921
Views
0
CrossRef citations to date
0
Altmetric
Review

Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery

, , &
Pages 1427-1441 | Received 30 Aug 2023, Accepted 11 Oct 2023, Published online: 20 Oct 2023

References

  • Durán-Lobato M, Niu Z, Alonso MJ. Oral delivery of biologics for precision medicine. Adv Mater. 2020;32(13):e1901935. doi: 10.1002/adma.201901935
  • Billat PA, Roger E, Faure S, et al. Models for drug absorption from the small intestine: where are we and where are we going? Drug discov. Drug Discovery Today. 2017;22(5):761–775. doi: 10.1016/j.drudis.2017.01.007
  • Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol. 2022;19(4):219–238. doi: 10.1038/s41575-021-00539-w
  • Bak A, Ashford M, Brayden DJ. Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev. 2018;136-137:2–27. doi: 10.1016/j.addr.2018.10.009
  • Mittal R, Patel AP, Jhaveri VM, et al. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders. Expert Opin Drug Deliv. 2018;15(3):301–318. doi: 10.1080/17425247.2018.1420055
  • Oral CM, Pumera M. In vivo applications of micro/nanorobots. Nanoscale. 2023;15(19):8491–8507. doi: 10.1039/D3NR00502J
  • Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev. 2021;179:114021. doi: 10.1016/j.addr.2021.114021
  • Cai R, Cheng C, Chen J, et al. Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes. 2020;11(4):680–690. doi: 10.1080/19490976.2020.1735606
  • Cui X, Bao L, Wang X, et al. The Nano–intestine interaction: understanding the location-oriented effects of engineered nanomaterials in the intestine. Small. 2020;16(21):e1907665. doi: 10.1002/smll.201907665
  • Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release. 2016;240:504–526. doi: 10.1016/j.jconrel.2016.06.016
  • Brown TD, Whitehead KA, Mitragotri S. Materials for oral delivery of proteins and peptides. Nat Rev Mater. 2020;5(2):127–148. doi: 10.1038/s41578-019-0156-6
  • Li J, Esteban-Fernández de Ávila B, Gao W, et al. Micro/Nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Rob. 2017;2(4):eaam6431. doi: 10.1126/scirobotics.aam6431
  • Fernández-Medina M, Ramos-Docampo MA, Hovorka O, et al. Recent advances in nano- and micromotors. Adv Funct Mater. 2020;30(12):1908283. doi: 10.1002/adfm.201908283
  • Esteban-Fernández de Ávila B, Angsantikul P, Li J, et al. Micromotors go in vivo: from test tubes to live animals. Adv Funct Materials. 2018;28(25):1705640. doi: 10.1002/adfm.201705640
  • Liu D, Wang T, Lu Y. Untethered microrobots for active drug delivery: from rational design to clinical settings. Adv Healthc Mater. 2022;11(3):2102253. doi: 10.1002/adhm.202102253
  • Toumey C. Plenty of room, plenty of history. Nat Nanotech. 2009;4(12):783–784. doi: 10.1038/nnano.2009.357
  • Paxton WF, Kistler KC, Olmeda CC, et al. Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc. 2004;126(41):13424–13431. doi: 10.1021/ja047697z
  • Gao C, Wang Y, Ye Z, et al. Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging. Adv Mater. 2021;33(6):e2000512. doi: 10.1002/adma.202000512
  • Agrahari V, Agrahari V, Chou ML, et al. Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: promising development opportunities and translational challenges. Biomaterials. 2020;260:120163. doi: 10.1016/j.biomaterials.2020.120163
  • Choi H, Yi J, Cho SH, et al. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials. 2021;279:121201. doi: 10.1016/j.biomaterials.2021.121201
  • Zhao T, Li X. On the approach to nanoscale robots: understanding the relationship between nanomotor’s architecture and active motion. Adv Intell Syst. 2023;5(7):2200429. doi: 10.1002/aisy.202200429
