluation of targeting tumor with folate-based amphiphilic multifunctional stabilizer for resveratrol nanosuspensions. Colloids Surf B Biointerfaces. 2017;160:462–472. doi: 10.1016/j.colsurfb.2017.09.056
  • Zhao J, Du J, Wang J, et al. Folic acid and poly(ethylene glycol) decorated paclitaxel nanocrystals exhibit enhanced stability and breast cancer-targeting capability. ACS Appl Mater Interfaces. 2021;13(12):14577–14586. Epub 20210317. doi: 10.1021/acsami.1c00184
  • Agrawal S, Dwivedi M, Ahmad H, et al. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomed-Nanotechnol. 2018;14(2):327–337. doi: 10.1016/j.nano.2017.10.010
  • Sharma S, Singh J, Verma A, et al. Hyaluronic acid anchored paclitaxel nanocrystals improves chemotherapeutic efficacy and inhibits lung metastasis in tumor-bearing rat model. RSC Adv. 2016;6(77):73083–73095. doi: 10.1039/C6RA11260A
  • Choi JS, Park JS. Surface modification of docetaxel nanocrystals with HER2 antibody to enhance cell growth inhibition in breast cancer cells. Colloids Surf B Biointerfaces. 2017;159:139–150. doi: 10.1016/j.colsurfb.2017.07.064
  • Huang ZG, Lv FM, Wang J, et al. RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability. Int J Pharm. 2019;556:217–225. doi: 10.1016/j.ijpharm.2018.12.023
  • Choi JS, Park JS. Development of docetaxel nanocrystals surface modified with transferrin for tumor targeting. Drug Des Devel Ther. 2017;11:17–26. doi: 10.2147/DDDT.S122984
  • Lu Y, Wang ZH, Li T, et al. Development and evaluation of transferrin-stabilized paclitaxel INC formulation. J Control Release. 2014;176:76–85. doi: 10.1016/j.jconrel.2013.12.018
  • Sohn JS, Yoon DS, Sohn JY, et al. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals. Mater Sci Eng C Mater Biol Appl. 2017;72:228–237. doi: 10.1016/j.msec.2016.11.065
  • Zou S, Wang B, Wang C, et al. Cell membrane-coated nanoparticles: research advances. Nanomedicine (Lond). 2020;15(6):625–641. doi: 10.2217/nnm-2019-0388
  • Rovati G, Contursi A, Bruno A, et al. Antiplatelet agents affecting GPCR signaling implicated in tumor metastasis. Cells-Basel. 2022;11(4):725. doi: 10.3390/cells11040725
  • Xiao G, Zhang Z, Chen Q, et al. Platelets for cancer treatment and drug delivery. Clin Transl Oncol. 2022;24(7):1231–1237. doi: 10.1007/s12094-021-02771-x
  • Fan YY, Cui YX, Hao WY, et al. Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma. Bioact Mater. 2021;6(12):4402–4414. doi: 10.1016/j.bioactmat.2021.04.027
  • Fan YY, Hao WY, Cui YX, et al. Cancer cell membrane-coated nanosuspensions for enhanced chemotherapeutic treatment of glioma. Molecules. 2021;26(16):5103. doi: 10.3390/molecules26165103
  • Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers (Basel). 2019;11(12):1836. doi: 10.3390/cancers11121836
  • Shen W, Ge S, Liu X, et al. Folate-functionalized SMMC-7721 liver cancer cell membrane-cloaked paclitaxel nanocrystals for targeted chemotherapy of hepatoma. Drug Deliv. 2022;29(1):31–42. doi: 10.1080/10717544.2021.2015481
  • Hao WY, Cui YX, Fan YY, et al. Hybrid membrane-coated nanosuspensions for multi-modal anti-glioma therapy via drug and antigen delivery. J Nanobiotechnol. 2021;19(1). doi: 10.1186/s12951-021-01110-0
  • Zhao YA, Li AX, Jiang LD, et al. Hybrid membrane-coated biomimetic nanoparticles (hm@bnps): a multifunctional nanomaterial for biomedical applications. Biomacromolecules. 2021;22(8):3149–3167. doi: 10.1021/acs.biomac.1c00440
  • Park JE, Park J, Jun Y, et al. Expanding therapeutic utility of carfilzomib for breast cancer therapy by novel albumin-coated nanocrystals formulation. J Control Release. 2019;302:148–159. doi: 10.1016/j.jconrel.2019.04.006
  • Kanamala M, Palmer BD, Wilson WR, et al. Characterization of a smart pH-cleavable PEG polymer towards the development of dual pH-sensitive liposomes. Int J Pharm. 2018;548(1):288–296. doi: 10.1016/j.ijpharm.2018.07.009
  • Hoang Thi TT, Pilkington EH, Nguyen DH, et al. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers. 2020;12(2):298. doi: 10.3390/polym12020298
  • Ai X, Wang S, Duan Y, et al. Emerging approaches to functionalizing cell membrane-coated nanoparticles. Biochemistry. 2021;60(13):941–955. doi: 10.1021/acs.biochem.0c00343
  • Yin T, Dong L, Cui B, et al. A toxic organic solvent-free technology for the preparation of PEGylated paclitaxel nanosuspension based on human serum albumin for effective cancer therapy. Int J Nanomedicine. 2015;10:7397–7412. doi: 10.2147/IJN.S92697
