184
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Development of a multi-component gastroretentive expandable drug delivery system (GREDDS) for personalized administration of metformin

, , , , ORCID Icon &
Pages 131-149 | Received 07 Aug 2023, Accepted 11 Dec 2023, Published online: 19 Dec 2023

References

  • Lopes CM, Bettencourt C, Rossi A, et al. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm. 2016;510(1):144–158. doi: 10.1016/j.ijpharm.2016.05.016
  • Kumar M, Kaushik D. An overview on various approaches and recent patents on gastroretentive drug delivery systems. Recent Pat Drug Deliv Formul. 2018;12(2):84–92. doi: 10.2174/1872211312666180308150218
  • Pinto JF. Site-specific drug delivery systems within the gastro-intestinal tract: from the mouth to the colon. Int J Pharm. 2010;395(1–2):44–52. doi: 10.1016/j.ijpharm.2010.05.003
  • Streubel A, Siepmann J, Bodmeier R. Gastroretentive drug delivery systems. Expert Opin Drug Deliv. 2006;3(2):217–233. doi: 10.1517/17425247.3.2.217
  • Baride KS, Chemate SZ, Borkar GS, et al. An overview of the gastroretentive drug delivery system. Int J Pharm Sci Rev Res. 2023;80(2):104–115. doi: 10.47583/ijpsrr.2023.v80i02.016
  • Uboldi M, Melocchi A, Moutaharrik S, et al. Administration strategies and smart devices for drug release in specific sites of the upper GI tract. J Control Release. 2022;348:537–552. doi: 10.1016/j.jconrel.2022.06.005
  • Awasthi R, Kulkarni GT. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: where do we stand? Drug Deliv. 2016;23(2):378–394. doi: 10.3109/10717544.2014.936535
  • Dhiman S, Philip N, Singh TG, et al. An insight on novel approaches & perspectives for gastro-retentive drug delivery systems. Current Drug Deliv. 2023;20(6):708–729. doi: 10.2174/1567201819666220819200236
  • Melocchi A, Uboldi M, Cerea M, et al. A graphical review on the escalation of fused deposition modeling (FDM) 3D printing in the pharmaceutical field. J Pharm Sci. 2020;109(10):2943–2957. doi: 10.1016/j.xphs.2020.07.011
  • Tripathi J, Thapa P, Maharjan R, et al. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics. 2019;11(4):193. doi: 10.3390/pharmaceutics11040193
  • Vrettos NN, Roberts CJ, Zhu Z. Gastroretentive technologies in tandem with controlled-release strategies: a potent answer to oral drug bioavailability and patient compliance implications. Pharmaceutics. 2021;13(10):1591. doi: 10.3390/pharmaceutics13101591
  • Pal R, Pandey P, Nogai L, et al. The future perspectives and novel approach on gastro retentive drug delivery system (GRDDS) with currrent state. J Popul Ther Clin Pharmacol. 2023;30(17):594–613. doi: 10.53555/jptcp.v30i17.2852
  • Sambre TK, Mehta T, Sambre TT. Saga of gastroretentive drug delivery system: emerging concepts, recent advances and technological progress. Int J Pharm Sci Res. 2023;14(5):2030–2059.