  • Liu W, Liu Y, Li H, et al. Biomedical micro-/nanomotors: design, imaging, and disease treatment. Adv Funct Mater. 2023;33(15):2212452. doi: 10.1002/adfm.202212452
  • Liu T, Xie L, Price CH, et al. Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipulation and potential biomedical applications. Chem Soc Rev. 2022;51(24):10083–10119. doi: 10.1039/D2CS00432A
  • Kong F, Singh RP. Disintegration of solid foods in human stomach. J Food Sci. 2008;73(5):R67–80. doi: 10.1111/j.1750-3841.2008.00766.x
  • Fábián TK, Hermann P, Beck A, et al. Salivary defense proteins: their network and role in innate and acquired oral immunity. Int J Mol Sci. 2012;13(4):4295–4320. doi: 10.3390/ijms13044295
  • Esteban-Fernández de Ávila B, Gao W, Karshalev E, et al. Cell-like micromotors. Acc Chem Res. 2018;51(9):1901–1910. doi: 10.1021/acs.accounts.8b00202
  • de Ávila BE, Angsantikul P, Li J, et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat Commun. 2017;8(1):272. doi: 10.1038/s41467-017-00309-w
  • Chen C, Karshalev E, Guan J, et al. Magnesium-based micromotors: water-powered propulsion, multifunctionality, and biomedical and environmental applications. Small. 2018;14(23):e1704252. doi: 10.1002/smll.201704252
  • Masaoka Y, Tanaka Y, Kataoka M, et al. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29(3–4):240–250. doi: 10.1016/j.ejps.2006.06.004
  • Whitcomb DC, Lowe ME. Human pancreatic digestive enzymes. Dig Dis Sci. 2007;52(1):1–17. doi: 10.1007/s10620-006-9589-z
  • Caffarel-Salvador E, Abramson A, Langer R, et al. Oral delivery of biologics using drug-device combinations. Curr Opin Pharmacol. 2017;36:8–13. doi: 10.1016/j.coph.2017.07.003
  • Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16(8):457–470. doi: 10.1038/s41579-018-0036-x
  • Murgia X, Loretz B, Hartwig O, et al. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev. 2018;124:82–97. doi: 10.1016/j.addr.2017.10.009
  • Fan W, Wei Q, Xiang J, et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery. Adv Mater. 2022;34(16):e2109189. doi: 10.1002/adma.202109189
  • Zhang S, Zhu C, Huang W, et al. Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract. J Control Release. 2023;360:514–527. doi: 10.1016/j.jconrel.2023.07.005
  • Yildiz HM, McKelvey CA, Marsac PJ, et al. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids. J Drug Target. 2015;23(7–8):768–774. doi: 10.3109/1061186X.2015.1086359
  • Maisel K, Ensign L, Reddy M, et al. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release. 2015;197:48–57. doi: 10.1016/j.jconrel.2014.10.026
  • Carlson TL, Lock JY, Carrier RL. Engineering the mucus barrier. Annu Rev Biomed Eng. 2018;20(1):197–220. doi: 10.1146/annurev-bioeng-062117-121156
  • Murgia X, Pawelzyk P, Schaefer UF, et al. Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules. 2016;17(4):1536–1542. doi: 10.1021/acs.biomac.6b00164
  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85. doi: 10.1016/j.addr.2008.09.008
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–570. doi: 10.1016/j.addr.2011.12.009
  • Elderman M, Sovran B, Hugenholtz F, et al. The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLoS One. 2017;12(9):e0184274. doi: 10.1371/journal.pone.0184274
  • Yildiz HM, Speciner L, Ozdemir C, et al. Food-associated stimuli enhance barrier properties of gastrointestinal mucus. Biomaterials. 2015;54:1–8. doi: 10.1016/j.biomaterials.2015.02.118
