134
Views
0
CrossRef citations to date
0
Altmetric
Review

Liposome-based vaccines for minimally or noninvasive administration: an update on current advancements

, ORCID Icon, &
Pages 1573-1593 | Received 09 Oct 2023, Accepted 24 Nov 2023, Published online: 01 Dec 2023

References

  • World Health Organization. Immunization dashboard [Internet]. [cited 2023 Oct 9]. Available from: https://immunizationdata.who.int/.
  • Greenwood B. The contribution of vaccination to global health: past, present and future. Philos Trans R Soc B. 2014;369(1645):20130433. doi: 10.1098/rstb.2013.0433
  • Mantel C, Cherian T. Neue Impfstrategien – Anpassung an globale Herausforderungen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2020;63(1):25–31. doi: 10.1007/s00103-019-03066-x
  • Jansen KU, Knirsch C, Anderson AS. The role of vaccines in preventing bacterial antimicrobial resistance. Nat Med. 2018;24(1):10–19. doi: 10.1038/nm.4465
  • Qureshi AI. Economic and political impact of Ebola virus disease. Ebola Virus Disease. 2016;13:177–191.
  • Shlomo M, Barzani E. The global economic impact of covid-19: a summary of research. Israel: Samuel Neaman Institute for National Policy Research; 2020.
  • Babirye JN, Engebretsen IM, Rutebemberwa E, et al. Urban settings do not ensure access to services: findings from the immunisation programme in Kampala Uganda. BMC Health Serv Res. 2014;14(1):14
  • WHO. WHO and UNICEF warn of a decline in vaccinations during COVID-19. WHO. 2020.
  • Dubé E, Vivion M, MacDonald NE. Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: influence, impact and implications. Expert Rev Vaccines. 2014;14(1):99–117. doi: 10.1586/14760584.2015.964212
  • Dror AA, Eisenbach N, Taiber S, et al. Vaccine hesitancy: the next challenge in the fight against COVID-19. Eur J Epidemiol. 2020;35(8):775–779
  • Troiano G, Nardi A. Vaccine hesitancy in the era of COVID-19. Public Health. 2021;194:245–251. doi: 10.1016/j.puhe.2021.02.025
  • MacDonald NE, Eskola J, Liang X, et al. Vaccine hesitancy: Definition, scope and determinants. Vaccine. 2015;33:4161–4164. doi: 10.1016/j.vaccine.2015.04.036
  • Taddio A, McMurtry CM, Logeman C, et al. Prevalence of pain and fear as barriers to vaccination in children – systematic review and meta-analysis. Vaccine. 2022;40(52):7526–7537
  • Skwarczynski M, Toth I. Non-invasive mucosal vaccine delivery: advantages, challenges and the future. Expert Opin Drug Deliv. 2020;17(4):435–437. doi: 10.1080/17425247.2020.1731468
  • Kehagia E, Papakyriakopoulou P, Valsami G. Advances in intranasal vaccine delivery: A promising non-invasive route of immunization. Vaccine. 2023;41(24):3589–3603. doi: 10.1016/j.vaccine.2023.05.011
  • McComb S, Thiriot A, Akache B, et al. Introduction to the immune system. Methods Mol Biol. 2019;2024:1–24.
  • Delves PJ, Roitt IM, Mackay IR, et al. The immune system. N Engl J Med. 2000;343(1):37–49
  • Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2):S3–S23. doi: 10.1016/j.jaci.2009.12.980
  • Kellie S, Al-Mansour Z. Overview of the immune system. Micro Nanotechnol Vaccine Dev. 2017;357:63–81.
  • Jouault T, Sarazin A, Martinez-Esparza M, et al. Host responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans. Cell Microbiol. 2009;11(7):1007–1015
  • Butcher MJ, Zhu J. Recent advances in understanding the Th1/Th2 effector choice. Fac Rev. 2021;10:10. doi: 10.12703/r/10-30
  • Seifert M, Küppers R. Human memory B cells. Leukemia. 2016;30(12):2283–2292. doi: 10.1038/leu.2016.226
  • Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: the immune system in Health and disease. 5th ed. T-cell receptor gene rearrangement. (NY): Garland Science; 2001.
