111
Views
0
CrossRef citations to date
0
Altmetric
Review

3D printing in vaginal drug delivery: a revolution in pharmaceutical manufacturing

, , , , , & show all
Received 17 Oct 2023, Accepted 12 Jan 2024, Published online: 23 Jan 2024

References

  • Elkomy MH. Changing the drug delivery system: does it add to non-compliance ramifications control? A simulation study on the pharmacokinetics and pharmacodynamics of atypical antipsychotic drug. Pharmaceutics. 2020;12(4):297. doi: 10.3390/pharmaceutics12040297
  • Alhnan MA, Okwuosa TC, Sadia M, et al. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33:1817–1832.
  • Gao G, Ahn M, Cho W-W, et al. 3D printing of pharmaceutical application: drug screening and drug delivery. Pharmaceutics. 2021;13(9):1373. doi: 10.3390/pharmaceutics13091373
  • Dumpa N, Butreddy A, Wang H, et al. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021;600:120501. doi: 10.1016/j.ijpharm.2021.120501
  • Yu DG, Zhu L-M, Branford-White CJ, et al. Three-dimensional printing in pharmaceutics: promises and problems. J Pharm Sci. 2008;97(9):3666–3690. doi: 10.1002/jps.21284
  • Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2019;49:575–585. doi: 10.1007/s40005-018-00414-y
  • Lakkala P, Munnangi SR, Bandari S, et al. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: a review. Int J Pharm X. 2023;5:100159. doi: 10.1016/j.ijpx.2023.100159
  • Elkasabgy NA, Mahmoud AA, Maged A. 3D printing: an appealing route for customized drug delivery systems. Int J Pharm. 2020;588:119732. doi: 10.1016/j.ijpharm.2020.119732
  • Uddin MJ, Hassan J, Douroumis D. Thermal inkjet printing: prospects and applications in the development of medicine. Technologies. 2022;10(5):108. doi: 10.3390/technologies10050108
  • Chou WH, Gamboa A, Morales JO. Inkjet printing of small molecules, biologics, and nanoparticles. Int J Pharm. 2021;600:120462. doi: 10.1016/j.ijpharm.2021.120462
  • Sumerel J, Lewis J, Doraiswamy A, et al. Piezoelectric ink jet processing of materials for medical and biological applications. Biotechnol J. 2006;1(9):976–987. doi: 10.1002/biot.200600123
  • Jacob S, Nair AB, Patel V, et al. 3D printing technologies: recent development and emerging applications in various drug delivery systems. AAPS Pharm Sci Tech. Internet. 2020[cited 2021 Dec 26];21(6). https://pubmed.ncbi.nlm.nih.gov/32748243/
  • Carou-Senra P, Rodríguez-Pombo L, Awad A, et al. Inkjet Printing of Pharmaceuticals. Adv Mater Deerfield Beach Fla. 2023;e2309164. doi: 10.1002/adma.202309164
  • Montecinos JOM, Nicolini MM, Hantscheruk FAC. Pharmaceutical form for oral administration of a highly controlled and stable dose of nanoparticles or biomacromolecule suspensions [Internet]. 2017 [cited 2023 Nov 26]. Available from: https://patents.google.com/patent/WO2017120689A1/en
  • Seaman P, Davies C, King L. Microparticle production platform, method of producing microparticles and a pharmaceutical composition [Internet]. 2023 [cited 2023 Nov 26]. Available from: https://patents.google.com/patent/US20230077586A1/en?oq=US2023077586A1
  • Lewis JA, Gratson GM. Direct writing in three dimensions. Mater Today. 2004;7(7–8):32–39. doi: 10.1016/S1369-7021(04)00344-X
  • Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1–2):376–394. doi: 10.1016/j.ijpharm.2015.12.071