  • Luis AS, Hansson GC. Intestinal mucus and their glycans: a habitat for thriving microbiota. Cell Host Microbe. 2023;31(7):1087–1100. doi: 10.1016/j.chom.2023.05.026
  • Walker D, Käsdorf BT, Jeong HH, et al. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv. 2015;1(11):e1500501. doi: 10.1126/sciadv.1500501
  • Bernier-Latmani J, Mauri C, Marcone R, et al. ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nat Commun. 2022;13(1):3983. doi: 10.1038/s41467-022-31571-2
  • Manco R, Averbukh I, Porat Z, et al. Clump sequencing exposes the spatial expression programs of intestinal secretory cells. Nat Commun. 2021;12(1):3074. doi: 10.1038/s41467-021-23245-2
  • Kastl AJ Jr., Terry NA, Wu GD, et al. The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell Mol Gastroenterol Hepatol. 2020;9(1):33–45. doi: 10.1016/j.jcmgh.2019.07.006
  • Otani T, Furuse M. Tight junction structure and function revisited. Trends Cell Biol. 2020;30(10):805–817. doi: 10.1016/j.tcb.2020.08.004
  • Kuo WT, Zuo L, Odenwald MA, et al. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology. 2021;161(6):1924–1939. doi: 10.1053/j.gastro.2021.08.047
  • Rosenthal R, Günzel D, Finger C, et al. The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials. 2012;33(9):2791–2800. doi: 10.1016/j.biomaterials.2011.12.034
  • Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv. 2018;25(1):1694–1705. doi: 10.1080/10717544.2018.1501119
  • Beloqui A, Brayden DJ, Artursson P, et al. A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation. Nat Protoc. 2017;12(7):1387–1399. doi: 10.1038/nprot.2017.041
  • Dillon A, Lo DD. M cells: intelligent engineering of mucosal immune surveillance. Front Immunol. 2019;10:1499. doi: 10.3389/fimmu.2019.01499
  • Tan Y, Chen L, Li K, et al. Yeast as carrier for drug delivery and vaccine construction. J Control Release. 2022;346:358–379. doi: 10.1016/j.jconrel.2022.04.032
  • Tan C, Huang M, McClements DJ, et al. Yeast cell-derived delivery systems for bioactives. Trends Food Sci Technol. 2021;118:362–373. doi: 10.1016/j.tifs.2021.10.020
  • Silva AJD, de Sousa MMG, de Macêdo LS, et al. RNA vaccines: yeast as a novel antigen vehicle. Vaccines. 2023;11(8):1334. doi: 10.3390/vaccines11081334
  • Wang Y, Shen J, Handschuh-Wang S, et al. Microrobots for targeted delivery and therapy in digestive system. ACS Nano. 2023;17(1):27–50. doi: 10.1021/acsnano.2c04716
  • Min J, Yang Y, Wu Z, et al. Robotics in the gut. Adv Ther. 2020;3(4):1900125. doi: 10.1002/adtp.201900125
  • You M, Mukasa D, Gao W-D, et al. Microrobots in the gastrointestinal tract. Field-driven micro and nanorobots for biology and medicine. Cham: Springer; 2022. p. 349–367.
  • Zhang X, Chen G, Zhang H, et al. Bioinspired oral delivery devices. Nat Rev Bioeng. 2023;1(3):208–225. doi: 10.1038/s44222-022-00006-4
  • Gao W, Dong R, Thamphiwatana S, et al. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano. 2015;9(1):117–123. doi: 10.1021/nn507097k
  • Li J, Thamphiwatana S, Liu W, et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano. 2016;10(10):9536–9542. doi: 10.1021/acsnano.6b04795
  • Wei X, Beltrán-Gastélum M, Karshalev E, et al. Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 2019;19(3):1914–1921. doi: 10.1021/acs.nanolett.8b05051
  • Wu Z, Li L, Yang Y, et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci Rob. 2019;4(32). doi: 10.1126/scirobotics.aax0613
  • Wu Y, Song Z, Deng G, et al. Gastric acid powered nanomotors release antibiotics for in vivo treatment of Helicobacter pylori infection. Small. 2021;17(11):e2006877. doi: 10.1002/smll.202006877