  • Abramson A, Caffarel-Salvador E, Khang M, et al. An ingestible self-orienting system for oral delivery of macromolecules. Science. 2019;363(6427):611–615. doi: 10.1126/science.aau2277
  • Abramson A, Frederiksen MR, Vegge A, et al. Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat Biotechnol. 2021;40(1):103–109. doi: 10.1038/s41587-021-01024-0
  • Abramson A, Kirtane AR, Shi Y, et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter. 2022;5(3):975–987. doi: 10.1016/j.matt.2021.12.022
  • Altreuter DH, Kirtane AR, Grant T, et al. Changing the pill: developments toward the promise of an ultra-long-acting gastroretentive dosage form. Expert Opin Drug Deliv. 2018;15(12):1189–1198. doi: 10.1080/17425247.2018.1544615
  • Byrne J, Huang HW, McRae JC, et al. Devices for drug delivery in the gastrointestinal tract: a review of systems physically interacting with the mucosa for enhanced delivery. Adv Drug Deliv Rev. 2021;177:113926. doi: 10.1016/j.addr.2021.113926
  • Caffarel-Salvador E, Abramson A, Langer R, et al. Oral delivery of biologics using drug-device combinations. Curr Opin Pharmacol. 2017;36:8–13. doi: 10.1016/j.coph.2017.07.003
  • Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol. 2022;19(4):219–238. doi: 10.1038/s41575-021-00539-w
  • Kirtane AR, Tang C, Freitas D, et al. Challenges and opportunities in the development of mucosal mRNA vaccines. Curr Opin Immunol. 2023;85:102388. doi: 10.1016/j.coi.2023.102388
  • Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology. 2022;20(1):362. doi: 10.1186/s12951-022-01539-x
  • Lyndra therapeutics [cited 2023 Nov 30] https://lyndra.com/
  • Bellinger AM, Jafari M, Grant TM, et al. Oral, ultra-long-lasting drug delivery: Application toward malaria elimination goals. Sci Transl Med. 2016;8(865):365ra157. doi: 10.1126/scitranslmed.aag2374
  • Hayward A, Bensel T, Mazdiyasni H, et al. Scalable gastric resident systems for veterinary application. Sci Rep. 2018;8(1):11816. doi: 10.1038/s41598-018-30212-3
  • Kanasty R, Low S, Bhise N, et al. A pharmaceutical answer to nonadherence: once weekly oral memantine for Alzheimer’s disease. J Control Release. 2019;303:34–41. doi: 10.1016/j.jconrel.2019.03.022
  • Kirtane AR, Abouzid O, Minahan D, et al. Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy. Nat Commun. 2018;9(1):2. doi: 10.1038/s41467-017-02294-6
  • Kirtane AR, Hua T, Hayward A, et al. A once-a-month oral contraceptive. Sci Transl Med. 2019;11(521):eaay2602. doi: 10.1126/scitranslmed.aay2602
  • Klausner EA, Lavy E, Friedman M, et al. Expandable gastroretentive dosage forms. J Control Release. 2003;90(2):143–162. doi: 10.1016/S0168-3659(03)00203-7
  • Pawar VK, Kansal S, Garg G, et al. Gastroretentive dosage forms: a review with special emphasis on floating drug delivery systems. Drug Deliv. 2011;18(2):97–110. doi: 10.3109/10717544.2010.520354
  • Pawar VK, Kansal S, Asthana S, et al. Industrial perspective of gastroretentive drug delivery systems: physicochemical, biopharmaceutical, technological and regulatory consideration. Expert Opin Drug Deliv. 2012;9(5):551–565. doi: 10.1517/17425247.2012.677431
  • Prinderre P, Sauzet C, Fuxen C. Advances in gastro retentive drug-delivery systems. Expert Opin Drug Deliv. 2011;8(9):1189–1203. doi: 10.1517/17425247.2011.592828
  • Chaudhari S, Walde S, Purohit A. A review on floating drug delivery systems. Int J Pharm Sci Res. 2023;81(1):37–41. doi: 10.47583/ijpsrr.2023.v81i01.008
  • Mahmoud DB, Schulz-Siegmund M. Utilizing 4D printing to design smart gastroretentive, esophageal, and intravesical drug delivery systems. Adv Health Mat. 2022;12(19):2202631. doi: 10.1002/adhm.202202631
  • Melocchi A, Uboldi M, Cerea M, et al. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev. 2021a;173:216–237. doi: 10.1016/j.addr.2021.03.013
  • Verma M, Vishwanath K, Eweje F, et al. A gastric resident drug delivery system for prolonged gram-level dosing of tuberculosis treatment. Sci Transl Med. 2019;11(483):eaau6267. doi: 10.1126/scitranslmed.aau6267
