48
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Enzyme-responsive mannose-grafted magnetic nanoparticles for breast and liver cancer therapy and tumor-associated macrophage immunomodulation

, , , , & ORCID Icon
Pages 663-677 | Received 04 Dec 2023, Accepted 04 Mar 2024, Published online: 06 May 2024

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. Ca A Cancer J Clinicians. 2022;72(1):7–33. doi: 10.3322/caac.21708
  • Shen X, Pan D, Gong Q, et al. Enhancing drug penetration in solid tumors via nanomedicine: evaluation models, strategies and perspectives. Bioact Mater. 2024 Feb 01;32:445–472.
  • Gotwals P, Cameron S, Cipolletta D, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17(5):286–301. doi: 10.1038/nrc.2017.17
  • Bohn T, Rapp S, Luther N, et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol. 2018;19(12):1319–1329. doi: 10.1038/s41590-018-0226-8
  • Ge Z, Ding S. The crosstalk between tumor-associated macrophages (TAMs) and tumor cells and the corresponding targeted therapy [review]. Front Oncol. 2020 Nov 03;10:10. doi: 10.3389/fonc.2020.590941
  • Chávez-Galán L, Olleros ML, Vesin D, et al. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Front Immunol. 2015;6:263. doi: 10.3389/fimmu.2015.00263
  • Loyher P-L, Hamon P, Laviron M, et al. Macrophages of distinct origins contribute to tumor development in the lung. J Exp Med. 2018;215(10):2536–2553. doi: 10.1084/jem.20180534
  • Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. doi: 10.3389/fimmu.2020.583084
  • Petitjean M, Isasi JR. Locust Bean Gum, a vegetable hydrocolloid with industrial and biopharmaceutical applications. Molecules. 2022;27(23):8265. doi: 10.3390/molecules27238265
  • Verma A, Tiwari A, Panda PK, et al. Natural polysaccharides in drug delivery and biomedical applications. In: Locust bean gum in drug delivery application. Academic Press; 2019 Jul 23. p. 203–222 .
  • D’souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting—strategies and applications. JControlled Release. 2015;203:126–139. doi: 10.1016/j.jconrel.2015.02.022
  • Shi B, Abrams M, Sepp-Lorenzino L. Expression of asialoglycoprotein receptor 1 in human hepatocellular carcinoma. J Histochem Cytochem. 2013;61(12):901–909. doi: 10.1369/0022155413503662
  • Das S, Kudale P, Dandekar P, et al. Asialoglycoprotein Receptor and Targeting Strategies. In: Devarajan P, Dandekar P D’Souza Aeditors. Targeted intracellular drug delivery by receptor mediated endocytosis. Cham: Springer International Publishing; 2019. p. 353–381.
  • Staines K, Hunt LG, Young JR, et al. Evolution of an expanded mannose receptor gene family. PLOS ONE. 2014;9(11):e110330. doi: 10.1371/journal.pone.0110330
  • Zhang Q, Cai Y, Li QY, et al. Targeted delivery of a mannose‐conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chem–A Eur J. 2017;23(57):14307–14315. doi: 10.1002/chem.201702935
  • Lee SH, Charmoy M, Romano A, et al. Mannose receptor high, M2 dermal macrophages mediate nonhealing leishmania major infection in a Th1 immune environment. J Exp Med. 2018;215(1):357–375. doi: 10.1084/jem.20171389
  • Negrete M, Romero-Ben E, Gutiérrez-Valencia A, et al. PDA-Based Glyconanomicelles for hepatocellular carcinoma cells active targeting via mannose and asialoglycoprotein receptors. ACS Appl Bio Mater. 2021;4(6):4789–4799. doi: 10.1021/acsabm.0c01679
  • Lee JS, Weiss J, Martin JL, et al. Increased expression of the mannose 6‐phosphate/insulin‐like growth factor‐II receptor in breast cancer cells alters tumorigenic properties in vitro and in vivo. Int J Cancer. 2003;107(4):564–570. doi: 10.1002/ijc.11453
  • Guan C, Zhao Y, Hou Y, et al. Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells. Talanta. 2018 May 15;182:314–323.