  • Choi H, Jeong SH, Kim TY, et al. Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioact Mater. 2022;9:54–62. doi: 10.1016/j.bioactmat.2021.08.004
  • Mundaca-Uribe R, Askarinam N, Fang RH, et al. Towards multifunctional robotic pills. Nat Biomed Eng. 2023. doi:10.1038/s41551-023-01090-6
  • Mundaca-Uribe R, Holay M, Abbas A, et al. A microstirring oral pill for improving the glucose-lowering effect of metformin. ACS Nano. 2023;17(10):9272–9279. doi: 10.1021/acsnano.3c00581
  • Liu K, Liu Q, Yang J, et al. Micromotor based mini-tablet for oral delivery of insulin. ACS Nano. 2023;17(1):300–311. doi: 10.1021/acsnano.2c07953
  • Karshalev E, Esteban-Fernández de Ávila B, Beltrán-Gastélum M, et al. Micromotor pills as a dynamic oral delivery platform. ACS Nano. 2018;12(8):8397–8405. doi: 10.1021/acsnano.8b03760
  • Mundaca-Uribe R, Esteban-Fernández de Ávila B, Holay M, et al. Zinc microrocket pills: fabrication and characterization toward active oral delivery. Adv Healthc Mater. 2020;9(18):e2000900. doi: 10.1002/adhm.202000900
  • Mundaca-Uribe R, Karshalev E, Esteban-Fernández de Ávila B, et al. A microstirring pill enhances bioavailability of orally administered drugs. Adv Sci. 2021;8(12):2100389. doi: 10.1002/advs.202100389
  • Karshalev E, Zhang Y, Esteban-Fernández de Ávila B, et al. Micromotors for active delivery of minerals toward the treatment of iron deficiency anemia. Nano Lett. 2019;19(11):7816–7826. doi: 10.1021/acs.nanolett.9b02832
  • Urso M, Ussia M, Pumera M. Smart micro- and nanorobots for water purification. Nat Rev Bioeng. 2023;1(4):236–251. doi: 10.1038/s44222-023-00025-9
  • Feng Y, An M, Liu Y, et al. Advances in chemically powered micro/nanorobots for biological applications: a review. Adv Funct Mater. 2023;33(1):2209883. doi: 10.1002/adfm.202209883
  • Zhou H, Mayorga-Martinez CC, Pané S, et al. Magnetically driven micro and nanorobots. Chem Rev. 2021;121(8):4999–5041. doi: 10.1021/acs.chemrev.0c01234
  • Guo Y, Jing D, Liu S, et al. Construction of intelligent moving micro/nanomotors and their applications in biosensing and disease treatment. Theranostics. 2023;13(9):2993–3020. doi: 10.7150/thno.81845
  • Zhou Y, Ye M, Hu C, et al. Stimuli-responsive functional micro-/nanorobots: a review. ACS Nano. 2023;17(16):15254–15276. doi: 10.1021/acsnano.3c01942
  • Senthilkumar N, Sharma PK, Sood N, et al. Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord Chem Rev. 2021;445:214082. doi: 10.1016/j.ccr.2021.214082
  • Li M, Hu X, Zhao Y, et al. An overview of recent progress in micro/nanorobots for biomedical applications. Adv Mater Technol. 2023;8(11):2201928. doi: 10.1002/admt.202201928
  • Wang Y, Liu X, Chen C, et al. Magnetic nanorobots as maneuverable immunoassay probes for automated and efficient enzyme linked immunosorbent assay. ACS Nano. 2022;16(1):180–191. doi: 10.1021/acsnano.1c05267
  • Ussia M, Urso M, Kratochvilova M, et al. Magnetically driven self-degrading zinc-containing cystine microrobots for treatment of prostate cancer. Small. 2023;19(17):2208259. doi: 10.1002/smll.202208259
  • Choi HS, Jo YK, Ahn G-N, et al. Magnetically guidable proteinaceous adhesive microbots for targeted locoregional therapeutics delivery in the highly dynamic environment of the esophagus. Adv Funct Mater. 2021;31(46):2104602. doi: 10.1002/adfm.202104602
  • Zhang X, Chen G, Fu X, et al. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv Mater. 2021;33(44):e2104932. doi: 10.1002/adma.202104932