  • Verma M, Chu JN, Salama JA, et al. Sa1527 development of a long-acting direct-acting antiviral system for Hepatitis C Virus treatment in a swine model. Gastroenterol. 2020;158(6):S–1321. doi: 10.1016/S0016-5085(20)33972-X
  • Inverardi N, Scalet G, Melocchi A, et al. Experimental and computational analysis of a pharmaceutical-grade shape memory polymer applied to the development of gastroretentive drug delivery systems. J Mech Behav Biomed Mater. 2021;124:104814. doi: 10.1016/j.jmbbm.2021.104814
  • Melocchi A, Inverardi N, Uboldi M, et al. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinil alcohol): design concept and 4D printing feasibility. Int J Pharm. 2019a;559:299–311. doi: 10.1016/j.ijpharm.2019.01.045
  • Melocchi A, Uboldi M, Inverardi N, et al. Expandable drug delivery system for gastric retention based on shape memory polymers: development via 4D printing and extrusion. Int J Pharm. 2019b;571:118700. doi: 10.1016/j.ijpharm.2019.118700
  • Uboldi M, Melocchi A, Moutaharrik S, et al. Dataset on a small-scale film-coating process developed for self-expanding 4D printed drug delivery devices. Coatings. 2021;11(10):1252. doi: 10.3390/coatings11101252
  • Uboldi M, Pasini C, Pandini S, et al. Expandable drug delivery systems based on shape memory polymers: impact of film coating on mechanical properties and release and recovery performance. Pharmaceutics. 2022;14(12):2814. doi: 10.3390/pharmaceutics14122814
  • Uboldi M, Perrotta C, Moscheni C, et al. Insights into the safety and versatility of 4D printed intravesical drug delivery systems. Pharmaceutics. 2023;15(3):757. doi: 10.3390/pharmaceutics15030757
  • Uboldi M, Gelain A, Buratti G, et al. Development of 4D printed intravesical drug delivery systems: scale-up of film-coating. J D Deliv Sci Technol. 2023;87:104875. doi: 10.1016/j.jddst.2023.104875
  • Hatipoglu BA. Rekindling hope for remission: current impact of diabetes for our world’s future health and economy. Endocrinol Metab Clin N Am. 2023;52(1):1–12. doi: 10.1016/j.ecl.2022.06.006
  • Baker C, Retzik-Stahr C, Singh V, et al. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Ther Adv Endocrinol Metab. 2021;12:2042018820980225. doi: 10.1177/2042018820980225
  • Buse JB, DeFronzo RA, Rosenstock J, et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care. 2016;39(2):198–205. doi: 10.2337/dc15-0488
  • Garber AJ, Duncan TG, Goodman AM, et al. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial fn1. Am J Med. 1997;103(6):491–497. doi: 10.1016/S0002-9343(97)00254-4
  • Corcoran C, Jacobs TF. Metformin. Treasure Island (FL): StatPearls Publishing; 2023.
  • Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–1593. doi: 10.1007/s00125-017-4336-x
  • Sheehan MT. Current therapeutic options in type 2 diabetes mellitus: a practical approach. Clin Med Res. 2003;1(3):189–200. doi: 10.3121/cmr.1.3.189
  • Boldhane SP, Kuchekar BS. Gastroretentive drug delivery of metformin hydrochloride: formulation and in vitro evaluation using 32 full factorial design. Current Drug Deliv. 2009;6(5):477–485. doi: 10.2174/156720109789941641
  • Hoffman A, Stepensky D, Lavy E, et al. Pharmacokinetic and pharmacodynamic aspects of gastroretentive dosage forms. Int J Pharm. 2004;277(1–2):141–153. doi: 10.1016/j.ijpharm.2003.09.047
  • Kim JH, Song SH, Joo SH, et al. Formulation of a gastroretentive in situ oral gel containing metformin HCl based on DoE. Pharmaceutics. 2022;14(9):1777. doi: 10.3390/pharmaceutics14091777
  • Pawar R, Jagdale S, Randive D. Development of floating gastroretentive drug delivery system based on a novel excipient for metformin hydrochloride using mixture design. Int J Pharm Pharm Sci. 2020;12(10):62–71. doi: 10.22159/ijpps.2020v12i10.38678
  • Kumar A, Sharma AK, Dutt R. A review of gastro-retentive drug delivery systems for antidiabetics and its present status. Res J Pharm Technol. 2021;14(1):538–546. doi: 10.5958/0974-360X.2021.00098.6
  • Upadhyay P, Pandit JK, Upadhyay S, et al. Studies on formulation and optimization of gastro retentive multi-particulates of Glibenclamide and metformin hydrochloride for the treatment of type II diabetes mellitus using gelucire: a review. J Pharm Sci Res. 2010;2(6):351–354.