  • Liu H, Qing X, Peng L, et al. Mannose-coated nanozyme for relief from chemotherapy-induced peripheral neuropathic pain. Iscience. 2023;26(4):106414. doi: 10.1016/j.isci.2023.106414
  • Rastegari B, Karbalaei-Heidari HR. Sulfate as a pivotal factor in regulation of Serratia sp. strain S2B pigment biosynthesis. Res Microbiol. 2016;167(8):638–646. doi: 10.1016/j.resmic.2016.05.005
  • Guryanov I, Naumenko E, Akhatova F, et al. Selective cytotoxic activity of prodigiosin@halloysite nanoformulation [original research]. Front Bioeng Biotechnol. 2020 May 26;8. doi: 10.3389/fbioe.2020.00424
  • Mohan CD, Rangappa S, Nayak SC, et al., editors. Bacteria as a treasure house of secondary metabolites with anticancer potential. In: Seminars in cancer biology. Vol. 86. Elsevier; 2022. doi: 10.1016/j.semcancer.2021.05.006
  • Vaishnav P, Demain AL. Unexpected applications of secondary metabolites. Biotechnol Adv. 2011 Mar;29(2):223–229. doi: 10.1016/j.biotechadv.2010.11.006
  • Anwar MM, Albanese C, Hamdy NM, et al. Rise of the natural red pigment ‘prodigiosin’as an immunomodulator in cancer. Cancer Cell Int. 2022;22(1):419. doi: 10.1186/s12935-022-02815-4
  • Lin S-R, Chen Y-H, Tseng F-J, et al. The production and bioactivity of prodigiosin: quo vadis? Drug Discovery Today. 2020 May 01;25(5):828–836. doi: 10.1016/j.drudis.2020.03.017
  • Cadet J, Davies KJA. Oxidative DNA damage & repair: an introduction. Free Radic Biol Med. 2017 Jun 01;107:2–12. doi: 10.1016/j.freeradbiomed.2017.03.030
  • Hasnain MS, Nayak AK, Ansari MT,et al. Pharmaceutical Applications of Locust Bean Gum. Natural polymers for pharmaceutical applications. Apple Academic Press; 2019. p. 139–162 .
  • Namazi H, Pooresmaeil M, Salehi R. Construction of a new dual-drug delivery system based on stimuli-responsive co-polymer functionalized D-mannose for chemotherapy of breast cancer. Eur Polym J. 2023;188:111958. doi: 10.1016/j.eurpolymj.2023.111958
  • Kato K, Nitta M, Mizuno T. Infrared spectroscopy of some mannans. Agric Biol Chem. 1973;37(2):433–435. doi: 10.1080/00021369.1973.10860687
  • Zhu Q, Huang Y, Zhu X, et al. Mannose-coated superparamagnetic iron oxide nanozyme for preventing postoperative cognitive dysfunction. Mater Today Bio. 2023 Apr 01;19:100568.
  • Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–4244. doi: 10.1039/C6CS00636A
  • Ahmed L, Atif R, Eldeen TS, et al. Study the using of nanoparticles as drug delivery system based on mathematical models for controlled release. IJLTEMAS. 2019;8:52–56.
  • Indrayanto G, Putra GS, Suhud F. Validation of in-vitro bioassay methods: application in herbal drug research. Profiles Of Drug Substances, Excipients And Related Methodology. 2021;46:273–307.