  • Wang B, Chan KF, Yuan K, et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci Rob. 2021;6(52):eabd2813. doi: 10.1126/scirobotics.abd2813
  • Cao Y, Liu S, Ma Y, et al. Oral nanomotor-enabled mucus traverse and tumor penetration for targeted chemo-sono-immunotherapy against colon cancer. Small. 2022;18(42):e2203466. doi: 10.1002/smll.202203466
  • Wang ZH, Chu M, Yin N, et al. Biological chemotaxis-guided self-thermophoretic nanoplatform augments colorectal cancer therapy through autonomous mucus penetration. Sci Adv. 2022;8(26):eabn3917. doi: 10.1126/sciadv.abn3917
  • Chen W, Wainer J, Ryoo SW, et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci Adv. 2022;8(1):eabk1792. doi: 10.1126/sciadv.abk1792
  • Xie H, Sun M, Fan X, et al. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci Rob. 2019;4(28):eaav8006. doi: 10.1126/scirobotics.aav8006
  • Gultepe E, Randhawa JS, Kadam S, et al. Biopsy with thermally-responsive untethered microtools. Adv Mater. 2013;25(4):514–519. doi: 10.1002/adma.201203348
  • Soto F, Karshalev E, Zhang F, et al. Smart materials for microrobots. Chem Rev. 2022;122(5):5365–5403. doi: 10.1021/acs.chemrev.0c00999
  • Ou J, Liu K, Jiang J, et al. Micro-/nanomotors toward biomedical applications: the recent progress in biocompatibility. Small. 2020;16(27):e1906184. doi: 10.1002/smll.201906184
  • Li J, Mayorga-Martinez CC, Ohl C-D, et al. Ultrasonically propelled micro- and nanorobots. Adv Funct Mater. 2022;32(5):2102265. doi: 10.1002/adfm.202102265
  • Zhou LQ, Li P, Cui XW, et al. Ultrasound nanotheranostics in fighting cancer: advances and prospects. Cancer Lett. 2020;470:204–219. doi: 10.1016/j.canlet.2019.11.034
  • Zhang Y, Zhang X, Yang H, et al. Advanced biotechnology-assisted precise sonodynamic therapy. Chem Soc Rev. 2021;50(20):11227–11248. doi: 10.1039/D1CS00403D
  • Xu L, Mou F, Gong H, et al. Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev. 2017;46(22):6905–6926. doi: 10.1039/C7CS00516D
  • Liu C, Huang J, Xu T, et al. Powering bioanalytical applications in biomedicine with light-responsive Janus micro-/nanomotors. Microchim Acta. 2022;189(3):116. doi: 10.1007/s00604-022-05229-1
  • Wang Z-H, Huang W, Zhang S, et al. Self-thermophoretic nanoparticles enhance intestinal mucus penetration and reduce pathogenic bacteria interception in colorectal cancer. Adv Funct Mater. 2023;33(17):2212013. doi: 10.1002/adfm.202212013
  • Zhou D, Zhuang R, Chang X, et al. Enhanced light-harvesting efficiency and adaptation: a review on visible-light-driven micro/nanomotors. Research. 2020;2020:6821595. doi: 10.34133/2020/6821595
  • Wu Z, Chen Y, Mukasa D, et al. Medical micro/nanorobots in complex media. Chem Soc Rev. 2020;49(22):8088–8112. doi: 10.1039/D0CS00309C
  • Luo M, Feng Y, Wang T, et al. Micro-/nanorobots at work in active drug delivery. Adv Funct Mater. 2018;28(25):1706100. doi: 10.1002/adfm.201706100
  • Tang S, Zhang F, Gong H, et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci Rob. 2020;5(43):eaba6137. doi: 10.1126/scirobotics.aba6137
  • Zhang B, Pan H, Chen Z, et al. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. Sci Adv. 2023;9(8):eadc8978. doi: 10.1126/sciadv.adc8978
  • Alapan Y, Yasa O, Yigit B, et al. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu Rev Control Robot Auton Syst. 2019;2(1):205–230. doi: 10.1146/annurev-control-053018-023803
  • Dong X, Wu W, Pan P, et al. Engineered living materials for advanced diseases therapy. Adv Mater. 2023;e2304963.
