100
Views
0
CrossRef citations to date
0
Altmetric
Review

The quest to deliver high-dose rifampicin: can the inhaled approach help?

ORCID Icon, , &
Pages 31-44 | Received 20 Jun 2023, Accepted 02 Jan 2024, Published online: 08 Jan 2024

References

  • Behr MA, Kaufmann E, Duffin J, et al. Latent tuberculosis: two centuries of confusion. Am J Respir Crit Care Med. 2021;204(2):142–148. doi: 10.1164/rccm.202011-4239PP
  • World Health Organization. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. No. WHO/CDS/TB/2018.4. World Health Organization; 2018.
  • WHO. Global tuberculosis report 2022. Geneva: World Health Organization; 2022.
  • Lee A, Xie YL, Barry CE, et al. Current and future treatments for tuberculosis. BMJ. 2020;368:m216. doi: 10.1136/bmj.m216
  • Libardo MD J, Boshoff HIM, Barry CE. The present state of the tuberculosis drug development pipeline. Curr Opin Pharmacol. 2018 Oct 01;42:81–94. doi: 10.1016/j.coph.2018.08.001
  • WHO. WHO consolidated guidelines on tuberculosis: module 4: treatment - drug-susceptible tuberculosis treatment. Organization WH, editor. Geneva: World Health Organization; 2022.
  • Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nature Rev Microbiol. 2014 Mar 01;12(3):159–167. doi: 10.1038/nrmicro3200
  • Strydom N, Gupta SV, Fox WS, et al. Tuberculosis drugs’ distribution and emergence of resistance in patient’s lung lesions: a mechanistic model and tool for regimen and dose optimization. PLOS Med. 2019;16(4):e1002773. doi: 10.1371/journal.pmed.1002773
  • Aguilar Diaz JM, Abulfathi AA, Te Brake LH, et al. New and repurposed drugs for the treatment of active tuberculosis: an update for clinicians. Respiration. 2023;102(2):83–100. doi: 10.1159/000528274
  • Balganesh TS, Alzari PM, Cole ST. Rising standards for tuberculosis drug development. Trends Pharmacol Sci. 2008 Nov 01;29(11):576–581.
  • Dartois V, Rubin EJ. Shortening tuberculosis treatment — a strategic retreat. N Engl J Med. 2023;388(10):939. doi: 10.1056/NEJMe2300413
  • Grobbelaar M, Louw GE, Sampson SL, et al. Evolution of rifampicin treatment for tuberculosis. Infect Genet Evol. 2019 Oct 01;74:103937.
  • van Ingen J, Aarnoutse RE, Donald PR, et al. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clin Infect Dis. 2011 May;52(9):e194–e199. doi: 10.1093/cid/cir184
  • Magis-Escurra C, Anthony RM, van der Zanden AGM, et al. Pound foolish and penny wise—when will dosing of rifampicin be optimised? Lancet Respir Med. 2018;6(4):e11–e12. doi: 10.1016/S2213-2600(18)30044-4
  • Holstege CP. Rifampin. In: Wexler P, editor. Encyclopedia of toxicology. Third ed. Oxford: Academic Press; 2014. p. 134–136.
  • Scholar E. Rifampin. In: Enna S Bylund D, editors xPharm: the comprehensive pharmacology reference. (NY): Elsevier; 2007. p. 1–8.
  • Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978 Apr 01;3(2):108–127.
  • Taylor A, Anand S, Rose JSM, et al. Rifampin. Elsevier: Reference Module in Biomedical Sciences, Elsevier; 2023. doi: 10.1016/B978-0-12-824315-2.00695-3
  • Park JS, Lee JY, Lee YJ, et al. Serum levels of antituberculosis drugs and their effect on tuberculosis treatment outcome. Antimicrob Agents Chemother. 2016 Jan;60(1):92–98.
  • Ramachandran G, Chandrasekaran P, Gaikwad S, et al. Subtherapeutic rifampicin concentration is associated with unfavorable tuberculosis treatment outcomes. Clin Infect Dis. 2020 Mar 17;70(7):1463–1470. doi: 10.1093/cid/ciz380
  • Gumbo T, Louie A, Deziel MR, et al. Concentration-dependent mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007 Nov;51(11):3781–3788.
  • Rosenthal IM, Tasneen R, Peloquin CA, et al. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents Chemother. 2012 Aug;56(8):4331–4340.