  • Dalle Vedove E, Costabile G, Merkel OM. Mannose and mannose‐6‐phosphate receptor–targeted drug delivery systems and their application in cancer therapy. Adv Healthcare Mater. 2018;7(14):1701398. doi: 10.1002/adhm.201701398
  • Rodríguez E, Francia K, Brossard N, et al. Immobilization of β-galactosidase and α-mannosidase onto magnetic nanoparticles: a strategy for increasing the potentiality of valuable glycomic tools for glycosylation analysis and biological role determination of glycoconjugates. Enzyme Microb Technol. 2018;117:45–55. doi: 10.1016/j.enzmictec.2018.05.012
  • Desnick RJ. Fabry disease: α-galactosidase a deficiency. Rosenberg’s molecular and genetic basis of neurological and psychiatric disease. Elsevier. 2020 Jan 1;575–587. doi: 10.1016/B978-0-12-813955-4.00042-8
  • Cendrowicz E, Sas Z, Bremer E, et al. The role of macrophages in cancer development and therapy. Cancers (Basel). 2021 Apr 18;13(8):1946. doi: 10.3390/cancers13081946
  • Lelièvre P, Sancey L, Coll JL, et al. The multifaceted roles of copper in cancer: a trace metal element with dysregulated metabolism, but also a target or a bullet for therapy. Cancers (Basel). 2020 Dec 1;12(12):3594. doi: 10.3390/cancers12123594
  • Olaiya DO, Alatise OI, Oketayo OO, et al. Trace Element Analysis of Cancerous and Non-cancerous Breast Tissues of African women in Southwest Nigeria using particle-induced X-ray emission technique. Breast Cancer (Auckl). 2019;13:1178223419840694. doi: 10.1177/1178223419840694
  • Perez-Tomas R, Vinas M. New insights on the antitumoral properties of prodiginines. Curr Med Chem. 2010;17(21):2222–2231. doi: 10.2174/092986710791331103
  • Montaner B, Castillo-Avila W, Martinell M, et al. DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicol Sci. 2005 Jun;85:(2):870–879.
  • Jeevanandam J, San Chan Y, Danquah MK. Nano-formulations of drugs: recent developments, impact and challenges. Biochimie. 2016;128:99–112. doi: 10.1016/j.biochi.2016.07.008
  • Larionova I, Tuguzbaeva G, Ponomaryova A, et al. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front Oncol. 2020;10:566511. doi: 10.3389/fonc.2020.566511
  • Yin M, Li X, Tan S, et al. Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Investig. 2016;126(11):4157–4173. doi: 10.1172/JCI87252
  • Orekhov AN, Orekhova VA, Nikiforov NG, et al. Monocyte differentiation and macrophage polarization. Vessel Plus. 2019;3(10):2574–1209. doi: 10.20517/2574-1209.2019.04
  • Bruns H, Büttner M, Fabri M, et al. Vitamin D–dependent induction of cathelicidin in human macrophages results in cytotoxicity against high-grade B cell lymphoma. Sci, trans med. 2015;7(282):ra28247–ra28247. doi: 10.1126/scitranslmed.aaa3230
  • Xu F, Wei Y, Tang Z, et al. Tumor‑associated macrophages in lung cancer: friend or foe? (review). Mol Med Rep. 2020;22(5):4107–4115. doi: 10.3892/mmr.2020.11518
  • Komohara Y, Fujiwara Y, Ohnishi K, et al. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Delivery Rev. 2016;99:180–185. doi: 10.1016/j.addr.2015.11.009
  • Parker KH, Sinha P, Horn LA, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74(20):5723–5733. doi: 10.1158/0008-5472.CAN-13-2347
  • Jackson JJ, Ketcham JM, Younai A, et al. Discovery of a potent and selective CCR4 antagonist that inhibits T(reg) trafficking into the tumor microenvironment. J Med Chem. 2019 Jul 11;62(13):6190–6213. doi: 10.1021/acs.jmedchem.9b00506
  • Fiegle E, Doleschel D, Koletnik S, et al. Dual CTLA-4 and PD-L1 blockade inhibits tumor growth and liver metastasis in a highly aggressive orthotopic mouse Model of colon cancer. Neoplasia. 2019 Sep 01;21(9):932–944. doi: 10.1016/j.neo.2019.07.006
  • Dijkgraaf EM, Heusinkveld M, Tummers B, et al. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor MicroenvironmentEffect of chemotherapy on tumor microenvironment. Cancer Res. 2013;73(8):2480–2492. doi: 10.1158/0008-5472.CAN-12-3542
  • Leblond MM, Pérès EA, Helaine C, et al. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget. 2017;8(42):72597. doi: 10.18632/oncotarget.19994
  • Piaggio F, Kondylis V, Pastorino F, et al. A novel liposomal clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: anti-angiogenic and anti-tumor effects. JControlled Release. 2016;223:165–177. doi: 10.1016/j.jconrel.2015.12.037