  • Jeong YS, Jusko WJ. Meta-assessment of metformin absorption and disposition pharmacokinetics in nine species. Pharmaceuticals. 2021;14(6):545. doi: 10.3390/ph14060545
  • Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996;30(5):359–371. doi: 10.2165/00003088-199630050-00003
  • Stepensky D, Friedman M, Srour W, et al. Preclinical evaluation of pharmacokinetic-pharmacodynamic rationale for oral CR metformin formulation. J Control Release. 2001;71(1):107–115. doi: 10.1016/S0168-3659(00)00374-6
  • Aroda VR, Ratner RE. Metformin and type 2 diabetes prevention. Diabetes Spectr. 2018;31(4):336–342. doi: 10.2337/ds18-0020
  • Blough B, Moreland A, Mora A Jr. Metformin-induced lactic acidosis with emphasis on the anion gap. Proc (Bayl Univ Med Cent). 2015;28(1):31–33. doi: 10.1080/08998280.2015.11929178
  • Nasri H, Rafieian-Kopaei M. Metformin: current knowledge. J Res Med Sci. 2014;19(7):658–664. doi: 10.12659/MSMBR.889344
  • Rojas LBA, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr. 2013;5(1):6. doi: 10.1186/1758-5996-5-6
  • Hemels M, Jensen RCØ, Toumi M, et al. Relative effectiveness management of type II diabetes in europe: can the agencies’ demands be met? Value Health. 2010;13:A55. doi: 10.1016/S1098-3015(10)72253-1
  • Diabetes in Europe [cited 2023 Nov 30] https://www.mepinterestgroupdiabetes.eu/wp-content/uploads/2021/11/IDF-Atlas-Factsheet-2021_EUR.pdf
  • IDF Diabetes Atlas [cited 2023 Nov 30] https://diabetesatlas.org/data/en/indicators/17/
  • Jönsson B. Revealing the cost of type II diabetes in Europe. Diabetologia. 2002;45(7):S5–S12. doi: 10.1007/s00125-002-0858-x
  • Völzke H, Ittermann T, Schmidt CO, et al. Prevalence trends in lifestyle-related risk factors. Dtsch Arztebl Int. 2015;112(11):185–192. doi: 10.3238/arztebl.2015.0185
  • Zhuo X, Zhang P, Hoerger TJ. Lifetime direct medical costs of treating type 2 diabetes and diabetic complications. Am J Prev Med. 2013;45(3):253–261. doi: 10.1016/j.amepre.2013.04.017
  • Ferry JD. Viscoelastic properties of polymers. (NY) (NY): John Wiley & Sons; 1980.