  • Plotkin S. History of vaccination. Proc Natl Acad Sci U S A. 2014;111(34):12283–12287. doi: 10.1073/pnas.1400472111
  • Nir Y, Paz A, Sabo E, et al. Fear of injections in young adults: prevalence and associations. Am J Trop Med Hyg. 2003;68(3):341–344
  • Wallace AS, Mantel C, Mayers G, et al. Experiences with provider and parental attitudes and practices regarding the administration of multiple injections during infant vaccination visits: lessons for vaccine introduction. Vaccine. 2014;32(41):5301–5310
  • De Gregorio E, Rappuoli R. Vaccines for the future: learning from human immunology. Microbiol Biotechnol. 2012;5(2):149–155. doi: 10.1111/j.1751-7915.2011.00276.x
  • Masjedi M, Montahaei T, Sharafi Z, et al. Pulmonary vaccine delivery: an emerging strategy for vaccination and immunotherapy. J Drug Deliv Sci Technol. 2022;69:103184. doi: 10.1016/j.jddst.2022.103184
  • Cheng JY, Huang HN, Tseng WC, et al. Transcutaneous immunization by lipoplex-patch based DNA vaccines is effective vaccination against Japanese encephalitis virus infection. JControlled Release. 2009;135(3):242–249
  • Zheng Y, Ye R, Gong X, et al. Iontophoresis-driven microneedle patch for the active transdermal delivery of vaccine macromolecules. Microsyst Nanoeng. 2023;9(1). doi: 10.1038/s41378-023-00515-1
  • Boopathy AV, Mandal A, Kulp DW, et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc Natl Acad Sci U S A. 2019;116:16473–16478. doi: 10.1073/pnas.1902179116
  • Hao Y, Li W, Zhou XL, et al. Microneedles-based transdermal drug delivery systems: A review. J Biomed Nanotechnol. 2017;13(12):1581–1597
  • Riese P, Schulze K, Ebensen T, et al. Vaccine adjuvants: key tools for innovative vaccine design. Curr Top Med Chem. 2013;13(20):2562–2580
  • Guimarães LE, Baker B, Perricone C, et al. Vaccines, adjuvants and autoimmunity. Pharmacol Res. 2015;100:190–209. doi: 10.1016/j.phrs.2015.08.003
  • Bashiri S, Koirala P, Toth I, et al. Carbohydrate immune adjuvants in subunit vaccines. Pharmaceutics. 2020;12(10):965
  • Chattopadhyay S, Chen JY, Chen HW, et al. Nanoparticle vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics. 2017;1(3):244–260
  • Fadeel B. Hide and seek: nanomaterial interactions with the immune system. Front Immunol. 2019;10:1–10.