  • Shi Y, Fan X, Deng H, et al. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcγ receptors on macrophages. J Immunol. 2015;194(9):4379–4386. doi: 10.4049/jimmunol.1402891
  • Zhao P, Xie L, Yu L, et al. Targeting CD47-SIRPα axis for Hodgkin and non-Hodgkin lymphoma immunotherapy. Genes Dis. 2023. doi: 10.1016/j.gendis.2022.12.008
  • Zhang B, Hu Y, Pang Z. Modulating the tumor microenvironment to enhance tumor nanomedicine delivery. Front Pharmacol. 2017;8:952. doi: 10.3389/fphar.2017.00952
  • Dai L, Shen G, Wang Y, et al. PSMA-targeted melanin-like nanoparticles as a multifunctional nanoplatform for prostate cancer theranostics. J Mat Chem B. 2021;9(4):1151–1161. doi: 10.1039/D0TB02576C
  • Jin H, Pi J, Zhao Y, et al. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale. 2017;9(42):16365–16374. doi: 10.1039/C7NR06898K
  • Zhang Z, Qian H, Huang J, et al. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int J Nanomed. 2018;13:4961. doi: 10.2147/IJN.S170148
  • Alric C, Hervé-Aubert K, Aubrey N, et al. Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes. J Nanobiotechnol. 2018;16(1):1–13. doi: 10.1186/s12951-018-0341-6
  • Kubota T, Kuroda S, Kanaya N, et al. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine. 2018;14(6):1919–1929. doi: 10.1016/j.nano.2018.05.019
  • DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19(6):369–382. doi: 10.1038/s41577-019-0127-6
  • Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol. 2015;36(4):229–239. doi: 10.1016/j.it.2015.02.004
  • Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Med. 2013;19(10):1264–1272. doi: 10.1038/nm.3337
  • Ovais M, Guo M, Chen C. Tailoring nanomaterials for targeting tumor‐associated macrophages. Adv Mater. 2019;31(19):1808303. doi: 10.1002/adma.201808303
  • Lim SY, Yuzhalin AE, Gordon-Weeks AN, et al. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget. 2016;7(19):28697. doi: 10.18632/oncotarget.7376
  • Kirk PS, Koreckij T, Nguyen HM, et al. Inhibition of CCL2 signaling in combination with docetaxel treatment has profound inhibitory effects on prostate cancer growth in bone. Int J Mol Sci. 2013;14(5):10483–10496. doi: 10.3390/ijms140510483
  • Hao Q, Vadgama JV, Wang P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signaling. 2020 May 29;18(1):82.
  • Yoshimura T, Li C, Wang Y, et al. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol Immunol. 2023;20(7):1–25. doi: 10.1038/s41423-023-01013-0
  • Van Dalen FJ, Van Stevendaal MH, Fennemann FL, et al. Molecular repolarisation of tumour-associated macrophages. Molecules. 2018;24(1):9. doi: 10.3390/molecules24010009
  • Wang Y, Lin Y-X, Qiao S-L, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials. 2017;112:153–163. doi: 10.1016/j.biomaterials.2016.09.034
  • Parayath NN, Parikh A, Amiji MM. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. Nano Lett. 2018;18(6):3571–3579. doi: 10.1021/acs.nanolett.8b00689
  • Matsumoto M, Takeda Y, Seya T. Targeting Toll-like receptor 3 in dendritic cells for cancer immunotherapy. Expert Opin Biol Ther. 2020;20(8):937–946. doi: 10.1080/14712598.2020.1749260
  • Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2018;2(8):578–588. doi: 10.1038/s41551-018-0236-8
  • Cully M. Re-educating tumour-associated macrophages with nanoparticles. Nat Rev Drug Discov. 2018;17(7):468–468. doi: 10.1038/nrd.2018.102
  • Suvarna V, Sawant N, Desai N. A review on recent advances in mannose-functionalized targeted nanocarrier delivery systems in cancer and infective therapeutics. Critical Reviews™ In Therapeutic Drug Carrier Systems. 2023;40(2):43–82. doi: 10.1615/CritRevTherDrugCarrierSyst.2022041853
  • Zhao P, Wang Y, Kang X, et al. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem Sci. 2018;9(10):2674–2689. doi: 10.1039/C7SC04853J
  • Wang T, Zhang J, Hou T, et al. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core–shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale. 2019;11(29):13934–13946. doi: 10.1039/C9NR03374B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.