  • de Steenwinkel JE, Aarnoutse RE, de Knegt GJ, et al. Optimization of the rifampin dosage to improve the therapeutic efficacy in tuberculosis treatment using a murine model. Am J Respir Crit Care Med. 2013 May 15;187(10):1127–1134. doi: 10.1164/rccm.201207-1210OC
  • Hu Y, Liu A, Ortega-Muro F, et al. High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo [original research]. Front Microbiol. 2015 Jun 23;6. doi: 10.3389/fmicb.2015.00641
  • Ruslami R, Nijland HM, Alisjahbana B, et al. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007 Jul;51(7):2546–2551.
  • Diacon AH, Patientia RF, Venter A, et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother. 2007 Aug;51(8):2994–2996.
  • Milstein M, Lecca L, Peloquin C, et al. Evaluation of high-dose rifampin in patients with new, smear-positive tuberculosis (HIRIF): study protocol for a randomized controlled trial. BMC Infect Dis. 2016 Aug 27;16(1):453. doi: 10.1186/s12879-016-1790-x
  • Peloquin CA, Velásquez GE, Lecca L, et al. Pharmacokinetic evidence from the HIRIF trial to support increased doses of rifampin for tuberculosis. Antimicrob Agents Chemother. 2017 Aug;61(8): doi: 10.1128/AAC.00038-17
  • Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015 May 1;191(9):1058–65. doi: 10.1164/rccm.201407-1264OC
  • Boeree MJ, Heinrich N, Aarnoutse R, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017 Jan 01;17(1):39–49. doi: 10.1016/S1473-3099(16)30274-2
  • Ruiz-Bedoya CA, Mota F, Tucker EW, et al. High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J Clin Investig. 2022 Mar 15;132(6). doi: 10.1172/JCI155851
  • Heemskerk AD, Bang ND, Mai NTH, et al. Intensified antituberculosis therapy in adults with tuberculous meningitis. N Engl J Med. 2016;374(2):124–134. doi: 10.1056/NEJMoa1507062
  • Heemskerk AD, Nguyen MTH, Dang HTM, et al. Clinical outcomes of patients with drug-resistant tuberculous meningitis treated with an intensified antituberculosis regimen. Clinl Infect Dis. 2017;65(1):20–28. doi: 10.1093/cid/cix230
  • Cresswell FV, Meya DB, Kagimu E, et al. High-dose oral and intravenous rifampicin for the treatment of tuberculous meningitis in predominantly human immunodeficiency virus (HIV)-positive Ugandan adults: a phase II open-label randomized controlled trial. Clinl Infect Dis. 2021;73(5):876–884. doi: 10.1093/cid/ciab162
  • Arbiv OA, Kim JM, Yan M, et al. High-dose rifamycins in the treatment of TB: a systematic review and meta-analysis. Thorax. 2022 Dec;77(12):1210–1218.
  • Maug AKJ, Hossain MA, Gumusboga M, et al. First-line tuberculosis treatment with double-dose rifampicin is well tolerated. Int J Tuberc Lung Dis. 2020;24(5):499–505. doi: 10.5588/ijtld.19.0063
  • Garcia-Prats AJ, Svensson EM, Winckler J, et al. Pharmacokinetics and safety of high-dose rifampicin in children with TB: the Opti-Rif trial. J Antimicrob Chemother. 2021;76(12):3237–3246. doi: 10.1093/jac/dkab336
  • FDA. RIFADIN® (rifampin capsules USP) and RIFADIN® IV (rifampin for injection USP) food and drug administration. US Food and Drug Administration (USFDA); 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/050420s077,050627s020lbl.pdf
  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007 Jan 01;6(1):67–74.
  • Scherließ R, Etschmann C. DPI formulations for high dose applications – challenges and opportunities. Int J Pharmaceut. 2018 Sep 05;548(1):49–53.
  • Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis. 2005 Jul 01;85(4):227–234.
  • Liang Z, Ni R, Zhou J, et al. Recent advances in controlled pulmonary drug delivery. Drug Discovery Today. 2015 Mar 01;20(3):380–389. doi: 10.1016/j.drudis.2014.09.020
  • Khadka P, Dummer J, Hill PC, et al. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv Transl Res. 2022 Sep 21;13(5):1246–1271. doi: 10.1007/s13346-022-01238-y
  • Traini D, Young PM. Delivery of antibiotics to the respiratory tract: an update. Expert Opin Drug Delivery. 2009 Sep 01;6(9):897–905.