  • Dumpa N, Goel K, Guo Y, et al. Stability of vaccines. AAPS Pharm Sci Tech. 2019;20(2):1–11
  • Bayda S, Adeel M, Tuccinardi T, et al. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2020;25:1–15. doi: 10.3390/molecules25010112
  • Haleem A, Javaid M, Singh RP, et al. Applications of nanotechnology in medical field: a brief review. Global Health J. 2023;7(2):70–77
  • Kinnear C, Moore TL, Rodriguez-Lorenzo L, et al. Form follows function: nanoparticle shape and its implications for Nanomedicine. Chem Rev. 2017;117(17):11476–11521
  • Chan WCW. Nanomedicine 2.0. Acc Chem Res. 2017;50(3):627–632. doi: 10.1021/acs.accounts.6b00629
  • Lehner R, Wang X, Wolf M, et al. Designing switchable nanosystems for medical application. JControlled Release. 2012;161(2):307–316
  • Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine. 2010;6(1):9–24. doi: 10.1016/j.nano.2009.04.008
  • Scicluna MC, Vella-Zarb L. Evolution of nanocarrier Drug-delivery systems and recent advancements in covalent organic framework–Drug systems. ACS Appl Nano Mater. 2020;3(4):3097–3115. doi: 10.1021/acsanm.9b02603
  • Etheridge ML, Campbell SA, Erdman AG, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based Medicines: a review of FDA-Approved materials and clinical trials to date. Pharm Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5
  • Facciolà A, Visalli G, Laganà P, et al. The new era of vaccines: the “nanovaccinology. Eur Rev Med Pharmacol Sci. 2019;23:7163–7182. doi: 10.26355/eurrev_201908_18763
  • Sulczewski FB, Liszbinski RB, Romão PRT, et al. Nanoparticle vaccines against viral infections. Arch Virol. 2018;163:2313–2325. doi: 10.1007/s00705-018-3856-0
  • Duong VA, Nguyen TTL, Maeng HJ. Recent advances in Intranasal liposomes for Drug, Gene, and vaccine delivery. Pharmaceutics. 2023;15(1):207. doi: 10.3390/pharmaceutics15010207
  • Manconi M, Caddeo C, Manca ML, et al. Oral delivery of natural compounds by phospholipid vesicles. Nanomedicine. 2020;15(18):1795–1803
  • Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem. 2019;164:640–653. doi: 10.1016/j.ejmech.2019.01.007
  • Alqahtani MS, Kazi M, Alsenaidy MA, et al. Advances in oral Drug delivery. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.618411
  • Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11(3):129. doi: 10.3390/pharmaceutics11030129
  • Ibrahim YHEY, Regdon G, Hamedelniel EI, et al. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. DARU J Pharma Sci. 2020;28(1):403–416
  • Jazayeri SD, Lim HX, Shameli K, et al. Nano and microparticles as potential oral vaccine carriers and adjuvants against Infectious diseases. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.682286
  • Mörbe UM, Jørgensen PB, Fenton TM, et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 2021;14(4):793–802
  • Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev. 2017;114:116–131. doi: 10.1016/j.addr.2017.04.008
  • Trincado V, Gala RP, Morales JO. Buccal and sublingual vaccines: a review on oral mucosal immunization and delivery systems. Vaccines (Basel). 2021;9(10):1177. doi: 10.3390/vaccines9101177
  • Ou B, Yang Y, Lv H, et al. Current progress and challenges in the study of adjuvants for oral vaccines. BioDrugs. 2023;37(2):143–180
  • Liu J, Wu J, Wang B, et al. Oral vaccination with a liposome-encapsulated influenza DNA vaccine protects mice against respiratory challenge infection. J Med Virol. 2014;86(5):886–894
  • Van Splunter M, Van Hoffen E, Floris-Vollenbroek EG, et al. Oral cholera vaccination promotes homing of IgA+ memory B cells to the large intestine and the respiratory tract article. Mucosal Immunol. 2018;11(4):1254–1264
  • Harde H, Agrawal AK, Jain S. Tetanus toxoid-loaded layer-by-layer nanoassemblies for efficient systemic, mucosal, and cellular immunostimulatory response following oral administration. Drug Deliv Transl Res. 2015;5(5):498–510. doi: 10.1007/s13346-015-0247-x
  • Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug Discov Today. 2016;21(6):888–899. doi: 10.1016/j.drudis.2016.03.013
  • Aburahma MH. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv. 2016;23(6):1847–67.
  • Wilkhu JS, McNeil SE, Anderson DE, et al. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target. 2013;21(3):291–299
  • Jain S, Indulkar A, Harde H, et al. Oral mucosal immunization using glucomannosylated bilosomes. J Biomed Nanotechnol. 2014;10(6):932–947
  • Wang N, Wang T, Zhang M, et al. Mannose derivative and lipid a dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm. 2014;88(1):194–206
  • Jahagirdar P, Lokhande AS, Dandekar P, et al. Mannose Receptor and Targeting Strategies. AAPS Adv Pharm Sci Ser. 2019;39:433–456.