  • Ahmad J, Garg A, Mustafa G, et al. 3D printing technology as a promising tool to design nanomedicine-based solid dosage forms: contemporary research and future scope. Pharmaceutics. 2023;15(5):1448. doi: 10.3390/pharmaceutics15051448
  • El Aita I, Rahman J, Breitkreutz J, et al. 3D-Printing with precise layer-wise dose adjustments for paediatric use via pressure-assisted microsyringe printing. Eur J Pharm Biopharm. 2020;157:59–65. doi: 10.1016/j.ejpb.2020.09.012
  • Kyser AJ, Mahmoud MY, Herold SE, et al. Formulation and characterization of pressure-assisted microsyringe 3D-printed scaffolds for controlled intravaginal antibiotic release. Int J Pharm. 2023;641:123054. doi: 10.1016/j.ijpharm.2023.123054
  • Herold SE, Kyser AJ, Orr MG, et al. Release kinetics of metronidazole from 3D printed silicone scaffolds for sustained application to the female reproductive tract. Biomed Eng Adv. 2023;5:100078. doi: 10.1016/j.bea.2023.100078
  • Nyavanandi D, Mandati P, Narala S, et al. Feasibility of high melting point hydrochlorothiazide processing via cocrystal formation by hot melt extrusion paired fused filament fabrication as a 3D-printed cocrystal tablet. Int J Pharm. 2022;628:122283. doi: 10.1016/j.ijpharm.2022.122283
  • Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4. doi: 10.1186/s13036-015-0001-4
  • Bandari S, Nyavanandi D, Dumpa N, et al. Coupling hot melt extrusion and fused deposition modeling: critical properties for successful performance. Adv Drug Deliv Rev. 2021;172:52–63. doi: 10.1016/j.addr.2021.02.006
  • Zheng Y, Deng F, Wang B, et al. Melt extrusion deposition (MEDTM) 3D printing technology – a paradigm shift in design and development of modified release drug products. Int J Pharm. 2021;602:120639. doi: 10.1016/j.ijpharm.2021.120639
  • 王玉元, 王粤凡. The manually method of bone material fused glass pellet 3D printing personalized artificial tooth [Internet]. 2017 [cited 2023 Nov 26]. Available from: https://patents.google.com/patent/CN107233628A/en
  • Charoo NA, Barakh Ali SF, Mohamed EM, et al. Selective laser sintering 3D printing – an overview of the technology and pharmaceutical applications. Drug Dev Ind Pharm. 2020;46(6):869–877. doi: 10.1080/03639045.2020.1764027
  • Lindberg A, Alfthan J, Petterson H, et al. Mechanical performance of polymer powder bed fused objects – FEM simulation and verification. Addit Manuf. 2018;24:577–586. doi: 10.1016/j.addma.2018.10.009
  • Gueche YA, Sanchez-Ballester NM, Cailleaux S, et al. Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing. Pharmaceutics. 2021;13(8):1212. doi: 10.3390/pharmaceutics13081212
  • Williams III RO, Maniruzzaman M, Davis DA Jr, et al. 3d laser sintering processes for improved drug delivery [Internet]. 2023 [cited 2023 Nov 26]. Available from: https://patents.google.com/patent/US20230218533A1/en?oq=US20230218533A1
  • Xu X, Awad A, Robles-Martinez P, et al. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Controlled Release. 2021;329:743–757. doi: 10.1016/j.jconrel.2020.10.008
  • Islam R, Sadhukhan P. An insight of 3D printing technology in pharmaceutical development and application: an updated review. Current Trends in Pharmaceutical Research. 2021;7:55–80.