  • Daskalakis E, Hassan MH, Omar AM, et al. Accelerated degradation of poly-ε-caprolactone composite scaffolds for large bone defects. Polymers. 2023;15(3):670. doi: 10.3390/polym15030670
  • Lee SH, Lee JH, Cho YS. Analysis of degradation rate for dimensionless surface area of well-interconnected PCL scaffold via in-vitro accelerated degradation experiment. Tissue Eng Regen Med. 2014;11(6):446–452. doi: 10.1007/s13770-014-0067-y
  • Zhou ZX, Chen YR, Zhang JY, et al. Facile strategy on hydrophilic modification of poly(ε-caprolactone) scaffolds for assisting tissue-engineered meniscus constructs in vitro. Front Pharmacol. 2020;11:471. doi: 10.3389/fphar.2020.00471
  • Dumpa N, Butreddy A, Wang H, et al. 3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021;600:120501. doi: 10.1016/j.ijpharm.2021.120501
  • Kallakunta VR, Sarabu S, Bandari S, et al. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part I. Expert Opin Drug Deliv. 2019;16(5):539–550. doi: 10.1080/17425247.2019.1609448
  • Sarabu S, Bandari S, Kallakunta VR, et al. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part II. Expert Opin Drug Deliv. 2019;16(6):567–582. doi: 10.1080/17425247.2019.1614912
  • Simões MF, Pinto RMA, Simões S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov Today. 2019;24(9):1749–1768. doi: 10.1016/j.drudis.2019.05.013
  • Zema L, Loreti G, Melocchi A, et al. Injection molding and its application to drug delivery. J Control Release. 2012;159(3):324–331. doi: 10.1016/j.jconrel.2012.01.001
  • Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158(1):15–33. doi: 10.1016/j.jconrel.2011.09.064
  • Elbjorn M, Provencio J, Phillips P, et al. An innovative polymeric platform for controlled and localized drug delivery. Pharmaceutics. 2023;15(7):1795. doi: 10.3390/pharmaceutics15071795
  • Henderson B. Polycaprolactones: properties, applications, and selected research. London (UK): Nova Science Publishers; 2017.
  • Malikmammadov E, Tanir TE, Kiziltay A, et al. PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed. 2018;29(7–9):863–893. doi: 10.1080/09205063.2017.1394711
  • Mohamed R, Yusoh K. A review on the recent research of polycaprolactone (PCL). Adv Mat Res. 2015;1134:249–255. doi: 10.4028/www.scientific.net/AMR.1134.249
  • Mondal D, Griffith MV, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. Int J Polym Mater. 2016;65(5):255–265. doi: 10.1080/00914037.2015.1103241
  • Faglie A, Emerine R, Chou S-F. Effects of poloxamers as excipients on the physicomechanical properties, cellular biocompatibility, and in vitro drug release of electrospun polycaprolactone (PCL. Fibers Polyms. 2023;15(14):2997. doi: 10.3390/polym15142997
  • Douglas P, Jones AG, Walker D. Analysis of in vitro drug dissolution from PCL melt extrusion. Chem Eng J. 2010;164(2–3):359–370. doi: 10.1016/j.cej.2010.03.077
  • Guastaferro M, Baldino M, Cardea S, et al. Supercritical processing of PCL and PCL-PEG blends to produce improved PCL-based porous scaffolds. J Supercrit Fluids. 2022;186:105611. doi: 10.1016/j.supflu.2022.105611
  • Dalton M, Ebrahimi F, Xu H, et al. The influence of the molecular weight of poly(ethylene oxide) on the hydrolytic degradation and physical properties of polycaprolactone binary blends. Macromol. 2023;3(3):431–450. doi: 10.3390/macromol3030026
  • Douglas P, Albadarin AB, Sajjia M, et al. Effect of poly ethylene glycol on the mechanical and thermal properties of bioactive poly(ε-caprolactone) melt extrudates for pharmaceutical applications. Int J Pharm. 2016;500(1–2):179–186. doi: 10.1016/j.ijpharm.2016.01.036
  • Homaeigohar S, Boccaccini AR. Nature-derived and synthetic additives to poly(ɛ-caprolactone) nanofibrous systems for biomedicine; an updated overview. Front Chem. 2022;19:809676. doi: 10.3389/fchem.2021.809676