  • Wu F, Liu J. Decorated bacteria and the application in drug delivery. Adv Drug Deliv Rev. 2022;188:114443. doi: 10.1016/j.addr.2022.114443
  • Schmidt CK, Medina-Sánchez M, Edmondson RJ, et al. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun. 2020;11(1):5618. doi: 10.1038/s41467-020-19322-7
  • Su H, Li S, Yang G-Z, et al. Janus micro/nanorobots in biomedical applications. Adv Healthc Mater. 2023;12(16):2202391. doi: 10.1002/adhm.202202391
  • Luo H, Wu F, Wang X, et al. Encoding bacterial colonization and therapeutic modality by wrapping with an adhesive drug-loadable nanocoating. Mater Today. 2023;62:98–110. doi: 10.1016/j.mattod.2023.01.001
  • Cao Z, Wang X, Pang Y, et al. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat Commun. 2019;10(1):5783. doi: 10.1038/s41467-019-13727-9
  • Geng Z, Wang X, Wu F, et al. Biointerface mineralization generates ultraresistant gut microbes as oral biotherapeutics. Sci Adv. 2023;9(11):eade0997. doi: 10.1126/sciadv.ade0997
  • Wang X, Cao Z, Zhang M, et al. Bioinspired oral delivery of gut microbiota by self-coating with biofilms. Sci Adv. 2020;6(26):eabb1952. doi: 10.1126/sciadv.abb1952
  • Liu J, Li W, Wang Y, et al. Biomaterials coating for on-demand bacteria delivery: selective release, adhesion, and detachment. Nano Today. 2021;41:101291. doi: 10.1016/j.nantod.2021.101291
  • Lin S, Mukherjee S, Li J, et al. Mucosal immunity-mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Sci Adv. 2021;7(20):eabf0677. doi: 10.1126/sciadv.abf0677
  • Zhang L, Zhang B, Liang R, et al. A dual-biomineralized yeast micro-/nanorobot with self-driving penetration for gastritis therapy and motility recovery. ACS Nano. 2023;17(7):6410–6422. doi: 10.1021/acsnano.2c11258
  • Zhang F, Li Z, Duan Y, et al. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule. Sci Rob. 2022;7(70):eabo4160. doi: 10.1126/scirobotics.abo4160
  • Zhang F, Li Z, Duan Y, et al. Extremophile-based biohybrid micromotors for biomedical operations in harsh acidic environments. Sci Adv. 2022;8(51):eade6455. doi: 10.1126/sciadv.ade6455
  • Sen S, Mansell TJ. Yeasts as probiotics: mechanisms, outcomes, and future potential. Fungal Genet Biol. 2020;137:103333. doi: 10.1016/j.fgb.2020.103333
  • Hu X, Yang G, Chen S, et al. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci. 2020;8(4):1020–1044. doi: 10.1039/C9BM01378D
  • Feng X, Xie Q, Xu H, et al. Yeast microcapsule mediated natural products delivery for treating ulcerative colitis through anti-inflammatory and regulation of macrophage polarization. ACS Appl Mater Interfaces. 2022;14(27):31085–31098. doi: 10.1021/acsami.2c05642
  • Zhang R, Qin X, Lu J, et al. Chemodynamic/Photothermal synergistic cancer immunotherapy based on yeast microcapsule-derived Au/Pt nanoparticles. ACS Appl Mater Interfaces. 2023;15(20):24134–24148. doi: 10.1021/acsami.3c02646
  • Wu Y, Li P, Jiang Z, et al. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydr Polym. 2023;319:121163. doi: 10.1016/j.carbpol.2023.121163
  • Marzieh Soheili K-D, Khosravi-Darani K. The potential health benefits of algae and micro algae in medicine: a review on spirulina platensis. Current Nutrition & Food Science. 2011;7(4):279–285. doi: 10.2174/157340111804586457
  • Foley PM, Beach ES, Zimmerman JB. Algae as a source of renewable chemicals: opportunities and challenges. Green Chem. 2011;13(6):1399–1405. doi: 10.1039/c1gc00015b
  • Anto S, Mukherjee SS, Muthappa R, et al. Algae as green energy reserve: technological outlook on biofuel production. Chemosphere. 2020;242:125079. doi: 10.1016/j.chemosphere.2019.125079
  • Wang J, Dong Y, Ma P, et al. Intelligent micro-/nanorobots for cancer theragnostic. Adv Mater. 2022;34(52):2201051. doi: 10.1002/adma.202201051
  • Zhang F, Li Z, Chen C, et al. Biohybrid microalgae robots: design, fabrication, materials and applications. Adv Mater. 2023;e2303714.
  • Zhang F, Zhuang J, Li Z, et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat Mater. 2022;21(11):1324–1332. doi: 10.1038/s41563-022-01360-9
  • Yan X, Zhou Q, Vincent M, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Rob. 2017;2(12):eaaq1155. doi: 10.1126/scirobotics.aaq1155
  • Yasa O, Erkoc P, Alapan Y, et al. Microalga-powered microswimmers toward active cargo delivery. Adv Mater. 2018;30(45):e1804130. doi: 10.1002/adma.201804130
  • Zhong D, Zhang D, Chen W, et al. Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci Adv. 2021;7(48):eabi9265. doi: 10.1126/sciadv.abi9265
  • Gong D, Sun L, Li X, et al. Micro/Nanofabrication, assembly, and actuation based on microorganisms: recent advances and perspectives. Small Struct. 2023;4(9):2200356. doi: 10.1002/sstr.202200356

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.