107
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanomicellar eye drops: a review of recent advances

, , , , & ORCID Icon
Pages 381-397 | Received 26 Dec 2023, Accepted 21 Feb 2024, Published online: 27 Feb 2024

References

  • Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv. 2020;10(46):27835–27855. doi: 10.1039/D0RA04971A
  • Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci. 2021;22(22):12368. doi: 10.3390/ijms222212368
  • Wang R, Gao Y, Liu A, et al. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J Drug Target. 2021;29(7):687–702. doi: 10.1080/1061186X.2021.1878366
  • Wang Y, Wang C. Novel eye drop delivery systems: advance on formulation design strategies targeting anterior and posterior segments of the eye. Pharmaceutics. 2022;14(6):1150. doi: 10.3390/pharmaceutics14061150
  • Biswas A, Choudhury AD, Bisen AC, et al. Trends in formulation approaches for sustained drug delivery to the posterior segment of the eye. AAPS Pharm Sci Tech. 2023;24(8):217. doi: 10.1208/s12249-023-02673-x
  • Chakraborty M, Banerjee D, Mukherjee S, et al. Exploring the advancement of polymer‑based nano‑formulations for ocular drug delivery systems: an explicative review. Polym Bull. 2023;80(11):11759–11777. doi: 10.1007/s00289-022-04661-w
  • Wang C, Pang Y. Nano-based eye drop: topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev. 2023;194:114721.
  • Zhang J, Jiao J, Niu M, et al. Ten Years of knowledge of nano-carrier based drug delivery systems in ophthalmology: Current evidence, challenges, and future prospective. Int J Nanomed. 2021;16:6497–6530. doi: 10.2147/IJN.S329831
  • Cholkar K, Patel A, ADS V, et al. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2(2):82–95. doi: 10.2174/1877912311202020082
  • RD V, Khurana V, Patel S, et al. Controlled ocular drug delivery with nanomicelles. WIREs Nanomed Nanobiotechnol. 2014;6(5):422–437. doi: 10.1002/wnan.1272
  • Vadlapudi AD, Mitra AK. Nanomicelles: an emerging platform for drug delivery to the eye. Ther Deliv. 2013;4(1):1–3. doi: 10.4155/tde.12.122
  • Grimaudo MA, Pescina S, Padula C, et al. Topical application of polymeric nanomicelles in ophthalmogy: a review on research efforts for the non-invasive delivery of ocular therapeutics. Expert Opin Drug Deliv. 2019;16(4):397–413. doi: 10.1080/17425247.2019.1597848
  • Durgun ME, Güngör S, Özsoy Y. Micelles: promising ocular drug carriers for anterior and posterior segment diseases. J Ocular Pharmacol Therap. 2020;36(6):323–341.
  • Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol. 2020;16(10):885–906. doi: 10.1080/17425255.2020.1803278
  • Li Z, Liu M, Ke L, et al. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. Nanoscale Adv. 2021;3(18):5240. doi: 10.1039/D1NA00596K
  • Binkhathlan Z, Ali R, Alomrani AH, et al. Role of polymeric micelles in ocular drug delivery: an overview of decades of research. Mol Pharm. 2023;20(11):5359–5382. doi: 10.1021/acs.molpharmaceut.3c00598
  • Cai R, Zhang L, Chi H. Recent development of polymer nanomicelles in the treatment of eye diseases. Front Bioeng Biotechnol. 2023;11:1246974. doi: 10.3389/fbioe.2023.1246974
  • Peng C, Kuang L, Zhao J, et al. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J Control Release. 2022;345:625–645. doi: 10.1016/j.jconrel.2022.03.031
  • Fact.MR: Ophthalmic Drugs Market [Internet]. Rockville (MD): [cited 2023 Nov 23]. Available from: https://www.factmr.com/report/4799/ophthalmic-drugs-market
  • TBRC: Ophthalmic Drugs Global Market Report 2023 [Internet]. The Business Research Company; Jul 2023 ; [cited 2023 Nov 23]. Available from: https://www.thebusinessresearchcompany.com/report/ophthalmic-drugs-global-market-report
  • Mordor intelligence: Ophthalmic Drugs Market Size & Share Analysis - growth trends & forecasts (2023 - 2028) [internet]. Hyderabad (IN) [cited 2023 Nov 23]. Available from: https://www.mordorintelligence.com/industry-reports/global-opthalmic-drugs-market
  • Cholkar K, Dasari SR, Pal D, et al. 1 - eye: anatomy, physiology and barriers to drug delivery. In: AK M, editor. Ocular transporters and receptors. Their role in drug delivery. Sawstone:Woodhead Publishing Series in Biomedicine; 2013. P. 1–36.