  • Lau M, Young PM, Traini D. A review of co-milling techniques for the production of high dose dry powder inhaler formulation. Drug Dev Ind Pharm. 2017 Aug 03;43(8):1229–1238.
  • Kim J-H, Nam WS, Kim SJ, et al. Mechanism investigation of rifampicin-induced liver injury using comparative toxicoproteomics in mice. Int J Mol Sci. 2017;18(7):1417. doi: 10.3390/ijms18071417
  • Rawal T, Kremer L, Halloum I, et al. Dry-powder inhaler formulation of rifampicin: an improved targeted delivery system for alveolar tuberculosis. J Aerosol Med Pulm Drug Deliv. 2017 Dec 01;30(6):388–398. doi: 10.1089/jamp.2017.1379
  • Suarez S, O’Hara P, Kazantseva M, et al. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res. 2001 Sep;18(9):1315–9.
  • Maretti E, Rustichelli C, Lassinantti Gualtieri M, et al. The impact of lipid corona on rifampicin intramacrophagic transport using inhaled solid lipid nanoparticles surface-decorated with a mannosylated surfactant. Pharmaceutics. 2019;11(10):508. doi: 10.3390/pharmaceutics11100508
  • Garcia Contreras L, Sung J, Ibrahim M, et al. Pharmacokinetics of inhaled rifampicin porous particles for tuberculosis treatment: insight into rifampicin absorption from the lungs of Guinea pigs. Mol Pharmaceut. 2015 Aug 03;12(8):2642–2650. doi: 10.1021/acs.molpharmaceut.5b00046
  • Khadka P, Sinha S, Tucker IG, et al. Pharmacokinetics of rifampicin after repeated intra-tracheal administration of amorphous and crystalline powder formulations to Sprague Dawley rats. Eur J Pharm Biopharm. 2021 May 01;162:1–11. doi: 10.1016/j.ejpb.2021.02.011
  • Kempker RR, Heinrichs MT, Nikolaishvili K, et al. Lung tissue concentrations of pyrazinamide among patients with drug-resistant pulmonary tuberculosis. Antimicrob Agents Chemother. 2017 Jun;61(6): doi: 10.1128/AAC.00226-17
  • Khadka P, Dummer J, Hill PC, et al. Considerations in preparing for clinical studies of inhaled rifampicin to enhance tuberculosis treatment. Int J Pharmaceut. 2018 Sep 05;548(1):244–254. doi: 10.1016/j.ijpharm.2018.07.011
  • Ziglam HM, Baldwin DR, Daniels I, et al. Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following a single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother. 2002;50(6):1011–1015. doi: 10.1093/jac/dkf214
  • Parikh R, Patel L, Dalwadi S. Microparticles of rifampicin: comparison of pulmonary route with oral route for drug uptake by alveolar macrophages, phagocytosis activity and toxicity study in albino rats. Drug Delivery. 2014 Sep 01;21(6):406–411.
  • Velásquez GE, Brooks MB, Coit JM, et al. Efficacy and safety of high-dose rifampin in pulmonary tuberculosis. A randomized controlled trial. Am J Respir Crit Care Med. 2018 Sep 01;198(5):657–666. doi: 10.1164/rccm.201712-2524OC
  • Dharmadhikari AS, Kabadi M, Gerety B, et al. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother. 2013 Jun;57(6):2613–2619. doi: 10.1128/AAC.02346-12
  • Stass H, Nagelschmitz J, Willmann S, et al. Inhalation of a dry powder ciprofloxacin formulation in healthy subjects: a phase I study. Clin Drug Investig. 2013 Jun;33(6):419–427.
  • Stass H, Weimann B, Nagelschmitz J, et al. Tolerability and pharmacokinetic properties of ciprofloxacin dry powder for inhalation in patients with cystic fibrosis: a phase I, randomized, dose-escalation study. Clin Ther. 2013 Oct;35(10):1571–1581.
  • Stass H, Delesen H, Nagelschmitz J, et al. Safety and pharmacokinetics of ciprofloxacin dry powder for inhalation in cystic fibrosis: a phase I, randomized, single-dose, dose-escalation study. J Aerosol Med Pulm Drug Deliv. 2015 Apr;28(2):106–115.