  • Bezerra GSN, De Lima GG, Colbert DM, et al. Micro-injection moulding of PEO/PCL blend–based matrices for extended oral delivery of fenbendazole. Pharmaceutics. 2023;15(3):900. doi: 10.3390/pharmaceutics15030900
  • Bezerra GSN, de Lima TADM, Colbert DM, et al. Formulation and evaluation of fenbendazole extended-release extrudes processed by hot-melt extrusion. Polymers. 2022;14(19):4188. doi: 10.3390/polym14194188
  • Berger V, Green Buzhor M, Evstafeva D, et al. 3D printing of a controlled urea delivery device for the prevention of tooth decay. Int J Pharm. 2023;631:122528. doi: 10.1016/j.ijpharm.2022.122528
  • Vlachou M, Siamidi A, Anagnostopoulou D, et al. Tuning the release of the pineal hormone melatonin via poly(ε-caprolactone)-based copolymers matrix tablets.J. Drug Deliv Sci Technol. 2023;79:04051. doi: 10.1016/j.jddst.2022.104051
  • Bartnikowski M, Dargaville TR, Ivanovski S, et al. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog Polym Sci. 2019;96:1–20. doi: 10.1016/j.progpolymsci.2019.05.004
  • Evonik Leading Beyond Chemistry [cited 2023 Nov 30]. https://healthcare.evonik.com/en/medical-devices/bioresorbable-polymers/standard-polymers
  • Sun H, Mei L, Song C, et al. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27(9):1735–1740. doi: 10.1016/j.biomaterials.2005.09.019
  • Balguri SP, Adelli GR, Tatke A, et al. Melt-cast noninvasive ocular inserts for posterior segment drug delivery. J Pharm Sci. 2017;106(12):3515–3523. doi: 10.1016/j.xphs.2017.07.017
  • Blackwell CJ, Haernvall K, Guebitz GM, et al. Enzymatic degradation of star poly(ε-caprolactone) with different central units. Polymers. 2018;10(11):1266. doi: 10.3390/polym10111266
  • Castilla-Cortázar I, Más-Estellés J, Meseguer-Dueñas JM, et al. Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polym Degrad Stab. 2012;97(8):1241–1248. doi: 10.1016/j.polymdegradstab.2012.05.038
  • Gan Z, Liang Q, Zhang J, et al. Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym Degrad Stab. 1997;56(2):209–213. doi: 10.1016/S0141-3910(96)00208-X
  • Pastorino L, Pioli F, Zilli M, et al. Lipase-catalyzed degradation of poly(ε-caprolactone). Enzyme Microb Technol. 2004;35(4):321–326. doi: 10.1016/j.enzmictec.2004.05.005
  • Liu M, Zhang T, Long L, et al. Efficient enzymatic degradation of poly (3-caprolactone) by an engineered bifunctional lipase-cutinase. Polym Degrad Stab. 2019;160:120–125. doi: 10.1016/j.polymdegradstab.2018.12.020
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer–polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002
  • Chen DR, Bei JZ, Wang SG. Polycaprolactone microparticles and their biodegradation. Polym Degrad Stab. 2000;67(3):455–459. doi: 10.1016/S0141-3910(99)00145-7
  • Hoshino A, Isono Y. Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp. Biodegradation. 2002;13(2):141–147. doi: 10.1023/A:1020450326301
  • Cheng L, Lei L, Guo S. In vitro and in vivo evaluation of praziquantel loaded implants based on PEG/PCL blends. Int J Pharm. 2010;387(1–2):129–138. doi: 10.1016/j.ijpharm.2009.12.010
  • Dalton M, Ebrahimi F, Xu H, et al. The influence of the molecular weight of poly(ethylene oxide) on the hydrolytic degradation and physical properties of polycaprolactone binary blends. Macromol. 2023;3(3):431–450. doi: 10.3390/macromol3030026
  • Jiang Y, Mao K, Cai X, et al. Poly(ethyl glycol) assisting water sorption enhancement of poly(ε-caprolactone) blend for drug delivery. J Appl Polym Sci. 2011;122(4):2309–2316. doi: 10.1002/app.34382
  • Chang HI, Williamson MR, Perrie Y, et al. Precipitation casting of drug-loaded microporous PCL matrices: incorporation of progesterone by co-dissolution. J Control Release. 2005;106(3):263–272. doi: 10.1016/j.jconrel.2005.05.013
  • Asvadi NH, Dang NTT, Davis-Poynter N, et al. Evaluation of microporous polycaprolactone matrices for controlled delivery of antiviral microbicides to the female genital tract. J Mater Sci Mater Med. 2013;24(12):2719–2727.