  • Zhen Y, Wang N, Gao Z, et al. Multifunctional liposomes constituting microneedles induced robust systemic and mucosal immunoresponses against the loaded antigens via oral mucosal vaccination. Vaccine. 2015;33(35):4330–4340
  • Li XJ, Li Y, Meng Y, et al. Composite dissolvable microneedle patch for therapy of oral mucosal diseases. Biomater Sci. 2022;139:139. doi: 10.1016/j.bioadv.2022.213001
  • Wang T, Zhen Y, Ma X, et al. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloids Surf B Biointerfaces. 2015;126:520–530. doi: 10.1016/j.colsurfb.2015.01.005
  • Coffey JW, Das Gaiha G, Traverso G. Oral biologic delivery: advances toward oral subunit, DNA, and mRNA vaccines and the potential for mass vaccination during pandemics. Annu Rev Pharmacol Toxicol. 2021;61(1):517–540. doi: 10.1146/annurev-pharmtox-030320-092348
  • Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig. 2021;51(5):503–517. doi: 10.1007/s40005-021-00512-4
  • Mašek J, Lubasová D, Lukáč R, et al. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles - important step towards effective mucosal vaccines. JControlled Release. 2017;249:183–195. doi: 10.1016/j.jconrel.2016.07.036
  • Jacob S, Nair AB, Boddu SHS, et al. An updated overview of the emerging role of patch and film-based buccal delivery systems. Pharmaceutics. 2021;13(8):1206
  • Uddin M, Allon A, Roni MA, et al. Overview and future potential of fast dissolving buccal films as drug delivery system for vaccines. J Pharm Pharm Sci. 2019;22:388–406. doi: 10.18433/jpps30528
  • Garcia-Del Rio L, Diaz-Rodriguez P, Pedersen GK, et al. Sublingual boosting with a Novel mucoadhesive thermogelling hydrogel following Parenteral CAF01 priming as a strategy against chlamydia trachomatis. Adv Healthcare Mater. 2022;11(11):11
  • Oberoi HS, Yorgensen YM, Morasse A, et al. PEG modified liposomes containing CRX-601 adjuvant in combination with methylglycol chitosan enhance the murine sublingual immune response to influenza vaccination. JControlled Release. 2016;223:64–74. doi: 10.1016/j.jconrel.2015.11.006
  • Aliu H, Rask C, Brimnes J, et al. Enhanced efficacy of sublingual immunotherapy by liposome-mediated delivery of allergen. Int J Nanomedicine. 2017;Volume 12:8377–8388. doi: 10.2147/IJN.S137033
  • Ramírez W, Bourg V, Torralba D, et al. Safety of a proteoliposome from Neisseria meningitidis as adjuvant for a house dust mite allergy vaccine. J Immunotoxicol. 2017;14(1):152–159
  • Suzuki S, Sakurai D, Sakurai T, et al. Sublingual administration of liposomes enclosing alpha-galactosylceramide as an effective adjuvant of allergen immunotherapy in a murine model of allergic rhinitis. Allergol Int. 2019;68(3):352–362
  • Hellfritzsch M, Scherließ R. Mucosal vaccination via the respiratory tract. Pharmaceutics. 2019;11(8):375. doi: 10.3390/pharmaceutics11080375
  • Wang J, Peng Y, Xu H, et al. The COVID-19 vaccine race: challenges and opportunities in vaccine formulation. AAPS Pharm Sci Tech. 2020;21(6). doi: 10.1208/s12249-020-01744-7
  • Tasaniyananda N, Chaisri U, Tungtrongchitr A, et al. Mouse model of cat allergic rhinitis and intranasal liposome-adjuvanted refined Fel d 1 vaccine. PLoS One. 2016;11(3):11
  • Yang J, Firdaus F, Azuar A, et al. Cell-penetrating peptides-based liposomal delivery system enhanced immunogenicity of peptide-based vaccine against group a streptococcus. Vaccines (Basel). 2021;9(5):499