  • Gaudana R, Ananthula H, Parenky A, et al. Ocular drug delivery. AAPS J. 2010;12(3):348–60. doi: 10.1208/s12248-010-9183-3
  • Downie LE, Bandlitz S, Bergmanson JPG, et al. BCLA CLEAR - Anatomy and physiology of the anterior eye. Cont Lens Anterior Eye. 2021;44(2):132–156. doi: 10.1016/j.clae.2021.02.009
  • Shumway CL, Motlagh M, Anatomy WM, Head and neck, Eye Conjunctiva [Updated 2023 Aug 28] [Internet]. Treasure Island (FL): StatPearls Publishing; [cited 2024 Jan 15]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519502/
  • Fayyaz A, Vellonen KS, Ranta VP, et al. Ocular pharmacokinetics of atenolol, timolol and betaxolol cocktail: tissue exposures in the rabbit eye. Eur J Pharm Biopharm. 2021;166:155–162. doi: 10.1016/j.ejpb.2021.06.003
  • Moiseev RV, Morrison PWJ, Steele F, et al. Penetration enhancers in ocular drug delivery. Pharmaceutics. 2019;11(7):321. doi: 10.3390/pharmaceutics11070321
  • Saha P, Kim KJ, Lee VH. A primary culture model of rabbit conjunctival epithelial cells exhibiting tight barrier properties. Curr Eye Res. 1996;15(12):1163–1169. doi: 10.3109/02713689608995151
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–1135. doi: 10.1016/j.addr.2006.07.027
  • Mishima S, Gasset A, Klyce SD, et al. Determination of tear volume and tear flow. Invest Ophthalmol Vis Sci. 1966;5:264–276.
  • Chrai SS, Makoid MC, Eriksen SP, et al. Drop size and initial dosing frequency problems of topically applied ophthalmic drugs. J Pharm Sci. 1974;63(3):333–338. doi: 10.1002/jps.2600630304
  • Sigurdsson HH, Konródsdottir F, Loftsson T, et al. Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye. Acta Ophthalmol Scand. 2007;5(6):598–602. doi: 10.1111/j.1600-0420.2007.00885.x
  • Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–754. doi: 10.1007/s13346-016-0339-2
  • Pflugfelder SC, Geerling G, Kinoshita S, et al. Management and therapy of dry eye disease: report of the management and therapy subcommittee of the International dry eye WorkShop. Ocul Surf. 2007;5:163–176.
  • Biopharma PEG: Insights into ophthalmic drug innovations and market trends [Internet]. Watertown (MA): c2013-2023; [cited 2023 Dec 5]. Available from: https://www.biochempeg.com/article/379.html
  • Mochizuki M, DeSmet M. Use of immunosuppressive agents in ocular diseases. Prog Retinal Eye Res. 1994;13(2):479–506. doi: 10.1016/1350-9462(94)90020-5
  • Miller JRC, Hanumunthadu D. Inflammatory eye disease: an overview of clinicalpresentation and management. Clin Med. 2022;22(2):100–103. doi: 10.7861/clinmed.2022-0046
  • Ahuja M, Dhake AS, Sharma SK, et al. Topical ocular delivery of NSAIDs. AAPS J. 2008;10(2):229–241. doi: 10.1208/s12248-008-9024-9
  • Chak G, Kiely AE, Challa P. Topical corticosteroid and NSAID therapies for ocular inflammation. Cataract Refract Surg Today. 2014;Nov/Dec:15–21.