  • Stass H, Nagelschmitz J, Kappeler D, et al. Ciprofloxacin dry powder for inhalation in patients with non-cystic fibrosis bronchiectasis or chronic obstructive pulmonary disease, and in healthy volunteers. J Aerosol Med Pulm Drug Deliv. 2017 Feb;30(1):53–63.
  • Wilson R, Welte T, Polverino E, et al. Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis: a phase II randomised study. Eur Respir J. 2013 May;41(5):1107–1115.
  • De Soyza A, Aksamit T, Bandel TJ, et al. RESPIRE 1: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur Respir J. 2018 Jan;51(1):1702052.
  • Aksamit T, De Soyza A, Bandel TJ, et al. RESPIRE 2: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur Respir J. 2018 Jan;51(1):1702053.
  • Konstan MW, Geller DE, Minić P, et al. Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: the EVOLVE trial. Pediatr Pulmonol. 2011 Mar;46(3):230–238.
  • Konstan MW, Flume PA, Kappler M, et al. Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial. J Cyst Fibros. 2011 Jan;10(1):54–61.
  • Galeva I, Konstan MW, Higgins M, et al. Tobramycin inhalation powder manufactured by improved process in cystic fibrosis: the randomized EDIT trial. Curr Med Res Opin. 2013 Aug;29(8):947–956.
  • Sommerwerck U, Virella-Lowell I, Angyalosi G, et al. Long-term safety of tobramycin inhalation powder in patients with cystic fibrosis: phase IV (ETOILES) study. Curr Med Res Opin. 2016 Nov;32(11):1789–1795.
  • Blasi F, Carnovale V, Cimino G, et al. Treatment compliance in cystic fibrosis patients with chronic Pseudomonas aeruginosa infection treated with tobramycin inhalation powder: the FREE study. Respir med. 2018 May;138:88–94.
  • Le Brun PPH, de Boer AH, Mannes GPM, et al. Dry powder inhalation of antibiotics in cystic fibrosis therapy: part 2: inhalation of a novel colistin dry powder formulation: a feasibility study in healthy volunteers and patients. Eur J Pharm Biopharm. 2002 Jul 01;54(1):25–32. doi: 10.1016/S0939-6411(02)00044-9
  • Westerman EM, de Boer AH, Le Brun PPH, et al. Dry powder inhalation of colistin sulphomethate in healthy volunteers: a pilot study. Int J Pharm. 2007 Apr 20;335(1–2):41–45. doi: 10.1016/j.ijpharm.2006.11.021
  • Westerman EM, De Boer AH, Le Brun PP, et al. Dry powder inhalation of colistin in cystic fibrosis patients: a single dose pilot study. J Cyst Fibros. 2007 Jul;6(4):284–292.
  • Schuster A, Haliburn C, Döring G, et al. Safety, efficacy and convenience of colistimethate sodium dry powder for inhalation (colobreathe DPI) in patients with cystic fibrosis: a randomised study. Thorax. 2013 Apr;68(4):344–350.
  • Akkerman-Nijland AM, Grasmeijer F, Kerstjens HAM, et al. Colistin dry powder inhalation with the Twincer™: an effective and more patient friendly alternative to nebulization. PloS One. 2020;15(9):e0239658. doi: 10.1371/journal.pone.0239658
  • Crowther Labiris NR, Holbrook AM, Chrystyn H, et al. Dry powder versus intravenous and nebulized gentamicin in cystic fibrosis and bronchiectasis. A pilot study. Am J Respir Crit Care Med. 1999 Nov;160(5 Pt 1):1711–1716.