  • Azuar A, Zhao L, Hei TT, et al. Cholic acid-based delivery system for vaccine candidates against group a Streptococcus. ACS Med Chem Lett. 2019;10(9):1253–1259
  • Senchi K, Matsunaga S, Hasegawa H, et al. Development of oligomannose-coated liposome-based nasal vaccine against human parainfluenza virus type 3. Front Microbiol. 2013;4:4. doi: 10.3389/fmicb.2013.00346
  • Dhakal S, Cheng X, Salcido J, et al. Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs. Int J Nanomed. 2018;13:6699–6715. doi: 10.2147/IJN.S178809
  • Taus F, Santucci MB, Greco E, et al. Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis. PLoS One. 2015;10(5):10
  • Wang J, Li P, Yu Y, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367. doi: 10.1126/science.aau0810
  • Barouch DH. Covid-19 Vaccines — Immunity, Variants, Boosters. N Engl J Med. 2022;387(11):1011–1020. doi: 10.1056/NEJMra2206573
  • An X, Martinez-Paniagua M, Rezvan A, et al. Single-dose intranasal vaccination elicits systemic and mucosal immunity against SARS-CoV-2. iScience. 2021;24(9):24
  • Walkowski W, Bassett J, Bhalla M, et al. Intranasal vaccine delivery technology for respiratory tract disease application with a special emphasis on pneumococcal disease. Vaccines (Basel). 2021;9(6):589
  • Christensen D, Korsholm KS, Andersen P, et al. Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines. 2011;10(4):513–521
  • Tada R, Hidaka A, Iwase N, et al. Intranasal immunization with dotap cationic liposomes combined with DC-cholesterol induces potent antigen-specific mucosal and systemic immune responses in mice. PLoS One. 2015;10(10):1–21
  • Tada R, Hidaka A, Kiyono H, et al. Intranasal administration of cationic liposomes enhanced granulocyte–macrophage colony-stimulating factor expression and this expression is dispensable for mucosal adjuvant activity. BMC Res Notes. 2018;11(1):11
  • Tada R, Suzuki H, Takahashi S, et al. Nasal vaccination with pneumococcal surface protein a in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice. Int Immunopharmacol. 2018;61:385–393. doi: 10.1016/j.intimp.2018.06.027
  • Tada R, Muto S, Iwata T, et al. Attachment of class B CpG ODN onto DOTAP/DC-chol liposome in nasal vaccine formulations augments antigen-specific immune responses in mice. BMC Res Notes. 2017;10(1):10
  • Qu W, Li N, Yu R, et al. Cationic DDA/TDB liposome as a mucosal vaccine adjuvant for uptake by dendritic cells in vitro induces potent humoural immunity. Artif Cells Nanomed Biotechnol. 2018;46(sup1):852–860. doi: 10.1080/21691401.2018.1438450
  • Baranov MV, Kumar M, Sacanna S, et al. Modulation of immune responses by particle size and shape. Front Immunol. 2021;11. doi: 10.3389/fimmu.2020.607945
  • Yusuf H, Ali AA, Orr N, et al. Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine. Int J Pharm. 2017;533(1):179–186
  • Zhuang X, Qi Y, Wang M, et al. MRNA vaccines encoding the HA protein of influenza a H1N1 virus delivered by cationic lipid nanoparticles induce protective immune responses in mice. Vaccines (Basel). 2020;8(1):8
  • Yang K, Lu Y, Xie F, et al. Cationic liposomes induce cell necrosis through lysosomal dysfunction and late-stage autophagic flux inhibition. Nanomedicine. 2016;11(23):3117–3137
  • Knudsen KB, Northeved H, Pramod Kumar EK, et al. In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 2015;11(2):467–477
  • Chen KH, Di Sabatino M, Albertini B, et al. The effect of polymer coatings on physicochemical properties of spray-dried liposomes for nasal delivery of BSA. Eur J Pharmaceut Sci. 2013;50(3–4):312–322