  • Distelhorst JS, Hughes GM. Open-angle glaucoma. Am Fam Physician. 2003;67(9):1937–1944.
  • Schoenwald RD. Ocular drug delivery. Clin Pharmacokinet. 1990;18(4):255–269. doi: 10.2165/00003088-199018040-00001
  • Trinh HM, Joseph M, Cholkar K, et al. Chapter 3, Nanomicelles in diagnosis and drug delivery. In: Mitra A, Cholkar K Mandal Aeditors. Micro and Nano Technologies: emerging nanotechnologies for diagnostics, drug delivery and medical devices. Amsterdam: Elsevier; 2017. p. 45–58.
  • Chevalier Y, Zemb T. The structure of micelles and microemulsions. Rep Prog Phys. 1990;53(3):279–371. doi: 10.1088/0034-4885/53/3/002
  • Sinko PJ editor. Martin’s physical pharmacy and pharmaceutical sciences - physical chemical and biopharmaceutical principles in the pharmaceutical sciences. 6th. Philadelphia (PA):Wolters Kluwer- Lippincott Williams & Wilkins; 2011. p. 710–746. Chapter 16, Colloidal dispersions.
  • Sammalkorpi M, Karttunen M, Haataja M. Ionic surfactant aggregates in saline solutions: Sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl2). J Phys Chem B. 2009;113(17):5863–5870. doi: 10.1021/jp901228v
  • Bose A, DR B, Sikdar B, et al. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol. 2021;15(1):19–27. doi: 10.1049/nbt2.12018
  • Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine. 2010;5(3):485–505. doi: 10.2217/nnm.10.10
  • Li J, Li Z, Zhou T, et al. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration. Int J Nanomedicine. 2015;10:6027–6037. doi: 10.2147/IJN.S90347
  • Prosperi-Porta G, Kedzior S, Muirhead B, et al. Phenylboronic-acid-based polymeric micelles for mucoadhesive anterior segment ocular drug delivery. Biomacromolecules. 2016;17(4):1449–1457. doi: 10.1021/acs.biomac.6b00054
  • Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006;112(3):630–648. doi: 10.1016/j.pharmthera.2006.05.006
  • Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16. doi: 10.1007/s11095-006-9132-0
  • Cholkar K, Gilger BC, Mitra AK. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery. Transl Vis Sci Technol. 2015;4(3):1. doi: 10.1167/tvst.4.3.1
  • Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Controlled Release. 2001;73(2–3):137–172. doi: 10.1016/S0168-3659(01)00299-1
  • Zimmer AK, Maincent P, Thouvenot P, et al. Hydrocortisone delivery to healthy and inflamed eyes using a micellar polysorbate 80 solution or albumin nanoparticles. Int J Pharm. 1994;110(3):211–222. doi: 10.1016/0378-5173(94)90243-7
  • Saettone MF, Chetoni P, Cerbai R, et al. Evaluation of ocular permeation enhancers: in vitro effects on corneal transport of four β-blockers, and in vitro/in vivo toxic activity. Int J Pharm. 1996;142:103–113.