  • Talken N, Levy AW, Kisner Z, et al. Fabrication of solid materials or films from a polymerizable liquid [Internet]. 2020 [cited 2023 Nov 26]. Available from: https://patents.google.com/patent/US20200102413A1/en?oq=US20200102413A1
  • Kieser B Structurally encoded spinal implant device [Internet]. 2020 [cited 2023 Nov 26]. Available from: https://patents.google.com/patent/US10675122B2/en?oq=US10675122B2
  • Dunne PC Dental models using stereolithography [Internet]. 2011 [cited 2023 Nov 26]. Available from: https://patents.google.com/patent/WO2011106472A1/en?oq=WO2011106472
  • Mandati P, Dumpa N, Alzahrani A, et al. Hot-melt extrusion–based fused deposition modeling 3D printing of atorvastatin calcium tablets: impact of shape and infill density on printability and performance. AAPS Pharm Sci Tech. 2023;24(1):1–15. doi: 10.1208/s12249-022-02470-y
  • Le H, Wang X, Wei Y, et al. Making polyol gummies by 3D printing: effect of polyols on 3D printing characteristics. Foods. 2022;11(6):874. doi: 10.3390/foods11060874
  • Maurizii G, Moroni S, Khorshid S, et al. 3D-printed EVA-based patches manufactured by direct powder extrusion for personalized transdermal therapies. Int J Pharm. 2023;635:122720. doi: 10.1016/j.ijpharm.2023.122720
  • Vuddanda PR, Alomari M, Dodoo CC, et al. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2018;117:80–87. doi: 10.1016/j.ejps.2018.02.002
  • Elbadawi M, Nikjoo D, Gustafsson T, et al. Pressure-assisted microsyringe 3D printing of oral films based on pullulan and hydroxypropyl methylcellulose. Int J Pharm. 2021;595:120197. doi: 10.1016/j.ijpharm.2021.120197
  • Tagami T, Okamura M, Ogawa K, et al. Fabrication of mucoadhesive films containing pharmaceutical ionic liquid and eudragit polymer using pressure-assisted microsyringe-type 3D printer for treating oral mucositis. Pharmaceutics. 2022;14(9):1930. doi: 10.3390/pharmaceutics14091930
  • Domínguez-Robles J, Mancinelli C, Mancuso E, et al. 3D printing of drug-loaded thermoplastic polyurethane meshes: a potential material for soft tissue reinforcement in vaginal surgery. Pharmaceutics. 2020;12(1):63. doi: 10.3390/pharmaceutics12010063
  • Goyanes A, Det-Amornrat U, Wang J, et al. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release Off J Control Release Soc. 2016;234:41–48. doi: 10.1016/j.jconrel.2016.05.034
  • Tiboni M, Campana R, Frangipani E, et al. 3D printed clotrimazole intravaginal ring for the treatment of recurrent vaginal candidiasis. Int J Pharm. 2021;596:120290. doi: 10.1016/j.ijpharm.2021.120290
  • Uddin MJ, Scoutaris N, Economidou SN, et al. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng C Mater Biol Appl. 2020;107:110248. doi: 10.1016/j.msec.2019.110248
  • Yadav V, Sharma PK, Murty US, et al. 3D printed hollow microneedles array using stereolithography for efficient transdermal delivery of rifampicin. Int J Pharm. 2021;605:120815. doi: 10.1016/j.ijpharm.2021.120815
  • Yao W, Li D, Zhao Y, et al. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromach. 2020;11(1):17. doi: 10.3390/mi11010017
  • Madzarevic M, Medarevic D, Vulovic A, et al. Optimization and prediction of ibuprofen release from 3D DLP printlets using artificial neural networks. Pharmaceutics. 2019;11(10):544. doi: 10.3390/pharmaceutics11100544
  • Janusziewicz R, Mecham SJ, Olson KR, et al. Design and characterization of a novel series of geometrically complex intravaginal rings with digital light synthesis. Adv Mater Technol. 2020;5(8):2000261. doi: 10.1002/admt.202000261
  • Bozuyuk U, Yasa O, Yasa IC, et al. Light-triggered drug release from 3D-Printed magnetic chitosan microswimmers. ACS Nano. 2018;12(9):9617–9625. doi: 10.1021/acsnano.8b05997
  • Wang H, Vemula SK, Bandari S, et al. Preparation of core-shell controlled release tablets using direct powder extrusion 3D printing techniques. J Drug Deliv Sci Technol. 2023;88:104896. doi: 10.1016/j.jddst.2023.104896
  • Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Controlled Release. 2005;103(2):301–313. doi: 10.1016/j.jconrel.2004.11.034
  • Role of vaginal mucosa, Host immunity and microbiota in vulvovaginal candidiasis - PMC [Internet]. [cited 2023 Nov 25]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230866/
  • De Landsheere L, Munaut C, Nusgens B, et al. Histology of the vaginal wall in women with pelvic organ prolapse: a literature review. Int Urogynecology J. 2013;24(12):2011–2020. doi: 10.1007/s00192-013-2111-1
  • Amati G D, Di Gioia CRT, Pannunzi LP, et al. Functional anatomy of the human vagina. J Endocrinol Invest. 2003;26(3 Suppl):92–96.