  • Kaplan M, Tuğcu-Demiröz F, Vural İ, et al. Development and characterization of gels and liposomes containing ovalbumin for nasal delivery. J Drug Deliv Sci Technol. 2018;44:108–117. doi: 10.1016/j.jddst.2017.12.006
  • Marasini N, Ghaffar KA, Giddam AK, et al. Highly immunogenic trimethyl chitosan-based delivery system for Intranasal lipopeptide vaccines against group a Streptococcus. Curr Drug Deliv. 2016;14. doi: 10.2174/1567201813666160721141322
  • Leroux-Roels G, Maes C, Clement F, et al. Randomized phase I: safety, Immunogenicity and mucosal antiviral activity in Young Healthy Women Vaccinated with HIV-1 Gp41 P1 peptide on Virosomes. PLoS One. 2013;8(2):e55438
  • Wang HW, Jiang PL, Lin SF, et al. Application of galactose-modified liposomes as a potent antigen presenting cell targeted carrier for intranasal immunization. Acta Biomater. 2013;9:5681–5688. doi: 10.1016/j.actbio.2012.11.007
  • Jiang PL, Lin HJ, Wang HW, et al. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater. 2015;11:356–367. doi: 10.1016/j.actbio.2014.09.019
  • Kakhi Z, Frisch B, Bourel-Bonnet L, et al. Airway administration of a highly versatile peptide-based liposomal construct for local and distant antitumoral vaccination. Int J Pharm. 2015;496(2):1047–1056
  • Kakhi Z, Frisch B, Heurtault B, et al. Liposomal constructs for antitumoral vaccination by the nasal route. Biochimie. 2016;130:14–22. doi: 10.1016/j.biochi.2016.07.003
  • Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines. 2015;14(11):1509–1523. doi: 10.1586/14760584.2015.1081067
  • Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol. 2019;196(2):189–204. doi: 10.1111/cei.13287
  • Levin C, Perrin H, Combadiere B. Tailored immunity by skin antigen-presenting cells. Hum Vaccin Immunother. 2015;11(1):27–36. doi: 10.4161/hv.34299
  • Nguyen AV, Soulika AM. The dynamics of the skin’s immune system. Int J Mol Sci. 2019;20:1–53. doi: 10.3390/ijms20081811
  • Quaresma JAS. Organization of the skin immune system and compartmentalized immune responses in infectious diseases. Clin Microbiol Rev. 2019;32(4):1–35. doi: 10.1128/CMR.00034-18
  • Pielenhofer J, Sohl J, Windbergs M, et al. Current progress in particle-based systems for transdermal vaccine delivery. Front Immunol. 2020;11. doi: 10.3389/fimmu.2020.00266
  • Sun X, Zeng L, Huang Y. Transcutaneous delivery of DNA/mRNA for cancer therapeutic vaccination. J Gene Med. 2019;21(7). doi: 10.1002/jgm.3089
  • Hasan M, Khatun A, Fukuta T, et al. Noninvasive transdermal delivery of liposomes by weak electric current. Adv Drug Deliv Rev. 2020;154-155:227–235. doi: 10.1016/j.addr.2020.06.016
  • Jeong WY, Kwon M, Choi HE, et al. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25(1). doi: 10.1186/s40824-021-00226-6
  • Ita K. Transdermal delivery of vaccines – recent progress and critical issues. Biomed Pharmacother. 2016;83:1080–1088. doi: 10.1016/j.biopha.2016.08.026
  • Badizadegan K, Goodson JL, Rota PA, et al. The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Rev Vaccines. 2020;19(2):175–194
  • Zhang Y, Ng W, Feng X, et al. Lipid vesicular nanocarrier: Quick encapsulation efficiency determination and transcutaneous application. Int J Pharm. 2017;516(1–2):225–230
  • Tyagi RK, Garg NK, Jadon R, et al. Elastic liposome-mediated transdermal immunization enhanced the immunogenicity of P. falciparum surface antigen, MSP-119. Vaccine. 2015;33(36):4630–4638