  • Kuwano M, Ibuki H, Morikawa N, et al. Cyclosporine a formulation affects its ocular distribution in rabbits. Pharm Res. 2002;19(1):108–111. doi: 10.1023/A:1013671819604
  • Hou Y, Zhang F, Lan J, et al. Ultra-small micelles based on polyoxyl 15 hydroxystearate for ocular delivery of myricetin: optimization, in vitro, and in vivo evaluation. Drug Deliv. 2019;26(1):158–167. doi: 10.1080/10717544.2019.1568624
  • Chopra P, Hao J, Li SK. Sustained release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. J Control Release. 2012;160(1):96–104. doi: 10.1016/j.jconrel.2012.01.032
  • Luschmann C, Herrmann W, Strauss O, et al. Ocular delivery systems for poorly soluble drugs: an in-vivo evaluation. Int J Pharm. 2013;455(1–2):331–337. doi: 10.1016/j.ijpharm.2013.07.002
  • Terreni E, Chetoni P, Tampucci S, et al. Assembling surfactants-mucoadhesive polymer nanomicelles (ASMP-Nano) for ocular delivery of cyclosporine-A. Pharmaceutics. 2020;12(3):253. doi: 10.3390/pharmaceutics12030253
  • Terreni E, Zucchetti E, Tampucci S, et al. Combination of nanomicellar technology and in situ gelling polymer as Ocular Drug Delivery System (ODDS) for cyclosporine-A. Pharmaceutics. 2021;13(2):192. doi: 10.3390/pharmaceutics13020192
  • Varela-Garcia A, Concheiro A, Alvarez-Lorenzo C, et al. Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability. Int J Pharm. 2018;552(1–2):39–47. doi: 10.1016/j.ijpharm.2018.09.053
  • Mitra AK, Velagaleti PR, Natesan S. 2009. Ophthalmic compositions comprising calcineurin inhibitors or mTOR inhibitors. US 2009/0092665.
  • Velagaleti PR, Eddy A, Khan IJ, et al. Topical delivery of hydrophobic drugs using a novel mixed nanomicellar technology to treat diseases of the anterior and posterior segments of the eye. Drug Delivery Today. 2010;10:42–47.
  • Cholkar K, Hariharan S, Gunda S, et al. Optimization of dexamethasone mixed nanomicellar formulation. AAPS Pharm Sci Tech. 2014;15(6):1454–1467. doi: 10.1208/s12249-014-0159-y
  • Earla R, Boddu SH, Cholkar K, et al. Development and validation of a fast and sensitive bioanalytical method for the quantitative determination of glucocorticoids—quantitative measurement of dexamethasone in rabbit ocular matrices by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2010;52(4):525–533. doi: 10.1016/j.jpba.2010.01.015
  • Vadlapudi AD, Cholkar K, Vadlapatla RK, et al. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir: Formulation development and ocular biocompatibility. J Ocular Pharmacol Therap. 2014;30(1):49–58. doi: 10.1089/jop.2013.0157
  • Tuzar Z, Kratochvil P. Block and graft copolymer micelles in solution. Adv Colloid Interface Sci. 1976;6(3):201–232. doi: 10.1016/0001-8686(76)80009-7
  • Kataoka K, Kwon GS, Yokoyama M, et al. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24(1–3):119–132. doi: 10.1016/0168-3659(93)90172-2
  • Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol biosci. 2012;12(5):608–620. doi: 10.1002/mabi.201100419
  • Bae YH, Yin H. Stability issues of polymeric micelles. J Control Release. 2008;131(1):2–4. doi: 10.1016/j.jconrel.2008.06.015
  • Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 1995;16(2–3):295–309. doi: 10.1016/0169-409X(95)00031-2
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82(2–3):189–212. doi: 10.1016/S0168-3659(02)00009-3
  • Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008;130(2):98–106. doi: 10.1016/j.jconrel.2008.04.013