  • Richardson JL, Illum L. (D) routes of delivery: case studies: (8) the vaginal route of peptide and protein drug delivery. Adv Drug Deliv Rev. 1992;8(2–3):341–366. doi: 10.1016/0169-409X(92)90008-E
  • Washington N, Washington C, Wilson C. Physiological pharmaceutics: barriers to drug absorption. London: CRC Press; 2000. doi: 10.1201/9780203483701
  • Paavonen J. Physiology and ecology of the vagina. Scand J Infect Suppl. 1983;40:31–35.
  • Mirza MA, Panda AK, Asif S, et al. A vaginal drug delivery model. Drug Deliv. 2016;23(8):3123–3134. doi: 10.3109/10717544.2016.1153749
  • Deshpande AA, Rhodes CT, Danish M. Intravaginal drug delivery. Drug Dev Ind Pharm. 1992;18(11–12):1225–1279. doi: 10.3109/03639049209046329
  • Masters WH, Johnson VE. Human sexual response. Boston, MA: Little, Brown and Co.; 1966.
  • Carlström K, Pschera H, Lunell NO. Serum levels of oestrogens, progesterone, follicle-stimulating hormone and sex-hormone-binding globulin during simultaneous vaginal administration of 17β-oestradiol and progesterone in the pre- and post-menopause. Maturitas. 1988;10(4):307–316. doi: 10.1016/0378-5122(88)90066-7
  • Woodley J. Bioadhesion: new possibilities for drug administration? Clin Pharmacokinet. 2001;40(2):77–84. doi: 10.2165/00003088-200140020-00001
  • Pschera H, Hjerpe A, Carlström K. Influence of the maturity of the vaginal epithelium upon the absorption of vaginally administered estradiol-17β and progesterone in postmenopausal women. Gynecol Obstet Invest. 1989;27(4):204–207. doi: 10.1159/000293657
  • Katz DF, Dunmire EN. Cervical mucus: problems and opportunities for drug delivery via the vagina and cervix. Adv Drug Deliv Rev. 1993;11(3):385–401. doi: 10.1016/0169-409X(93)90017-X
  • Johnson TA, Greer IA, Kelly RW, et al. The effect of pH on release of PGE2 from vaginal and endocervical preparations for induction of labour: an in-vitro study. BJOG Int J Obstet Gynaecol. 1992;99(11):877–880. doi: 10.1111/j.1471-0528.1992.tb14433.x
  • Hwang S, Owada E, Suhardja L, et al. Systems approach to vaginal delivery of drugs IV: methodology for determination of membrane surface pH. J Pharm Sci. 1977;66(6):778–781. doi: 10.1002/jps.2600660608
  • Hwang S, Owada E, Yotsuyanagi T, et al. Systems approach to vaginal delivery of drugs II: in situ vaginal absorption of unbranched aliphatic alcohols. J Pharm Sci. 1976;65(11):1574–1578. doi: 10.1002/jps.2600651105
  • Brannon-Peppas L. Novel vaginal drug release applications. Adv Drug Deliv Rev. 1993;11(1–2):169–177. doi: 10.1016/0169-409X(93)90031-X
  • Orange book: approved drug products with therapeutic equivalence evaluations [Internet]. [cited 2023 Mar 27]. Available from: https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
  • Johnson VE, Masters WH. Intravaginal contraceptive study I. Anatomy. West J Surg Obstet Gynecol. 1962;70:202–207.
  • Chatterton BE, Penglis S, Kovacs JC, et al. Retention and distribution of two 99mTc-DTPA labelled vaginal dosage forms. Int J Pharm. 2004;271(1–2):137–143. doi: 10.1016/j.ijpharm.2003.11.006
  • Das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm. 2006;318(1–2):1–14. doi: 10.1016/j.ijpharm.2006.03.012
  • Hamoda H, Ashok PW, Flett GM, et al. A randomized controlled comparison of sublingual and vaginal administration of misoprostol for cervical priming before first-trimester surgical abortion. Am J Obstet Gynecol. 2004;190(1):55–59. doi: 10.1016/j.ajog.2003.08.025
  • Sahoo CK, Nayak PK, Sarangi DK, et al. Intra vaginal drug delivery system: an overview. Am J Adv Drug Delivery. 2013;1:43–55.