  • Tyagi RK, Garg NK, Dalai SK, et al. Transdermal immunization of P. falciparum surface antigen (MSP-119) via elastic liposomes confers robust immunogenicity. Hum Vaccin Immunother. 2016;12(4):990–992
  • Corthésy B, Bioley G. Lipid-based particles: versatile delivery systems for mucosal vaccination against infection. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.00431
  • Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm. 2023;634:634. doi: 10.1016/j.ijpharm.2023.122632
  • Jia Y, McCluskie MJ, Zhang D, et al. In vitro evaluation of archaeosome vehicles for transdermal vaccine delivery. J Liposome Res. 2018;28(4):305–314
  • Caimi AT, Altube MJ, de Farias MA, et al. Novel imiquimod nanovesicles for topical vaccination. Colloids Surf B Biointerfaces. 2019;174:536–543. doi: 10.1016/j.colsurfb.2018.11.031
  • Hanna E, Abadi R, Abbas O. Imiquimod in dermatology: an overview. Int J Dermatol. 2016;55(8):831–844. doi: 10.1111/ijd.13235
  • Carrer DC, Higa LH, Tesoriero MVD, et al. Structural features of ultradeformable archaeosomes for topical delivery of ovalbumin. Colloids Surf B Biointerfaces. 2014;121:281–289. doi: 10.1016/j.colsurfb.2014.05.015
  • Caimi AT, Parra F, de Farias MA, et al. Topical vaccination with super-stable ready to use nanovesicles. Colloids Surf B Biointerfaces. 2017;152:114–123. doi: 10.1016/j.colsurfb.2016.12.039
  • Higa LH, Arnal L, Vermeulen M, et al. Ultradeformable archaeosomes for needle free nanovaccination with leishmania braziliensis antigens. PLoS One. 2016;11(3):11
  • Nayak BS, Mohanty B, Mishra B, et al. Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system. Chem Biol Drug Des. 2023;102(3):653–667
  • Agbayani G, Jia Y, Akache B, et al. Mechanistic insight into the induction of cellular immune responses by encapsulated and admixed archaeosome-based vaccine formulations. Hum Vaccin Immunother. 2020;16(9):2183–2195
  • Jamaledin R, Di Natale C, Onesto V, et al. Progress in microneedle-mediated protein delivery. J Clin Med. 2020;9(2):542
  • Bernardi DS, Bitencourt C, da Silveira DSC, et al. Effective transcutaneous immunization using a combination of iontophoresis and nanoparticles. Nanomedicine. 2016;12(8):2439–2448
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–1258. doi: 10.1016/j.biopha.2018.10.078
  • Menon I, Bagwe P, Gomes KB, et al. Microneedles: a new generation vaccine delivery system. Micromachines (Basel). 2021;12(4):435
  • Chen YC, Chen SJ, Cheng HF, et al. Development of Yersinia pestis F1 antigen-loaded liposome vaccine against plague using microneedles as a delivery system. J Drug Deliv Sci Technol. 2020;55:55. doi: 10.1016/j.jddst.2019.101443
  • Du G, Hathout RM, Nasr M, et al. Intradermal vaccination with hollow microneedles: a comparative study of various protein antigen and adjuvant encapsulated nanoparticles. JControlled Release. 2017;266:109–118. doi: 10.1016/j.jconrel.2017.09.021
  • Du G, Leone M, Romeijn S, et al. Immunogenicity of diphtheria toxoid and poly(I: C) loaded cationic liposomes after hollow microneedle-mediated intradermal injection in mice. Int J Pharm. 2018;547(1–2):250–257
  • Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: applications and growing therapeutic potential. JControlled Release. 2022;348:186–205. doi: 10.1016/j.jconrel.2022.05.045
  • Wu X, Li Y, Chen X, et al. A surface charge dependent enhanced Th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. J Mater Chem B. 2019;7(31):4854–4866