  • Ying M, Zhuang J, Wei X, et al. Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv Funct Mater. 2018;28(22). doi: 10.1002/adfm.201801032
  • Hu Q, Sun W, Wang J, et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng. 2018;2(11):831–840. doi: 10.1038/s41551-018-0310-2
  • Shiekhzadeh A, Sohrabi N, Moghadam ME, et al. Kinetic and thermodynamic investigation of human serum albumin Interaction with anticancer glycine derivative of platinum complex by using spectroscopic methods and molecular docking. Appl Biochem Biotechnol. 2020;190(2):506–528. doi: 10.1007/s12010-019-03078-y
  • Yin T, Cai H, Liu J, et al. Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel. Eur J Pharm Sci. 2016;83:79–87. doi: 10.1016/j.ejps.2015.12.019
  • Hollis CP, Dozier AK, Knutson BL, et al. Preparation and characterization of multimodal hybrid organic and inorganic nanocrystals of camptothecin and gold. Acta Pharm Sin B. 2019;9(1):128–134. doi: 10.1016/j.apsb.2018.03.005
  • Lu Y, Lv Y, Li T. Hybrid drug nanocrystals. Adv Drug Deliv Rev. 2019;143:115–133. doi: 10.1016/j.addr.2019.06.006
  • Zhao R, Hollis CP, Zhang H, et al. Hybrid nanocrystals: achieving concurrent therapeutic and bioimaging functionalities toward solid tumors. Mol Pharm. 2011;8(5):1985–1991. doi: 10.1021/mp200154k
  • Hollis CP, Weiss HL, Evers BM, et al. In vivo investigation of hybrid paclitaxel nanocrystals with dual fluorescent probes for cancer theranostics. Pharm Res. 2014;31(6):1450–1459. doi: 10.1007/s11095-013-1048-x
  • Gao W, Lee D, Meng Z, et al. Exploring intracellular fate of drug nanocrystals with crystal-integrated and environment-sensitive fluorophores. J Control Release. 2017;267:214–222. doi: 10.1016/j.jconrel.2017.08.031
  • Hu X, Dong X, Lu Y, et al. Bioimaging of nanoparticles: the crucial role of discriminating nanoparticles from free probes. Drug Discov Today. 2017;22(2):382–387. doi: 10.1016/j.drudis.2016.10.002
  • Xie Y, Shi B, Xia F, et al. Epithelia transmembrane transport of orally administered ultrafine drug particles evidenced by environment sensitive fluorophores in cellular and animal studies. J Control Release. 2018;270:65–75. doi: 10.1016/j.jconrel.2017.11.046
  • Shen C, Yang Y, Shen B, et al. Self-discriminating fluorescent hybrid nanocrystals: efficient and accurate tracking of translocation via oral delivery. Nanoscale. 2017;10(1):436–450. doi: 10.1039/C7NR06052A
  • Hou YJ, Yang XX, Liu RQ, et al. Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles. Int J Nanomedicine. 2020;15:6827–6838. doi: 10.2147/IJN.S269321
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049
  • Fang X, Xie A, Song H, et al. A novel alpha-(8-quinolinyloxy) monosubstituted zinc phthalocyanine nanosuspension for potential enhanced photodynamic therapy. Drug Dev Ind Pharm. 2020;46(11):1881–1888. doi: 10.1080/03639045.2020.1825474
  • Jakhmola A, Krishnan S, Onesto V, et al. Sustainable synthesis and theoretical studies of polyhedral gold nanoparticles displaying high SERS activity, NIR absorption, and cellular uptake. Mater Today Chem. 2022;26:101016. doi: 10.1016/j.mtchem.2022.101016
  • Gerosa C, Crisponi G, Nurchi VM, et al. Gold nanoparticles: a New Golden Era in oncology? Pharmaceuticals (Basel). 2020;13(8):192. doi: 10.3390/ph13080192
  • Vallabani NVS, Singh S, Karakoti AS. Magnetic nanoparticles: Current trends and future aspects in diagnostics and Nanomedicine. Curr Drug Metab. 2019;20(6):457–472. doi: 10.2174/1389200220666181122124458
  • Wu K, Su D, Liu J, et al. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology. 2019;30(50):502003. doi: 10.1088/1361-6528/ab4241
  • Du Y, Liu X, Liang Q, et al. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 2019;19(6):3618–3626. doi: 10.1021/acs.nanolett.9b00630
  • Xie J, Zhang Y, Yan C, et al. High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials. 2014;35(33):9126–9136. doi: 10.1016/j.biomaterials.2014.07.019
  • Xie J, Yan C, Yan Y, et al. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale. 2016;8(38):16902–16915. doi: 10.1039/C6NR03916B
  • Wang C, Hsu CH, Li Z, et al. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia. Int J Nanomedicine. 2017;12:6273–6287. doi: 10.2147/IJN.S141072
  • Liu S, Shi D, Chen L, et al. Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: an amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy. Nanoscale. 2021;13(6):3613–3626. doi: 10.1039/D0NR08197C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.