  • Bongiovì F, Di Prima G, Palumbo FS, et al. Hyaluronic acid-based micelles as ocular platform to modulate the loading, release, and corneal permeation of corticosteroids. Macromol biosci. 2017;17(12):1700261. doi: 10.1002/mabi.201700261
  • Bongiovì F, Fiorica C, Palumbo FS, et al. Imatinib-loaded micelles of hyaluronic acid derivatives for potential treatment of neovascular ocular diseases. Mol Pharm. 2018;15(11):5031–5045. doi: 10.1021/acs.molpharmaceut.8b00620
  • Zhang X, Wei D, Xu Y, et al. Hyaluronic acid in ocular drug delivery. Carbohydr Pol. 2021;264:118006. doi: 10.1016/j.carbpol.2021.118006
  • Di Prima G, Licciardi M, Bongiovì F, et al. Inulin-based polymeric micelles functionalized with ocular permeation enhancers: improvement of dexamethasone permeation/penetration through bovine corneas. Pharmaceutics. 2021;13(9):1431. doi: 10.3390/pharmaceutics13091431
  • Lan Q, Di D, Wang S, et al. Chitosan-N-acetylcysteine modified HP-β-CD inclusion complex as a potential ocular delivery system for anti-cataract drug: Quercetin. J Drug Del Sci Technol. 2020;55:101407. doi: 10.1016/j.jddst.2019.101407
  • Xu X, Sun L, Zhou L, et al. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym. 2020;227:115356. doi: 10.1016/j.carbpol.2019.115356
  • Sun X, Sheng Y, Li K, et al. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomater. 2022;138:193–207. doi: 10.1016/j.actbio.2021.10.047
  • Sun L, Zhang M, Shi Y, et al. Rational design of mixed nanomicelle eye drops with structural integrity investigation. Acta Biomater. 2022;141:164–177. doi: 10.1016/j.actbio.2022.01.014
  • Mandal A, Bisht R, Rupenthal ID, et al. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116. doi: 10.1016/j.jconrel.2017.01.012
  • Saettone MF, Giannaccini B, Delmonte G, et al. Solubilization of tropicamide by poloxamers: physicochemical data and activity data in rabbits and humans. Int J Pharm. 1988;43(1–2):67–76. doi: 10.1016/0378-5173(88)90060-9
  • Saettone MF, Burgalassi S, Giannaccini B. Preparation and evaluation in rabbits of topical solutions containing forskolin. J Ocular Pharmacol. 1989;5(2):111–118. doi: 10.1089/jop.1989.5.111
  • Liaw J, Chang SF, Hsiao FC. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propyleneoxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther. 2001;8(13):999–1004. doi: 10.1038/sj.gt.3301485
  • Carmignani C, Rossi S, Saettone MF, et al. Ophthalmic vehicles containing polymer-solubilized tropicamide: “in vitro/in vivo” evaluation. Drug Dev Ind Pharm. 2002;28(1):101–105. doi: 10.1081/DDC-120001491
  • Pepić I, Jalšenjak N, Jalšenjak I. Micellar solutions of triblock copolymer surfactants with pilocarpine. J Pharm. 2004;272(1–2):57–64. doi: 10.1016/j.ijpharm.2003.11.032
  • Hurter PN, Hatton TA. Solubilization of polycyclic aromatic hydrocarbons by poly(ethylene oxide-propylene oxide) block copolymer micelles: effects of polymer structure. Langmuir. 1992;8(5):1291–9. doi: 10.1021/la00041a010
  • Rey-Rico A, Cucchiarini M. PEO-PPO-PEO tri-block copolymers for gene delivery applications in human regenerative medicine—an overview. Int J Mol Sci. 2018;19(3):775. doi: 10.3390/ijms19030775
  • Oh KT, Bronich TK, Kabanov AV. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J Control Release. 2004;94(2–3):411–422. doi: 10.1016/j.jconrel.2003.10.018
  • Bao Z, Zhou Y, Lei L, et al. A facile strategy to generate high drug payload celecoxib micelles for enhanced corneal permeability. J Biomed Nanotechnol. 2019;15(4):822–829. doi: 10.1166/jbn.2019.2730