  • Qiu Y, Guo L, Zhang S, et al. DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN. Drug Deliv. 2016;23(7):2391–2398
  • Lanza JS, Vucen S, Flynn O, et al. A TLR9-adjuvanted vaccine formulated into dissolvable microneedle patches or cationic liposomes protects against leishmaniasis after skin or subcutaneous immunization. Int J Pharm. 2020;586:586. doi: 10.1016/j.ijpharm.2020.119390
  • Guo L, Chen J, Qiu Y, et al. Enhanced transcutaneous immunization via dissolving microneedle array loaded with liposome encapsulated antigen and adjuvant. Int J Pharm. 2013;447(1–2):22–30
  • Zhao JH, Zhang QB, Liu B, et al. Enhanced immunization via dissolving microneedle array-based delivery system incorporating subunit vaccine and saponin adjuvant. Int J Nanomedicine. 2017;12:4763–4772. doi: 10.2147/IJN.S132456
  • Zhang Y, Ng W, Hu J, et al. Formulation and in vitro stability evaluation of ethosomal carbomer hydrogel for transdermal vaccine delivery. Colloids Surf B Biointerfaces. 2018;170:163. doi: 10.1016/j.colsurfb.2018.06.008
  • Yang X, Wang X, Hong H, et al. Galactosylated chitosan-modified ethosomes combined with silk fibroin nanofibers is useful in transcutaneous immunization. JControlled Release. 2020;327:88–99. doi: 10.1016/j.jconrel.2020.07.047
  • Clinical trials. Clinical trials involving liposome-based vaccines 2013-2023 [internet]. Available from: https://clinicaltrials.gov/search?cond=vaccine&term=liposomal%20vaccine&intr=vaccine&start=2013-01-01_.
  • Sainaga Jyothi VGS, Bulusu R, Venkata Krishna Rao B, et al. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: an update. Int J Pharm. 2022;624:122022. doi: 10.1016/j.ijpharm.2022.122022
  • Costa JP, Jesus S, Colaço M, et al. Endotoxin contamination of nanoparticle formulations: a concern in vaccine adjuvant mechanistic studies. Vaccine. 2023;41(23):3481–3485
  • Morales JO, Fathe KR, Brunaugh A, et al. Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes. AAPS J. 2017;19(3):652–668
  • Guner S, Oztop MH. Food grade liposome systems: effect of solvent, homogenization types and storage conditions on oxidative and physical stability. Colloids Surf A Physicochem Eng Asp. 2017;513:468–478. doi: 10.1016/j.colsurfa.2016.11.022
  • Crommelin DJA, Talsma H, Grit M, et al. Physical stability on long-term storage. In Phospholipids handbook. 2020. Chapter 10. p. 14 .
  • Chung YH, Church D, Koellhoffer EC, et al. Integrating plant molecular farming and materials research for next-generation vaccines. Nat Rev Mater. 2022;7(5):372–388
  • D’Amico C, Fontana F, Cheng R, et al. Development of vaccine formulations: past, present, and future. Drug Deliv Transl Res. 2021;11(2):353–372
  • Ahmed KS, Hussein SA, Ali AH, et al. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2019;27(7):742–761
  • Hossen S, Hossain MK, Basher MK, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005
  • Peng T, Xu W, Li Q, et al. Pharmaceutical liposomal delivery—specific considerations of innovation and challenges. Biomater Sci. 2022;11(1):62–75
  • Hua S, de Matos MBC, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9. doi: 10.3389/fphar.2018.00790
  • Kis Z, Shattock R, Shah N, et al. Emerging technologies for low-cost, rapid vaccine manufacture. Biotechnol J. 2019;14(1). doi: 10.1002/biot.201800376
  • Yousif M, Hewage C, Nawaf L. IOT technologies during and beyond COVID-19: a comprehensive review. Future Internet. 2021;13(5):105. doi: 10.3390/fi13050105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.