  • Dang NTT, Turner MS, Coombes AGA. Development of intra-vaginal matrices from polycaprolactone for sustained release of antimicrobial agents. J Biomater Appl. 2013;28(1):74–83. doi: 10.1177/0885328212437393
  • Wong BS, Teoh SH, Kang L. Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Deliv Transl Res. 2012;2(4):272–283. doi: 10.1007/s13346-012-0096-9
  • Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34(10):1068–1133. doi: 10.1016/j.progpolymsci.2009.06.002
  • Das A, Mahanwar P. A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res. 2020;3(3):93–101. doi: 10.1016/j.aiepr.2020.07.002
  • Petrović ZS, Ferguson J. Polyurethane elastomers. Prog Polym Sci. 1991;16(5):695–836. doi: 10.1016/0079-6700(91)90011-9
  • Xie F, Zhang T, Bryant P, et al. Degradation and stabilization of polyurethane elastomers. Progress Poly Sci. 2019;90:211–268. doi: 10.1016/j.progpolymsci.2018.12.003
  • Cherng JY, Hou TY, Shih MF, et al. Polyurethane-based drug delivery systems. Int J Pharm. 2013;450(1–2):145–162. doi: 10.1016/j.ijpharm.2013.04.063
  • Claeys B, Vervaeck A, Hillewaere XKD, et al. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Eur J Pharm Biopharm. 2015;90:44–52. doi: 10.1016/j.ejpb.2014.11.003
  • St John KR. The use of polyurethane materials in the surgery of the spine: a review. Spine J. 2014;14(12):3038–3047. doi: 10.1016/j.spinee.2014.08.012
  • Joseph J, Patel RM, Wenham A, et al. Biomedical applications of polyurethane materials and coatings. Trans Inst Met. 2018;96(3):121–129. doi: 10.1080/00202967.2018.1450209
  • Koutsamanis I, Roblegg E, Spoerk M. Controlled delivery via hot-melt extrusion: a focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol. 2023;81:104289. doi: 10.1016/j.jddst.2023.104289
  • M’Bengue MS, Mesnard T, Chai F, et al. Evaluation of a medical grade thermoplastic polyurethane for the manufacture of an implantable medical device: the impact of FDM 3D-printing and gamma sterilization. Pharmaceutics. 2023;15(2):456. doi: 10.3390/pharmaceutics15020456
  • Verstraete G, Van Renterghem J, Van Bockstal PJ, et al. Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Int J Pharm. 2016;506(1–2):214–221. doi: 10.1016/j.ijpharm.2016.04.057
  • Verstraete G, Samaro A, Grymonpré W, et al. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm. 2018;536(1):318–325. doi: 10.1016/j.ijpharm.2017.12.002
  • Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater. 2021;6(4):1083–1106. doi: 10.1016/j.bioactmat.2020.10.002
  • Cailleaux S, Sanchez-Ballester NM, Gueche YA, et al. Fused deposition modeling (FDM), the new asset for the production of tailored medicines. J Control Release. 2021;330:821–841. doi: 10.1016/j.jconrel.2020.10.056
  • Melocchi A, Uboldi M, Briatico-Vangosa F, et al. The chronotopic™ system for pulsatile and colonic delivery of active molecules in the era of precision medicine: feasibility by 3D printing via fused deposition modeling (FDM). Pharmaceutics. 2021;13(5):759. doi: 10.3390/pharmaceutics13050759
  • Parulski C, Jennotte O, Lechanteur A, et al. Challenges of fused deposition modeling 3D printing in pharmaceutical applications: where are we now? Adv Drug Deliv Rev. 2021;175:13810. doi: 10.1016/j.addr.2021.05.020
  • Kong F, Singh RP. A human gastric simulator (HGS) to study food digestion in human stomach. J Food Sci. 2010;75(9):E627–35. doi: 10.1111/j.1750-3841.2010.01856.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.