  • McBride JW, Boyd P, Dias N, et al. Vaginal rings with exposed cores for sustained delivery of the HIV CCR5 inhibitor 5P12-RANTES. J Controlled Release. 2019;298:1–11. doi: 10.1016/j.jconrel.2019.02.003
  • Brache V, Faundes A. Contraceptive vaginal rings: a review. Contraception. 2010;82(5):418–427. doi: 10.1016/j.contraception.2010.04.012
  • Al-Litani K, Ali T, Robles Martinez P, et al. 3D printed implantable drug delivery devices for women’s health: formulation challenges and regulatory perspective. Adv Drug Deliv Rev. 2023;198:114859. doi: 10.1016/j.addr.2023.114859
  • Krezić S, Krhan E, Mandžuka E, et al. Fabrication of rectal and vaginal suppositories using 3D printed moulds: the challenge of personalized therapy. In: Badnjevic A, Škrbić R, Gurbeta Pokvić L, editors. CMBEBIH 2019. IFMBE Proceedings. Springer, Cham; 2020. p. 729–734. doi: 10.1007/978-3-030-17971-7_108
  • Seoane-Viaño I, Ong JJ, Luzardo-Álvarez A, et al. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci. 2021;16(1):110–119. doi: 10.1016/j.ajps.2020.06.003
  • Kairuz TE, Gargiulo D, Bunt C, et al. Quality, safety and efficacy in the ‘Off-Label’ use of medicines. Curr Drug Saf. 2007;2(1):89–95. doi: 10.2174/157488607779315471
  • Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–17. doi: 10.1016/j.ejps.2014.11.009
  • Vithani K, Goyanes A, Jannin V, et al. A proof of concept for 3D printing of solid lipid-based formulations of poorly water-soluble drugs to control formulation dispersion kinetics. Pharm Res. 2019;36(7):1–13. doi: 10.1007/s11095-019-2639-y
  • Goyanes A, Martinez PR, Buanz A, et al. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–663. doi: 10.1016/j.ijpharm.2015.04.069
  • Chatzitaki A-T, Tsongas K, Tzimtzimis EK, et al. 3D printing of patient-tailored SNEDDS-based suppositories of lidocaine. J Drug Deliv Sci Technol. 2021;61:102292. doi: 10.1016/j.jddst.2020.102292
  • Tagami T, Hayashi N, Sakai N, et al. 3D printing of unique water-soluble polymer-based suppository shell for controlled drug release. Int J Pharm. 2019;568:118494. doi: 10.1016/j.ijpharm.2019.118494
  • Sun Y, Ruan X, Li H, et al. Fabrication of non-dissolving analgesic suppositories using 3D printed moulds. Int J Pharm. 2016;513(1–2):717–724. doi: 10.1016/j.ijpharm.2016.09.073
  • Teworte S, Aleandri S, Weber JR, et al. Mucoadhesive 3D printed vaginal ovules to treat endometriosis and fibrotic uterine diseases. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2023;188:106501. doi: 10.1016/j.ejps.2023.106501
  • Notario-Pérez F, Cazorla-Luna R, Martín-Illana A, et al. Design, fabrication and characterisation of drug-loaded vaginal films: state-of-the-art. J Controlled Release. 2020;327:477–499. doi: 10.1016/j.jconrel.2020.08.032
  • Machado RM, Palmeira-de-Oliveira A, Martinez-De-Oliveira J, et al. Vaginal films for drug delivery. J Pharm Sci. 2013;102(7):2069–2081. doi: 10.1002/jps.23577
  • Cazorla-Luna R, Notario-Pérez F, Martín-Illana A, et al. Development and in Vitro/Ex vivo characterization of vaginal mucoadhesive bilayer films based on ethylcellulose and biopolymers for vaginal sustained release of tenofovir. Biomacromolecules. 2020;21(6):2309–2319. doi: 10.1021/acs.biomac.0c00249
  • Akil A, Parniak MA, Dezzuitti CS, et al. Development and Characterization of a Vaginal Film Containing Dapivirine, a Non- nucleoside Reverse Transcriptase Inhibitor (NNRTI), for prevention of HIV-1 sexual transmission. Drug Deliv Transl Res. 2011;1(3):209–222. doi: 10.1007/s13346-011-0022-6