  • Yu Y, Chen D, Li Y, et al. Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies. Drug Deliv. 2018;25(1):888–899. doi: 10.1080/10717544.2018.1458923
  • Shen Y, Yu Y, Chaurasiya B, et al. Stability, safety, and transcorneal mechanistic studies of ophthalmic lyophilized cyclosporine-loaded polymeric micelles. Int J Nanomed. 2018;13:8281–8296. doi: 10.2147/IJN.S173691
  • Yang D, Han Y, Wang Y, et al. Highly effective corneal permeability of reactive oxygen species-responsive nano-formulation encapsulated cyclosporine a for dry eye management. Chem Eng J. 2023;469:143968. doi: 10.1016/j.cej.2023.143968
  • Li Y, Zhou L, Zhang M, et al. Micelles based on polyvinylpyrrolidone VA64: a potential nanoplatform for the ocular delivery of apocynin. J Pharm. 2022;615:121451. doi: 10.1016/j.ijpharm.2022.121451
  • Gaucher G, Dufresne ML, Sant VP, et al. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–188. doi: 10.1016/j.jconrel.2005.09.034
  • Tawfik SM, Azizov S, Elmasry MR, et al. Recent advances in nanomicelles delivery systems. Nanomaterials. 2021;11(1):70. doi: 10.3390/nano11010070
  • Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Controlled Release. 2021;332:312–336. doi: 10.1016/j.jconrel.2021.02.031
  • Kulkarni MB, Velmurugan K, Nirmal J, et al. Development of dexamethasone loaded nanomicelles using a 3D printed microfluidic device for ocular drug delivery applications. Sens Actuators A Phys. 2023;357:114385. doi: 10.1016/j.sna.2023.114385
  • Jerkins GW, Pattar GR, Kannarr SR. A review of topical cyclosporine a formulations—A disease-modifying agent for Keratoconjunctivitis Sicca. Clin Ophthalmol. 2020;14:481–489. doi: 10.2147/OPTH.S228070
  • Grimaudo MA, Pescina S, Padula C, et al. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm. 2018;15(2):571–584. doi: 10.1021/acs.molpharmaceut.7b00939
  • Tiffany JM. The viscosity of human tears. Int Ophthalmol. 1991;15(6):371–376. doi: 10.1007/BF00137947
  • Pescina S, Lucca LG, Govoni P, et al. Ex vivo conjunctival retention and transconjunctival transport of poorly soluble drugs using polymeric micelles. Pharmaceutics. 2019;11(9):476. doi: 10.3390/pharmaceutics11090476
  • Ghezzi M, Ferraboschi I, Delledonne A, et al. Cyclosporine-loaded micelles for ocular delivery: investigating the penetration mechanisms. J Control Release. 2022;349:744–755. doi: 10.1016/j.jconrel.2022.07.019
  • Binkhathlan Z, Alomrani AH, Hoxha O, et al. Development and characterization of PEGylated fatty acid-block-Poly(ε-caprolactone) novel block copolymers and their self-assembled nanostructures for ocular delivery of cyclosporine a. Polymers (Basel). 2022;14(9):1635. doi: 10.3390/polym14091635
  • Yingfang F, Zhuang B, Wang C, et al. Pimecrolimus micelle exhibits excellent therapeutic effect for Keratoconjunctivitis Sicca. Colloids Surf B Biointerfaces. 2016;140:1–10. doi: 10.1016/j.colsurfb.2015.11.059
  • Sun F, Zheng Z, Lan J, et al. New micelle myricetin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Deliv. 2019;26(1):575–585. doi: 10.1080/10717544.2019.1622608
  • Xu J, Chen P, Zhao G, et al. Copolymer micelle administered melatonin ameliorates hyperosmolarity-induced ocular surface damage through regulating PINK1-mediated mitophagy. Curr Eye Res. 2022;47(5):688–703. doi: 10.1080/02713683.2021.2022163
  • Alami-Milani M, Zakeri-Milani P, Valizadeh H, et al. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran J Basic Med Sci. 2018;21(2):153–164. doi: 10.22038/IJBMS.2017.26590.6513