  • Waterer G, Lord J, Hofmann T, et al. Phase I, dose-escalating study of the safety and pharmacokinetics of inhaled dry-powder vancomycin (AeroVanc) in volunteers and patients with cystic fibrosis: a new approach to therapy for methicillin-resistant staphylococcus aureus. Antimicrob Agents Chemother. 2020 Feb 21;64(3). doi: 10.1128/AAC.01776-19
  • Srichana T, Ratanajamit C, Juthong S, et al. Evaluation of proinflammatory cytokines and adverse events in healthy volunteers upon inhalation of antituberculosis drugs. Biol Pharm Bull. 2016;39(11):1815–1822. doi: 10.1248/bpb.b16-00354
  • Laohapojanart N, Ratanajamit C, Kawkitinarong K, et al. Efficacy and safety of combined isoniazid-rifampicin-pyrazinamide-levofloxacin dry powder inhaler in treatment of pulmonary tuberculosis: a randomized controlled trial. Pulm Pharmacol Ther. 2021 Oct 01;70:102056. doi: 10.1016/j.pupt.2021.102056
  • Parumasivam T, Ashhurst AS, Nagalingam G, et al. Inhalation of respirable crystalline rifapentine particles induces pulmonary inflammation. Mol Pharm. 2017 Jan 3;14(1):328–335. doi: 10.1021/acs.molpharmaceut.6b00905
  • Alhajj N, O’Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: a story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharmaceut. 2022 Feb 05;613:121388. doi: 10.1016/j.ijpharm.2021.121388
  • Weers J, Tarara T. The PulmoSphere™ platform for pulmonary drug delivery. Ther Deliv. 2014 Mar;5(3):277–295. doi: 10.4155/tde.14.3
  • Geller DE, Nasr SZ, Piggott S, et al. Tobramycin inhalation powder in cystic fibrosis patients: response by age group. Respir Care. 2014 Mar;59(3):388–98.
  • Westerman EM, Le Brun PPH, Touw DJ, et al. Effect of nebulized colistin sulphate and colistin sulphomethate on lung function in patients with cystic fibrosis: a pilot study. J Cystic Fibrosis. 2004 Mar 01;3(1):23–28. doi: 10.1016/j.jcf.2003.12.005
  • Saukkonen JJ, Cohn DL, Jasmer RM, et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med. 2006 Oct 15;174(8):935–952. doi: 10.1164/rccm.200510-1666ST
  • Zhou Q, Morton DAV, Yu HH, et al. Colistin powders with high aerosolisation efficiency for respiratory infection: preparation and in vitro evaluation. J Pharmaceut sci. 2013 Oct 01;102(10):3736–3747. doi: 10.1002/jps.23685
  • Chan JGY, Duke CC, Ong HX, et al. A novel inhalable form of rifapentine. J Pharmaceut sci. 2014 May 01;103(5):1411–1421. doi: 10.1002/jps.23911
  • Khadka P, Hill PC, Zhang B, et al. A study on polymorphic forms of rifampicin for inhaled high dose delivery in tuberculosis treatment. Int J Pharmaceut. 2020 Sep 25;587:119602.
  • Nakate T, Yoshida H, Ohike A, et al. Formulation development of inhalation powders for FK888 using the E-haler® to improve the inhalation performance at a high dose, and its absorption in healthy volunteers. Eur J Pharm Biopharm. 2005 Jan 01;59(1):25–33. doi: 10.1016/j.ejpb.2004.08.004
  • Das S, Larson I, Young P, et al. Agglomerate properties and dispersibility changes of salmeterol xinafoate from powders for inhalation after storage at high relative humidity. Eur J Pharmaceut Sci. 2009 Jun 28;37(3):442–450. doi: 10.1016/j.ejps.2009.03.016
  • Das SC, Stewart PJ. Understanding the respiratory delivery of high dose anti-tubercular drugs. In:Hickey AJ, Misra A, Fourie PB, editors. Drug delivery syst tuberculo prevent treat. 2016. p. 258–274.
  • Zhou QT, Qu L, Larson I, et al. Improving aerosolization of drug powders by reducing powder intrinsic cohesion via a mechanical dry coating approach. Int J Pharmaceut. 2010 Jul 15;394(1):50–59. doi: 10.1016/j.ijpharm.2010.04.032
  • Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet. 2012 Sep 15;380(9846):986–93. doi: 10.1016/S0140-6736(12)61080-0
  • Momin MAM, Rangnekar B, Sinha S, et al. Inhalable dry powder of bedaquiline for pulmonary tuberculosis: In Vitro physicochemical characterization, antimicrobial activity and safety studies. Pharmaceutics. 2019 Oct 1;11(10):502. doi: 10.3390/pharmaceutics11100502
  • Rangnekar B, Momin MAM, Eedara BB, et al. Bedaquiline containing triple combination powder for inhalation to treat drug-resistant tuberculosis. Int J Pharmaceut. 2019 Oct 30;570:118689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.