  • Zhang W, Hu M, Shi Y, et al. Vaginal microbicide film combinations of two reverse transcriptase inhibitors, EFdA and CSIC, for the prevention of HIV-1 sexual transmission. Pharm Res. 2015;32(9):2960–2972. doi: 10.1007/s11095-015-1678-2
  • Regev G, Patel SK, Moncla BJ, et al. Novel application of hot melt extrusion for the manufacturing of vaginal films containing microbicide Candidate dapivirine. AAPS Pharm Sci Tech. 2019;20(6):239. doi: 10.1208/s12249-019-1442-8
  • Notario-Pérez F, Galante J, Martín-Illana A, et al. Development of pH-sensitive vaginal films based on methacrylate copolymers for topical HIV-1 pre-exposure prophylaxis. Acta Biomater. 2021;121:316–327. doi: 10.1016/j.actbio.2020.12.019
  • Varan C, Şen M, Sandler N, et al. Mechanical characterization and ex vivo evaluation of anticancer and antiviral drug printed bioadhesive film for the treatment of cervical cancer. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2019;130:114–123. doi: 10.1016/j.ejps.2019.01.030
  • Carson L, Merkatz R, Martinelli E, et al. The vaginal microbiota, bacterial biofilms and polymeric drug-releasing vaginal rings. Pharmaceutics. 2021;13(5):751. doi: 10.3390/pharmaceutics13050751
  • Krovi SA, Johnson LM, Luecke E, et al. Advances in long-acting injectables, implants, and vaginal rings for contraception and HIV prevention. Adv Drug Deliv Rev. 2021;176:113849. doi: 10.1016/j.addr.2021.113849
  • Malcolm RK, Boyd PJ, McCoy CF, et al. Microbicide vaginal rings: Technological challenges and clinical development. Adv Drug Deliv Rev. 2016;103:33–56. doi: 10.1016/j.addr.2016.01.015
  • Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm. 2018;539(1–2):75–82.
  • Welsh NR, Malcolm RK, Devlin B, et al. Dapivirine-releasing vaginal rings produced by plastic freeforming additive manufacturing. Int J Pharm. 2019;572:118725. doi: 10.1016/j.ijpharm.2019.118725
  • Moroni S, Bischi F, Aluigi A, et al. 3D printing fabrication of ethylene-vinyl acetate (EVA) based intravaginal rings for antifungal therapy. J Drug Deliv Sci Technol. 2023;84:104469. doi: 10.1016/j.jddst.2023.104469
  • Blandon RE, Gebhart JB, Trabuco EC, et al. Complications from vaginally placed mesh in pelvic reconstructive surgery. Int Urogynecology J. 2009;20(5):523–531. doi: 10.1007/s00192-009-0818-9
  • Mancuso E, Downey C, Doxford-Hook E, et al. The use of polymeric meshes for pelvic organ prolapse: Current concepts, challenges, and future perspectives. J Biomed Mater Res B Appl Biomater. 2020;108(3):771–789. doi: 10.1002/jbm.b.34432
  • Shah HN, Badlani GH. Mesh complications in female pelvic floor reconstructive surgery and their management: a systematic review. J Urol Soc India. 2012;28(2):129. doi: 10.4103/0970-1591.98453
  • Farmer Z-L, Utomo E, Domínguez-Robles J, et al. 3D printed estradiol-eluting urogynecological mesh implants: influence of material and mesh geometry on their mechanical properties. Int J Pharm. 2021;593:120145. doi: 10.1016/j.ijpharm.2020.120145
  • Utomo E, Domínguez-Robles J, Anjani QK, et al. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X. 2023;5:100142. doi: 10.1016/j.ijpx.2022.100142
  • Khaled SA, Burley JC, Alexander MR, et al. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1–2):105–111. doi: 10.1016/j.ijpharm.2013.11.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.