  • Alami-Milani M, Zakeri-Milani P, Valizadeh H, et al. Evaluation of anti-inflammatory impact of dexamethasone-loaded PCL-PEG-PCL micelles on endotoxin-induced uveitis in rabbits. Pharm Dev Technol. 2019;24(6):680–688. doi: 10.1080/10837450.2019.1578370
  • Alami-Milani M, Zakeri-Milani P, Valizadeh H, et al. PLA–PCL–PEG–PCL–PLA based micelles for improving the ocular permeability of dexamethasone: development, characterization, and in vitro evaluation. Pharm Dev Technol. 2020;25(6):704–719. doi: 10.1080/10837450.2020.1733606
  • Safwat MA, Mansour HF, Hussein AK, et al. Polymeric micelles for the ocular delivery of triamcinolone acetonide: Preparation and in vivo evaluation in a rabbit ocular inflammatory model. Drug Deliv. 2020;27(1):1115–1124. doi: 10.1080/10717544.2020.1797241
  • Khopade AJ, Halder A, Patel V, et al. Low dose ophthalmic solution of difluprednate for the management of pain and inflammation. J Drug Deliv Sci Technol. 2023;83:104387. doi: 10.1016/j.jddst.2023.104387
  • Linn M, Collnot EM, Djuric D, et al. Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur J Pharm Sci. 2012;45(3):336–343. doi: 10.1016/j.ejps.2011.11.025
  • Noh G, Keum T, Seo J, et al. Development and evaluation of a water soluble fluorometholone eye drop formulation employing polymeric micelle. Pharmaceutics. 2018;10(4):208. doi: 10.3390/pharmaceutics10040208
  • Tampucci S, Monti D, Burgalasi S, et al. Binary polymeric surfactant mixtures for the development of novel loteprednol etabonate nanomicellar eyedrops. Pharmaceuticals. 2023;16(6):864. doi: 10.3390/ph16060864
  • Firozian F, Arabkhani Z, Mahboobian MM, et al. Cationic dextran stearate (dex-st-GTMAC): synthesis and evaluation as polymeric micelles for indomethacin corneal penetration. ACS Omega. 2023;8(41):38092–38100. doi: 10.1021/acsomega.3c04187
  • Ozturk MB, Popa M, DM R, et al. Drug-loaded polymeric micelles based on smart biocompatible graft copolymers with potential applications for the treatment of glaucoma. Int J Mol Sci. 2022;23(16):9382. doi: 10.3390/ijms23169382
  • Elmowafy E, Gad H, Biondo F, et al. Exploring optimized methoxy poly(ethylene glycol)-block-poly-(epsilon-caprolactone) crystalline cored micelles in anti-glaucoma pharmacotherapy. Int J Pharm. 2019;566:573–584. doi: 10.1016/j.ijpharm.2019.06.011
  • Mohanty AK, Jana U, Manna PK, et al. Synthesis and evaluation of MePEG-PCL deblock copolymers: surface properties and controlled release behavior. Prog Biomater. 2015;4(2–4):89–100. doi: 10.1007/s40204-015-0040-4
  • Dal Monte M, Cammalleri M, Pezzino S, et al. Hypotensive effect of nanomicellar formulation of melatonin and agomelatine in a rat model: significance for glaucoma therapy. Diagnostics. 2020;10(3):138. doi: 10.3390/diagnostics10030138
  • Dal Monte M, Cammalleri M, Amato R, et al. A topical formulation of melatoninergic compounds exerts strong hypotensive and neuroprotective effects in a rat model of hypertensive glaucoma. Int J Mol Sci. 2020;21(23):9267. doi: 10.3390/ijms21239267
  • Chetoni P, Burgalassi S, Zucchetti E, et al. MAGL inhibitor NanoMicellar formulation (MAGL-NanoMicellar) for the development of an antiglaucoma eye drop. Int J Pharm. 2022;625:122078. doi: 10.1016/j.ijpharm.2022.122078
  • Laine K, Järvinen K, Mechoulam R, et al. Comparison of the enzymatic stability and intraocular pressure effects of 2-arachidonylglycerol and noladin ether, a novel putative endocannabinoid. Inv Ophthalmol Vis Sci. 2002;43:3216–3222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.