129
Views
0
CrossRef citations to date
0
Altmetric
Review

Improving drug delivery to the brain: the prodrug approach

ORCID Icon
Pages 683-693 | Received 30 Jan 2024, Accepted 10 May 2024, Published online: 16 May 2024

References

  • Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov. 2007;6(7):521–532. doi: 10.1038/nrd2094
  • Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuro Pharmacol. 2017;120:11–19. doi: 10.1016/j.neuropharm.2016.03.021
  • Pankevich DE, Altevogt B, Dunlop J, et al. Improving and accelerating drug development for nervous system disorders. Neuron. 2014;84(3):546–553. doi: 10.1016/j.neuron.2014.10.007
  • Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–1972. doi: 10.1038/jcbfm.2012.126
  • Kesselheim AS, Hwang TJ, Franklin JM. Two decades of new drug development for central nervous system disorders. Nat Rev Drug Discov. 2015;14(12):815–816. doi: 10.1038/nrd4793
  • Stephenson J, Nutma E, van der Valk P, et al. Inflammation in CNS neurodegenerative diseases. Immunology. 2018;154(2):204–219. doi: 10.1111/imm.12922
  • Pardridge WM. A historical review of brain drug delivery. Pharmaceutics. 2022;14(6):1283. doi: 10.3390/pharmaceutics14061283
  • Lee G, McEwen BS. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001;53(1):569–596. doi: 10.1146/annurev.pharmtox.41.1.569
  • Rautio J, Meanwell NA, Di L, et al. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov. 2018;17(8):559–587. doi: 10.1038/nrd.2018.46
  • Rautio J, Laine K, Gynther M, et al. Prodrug approaches for CNS delivery. Aaps J. 2008;10(1):92–102. doi: 10.1208/s12248-008-9009-8
  • Alexander A, Agrawal M, Uddin A, et al. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine. 2019;14:5895–5909. doi: 10.2147/IJN.S210876
  • Azarmi M, Maleki H, Nikkam N, et al. Transcellular brain drug delivery: A review on recent advancements. Int J Pharm. 2020;586:119582. doi: 10.1016/j.ijpharm.2020.119582
  • Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17(1):69. doi: 10.1186/s12987-020-00230-3
  • Abbott NJ, Patabendige AAK, Dolman DEM, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030
  • Castro Dias M, Mapunda JA, Vladymyrov M, et al. Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int J Mol Sci. 2019;20(21):5372. doi: 10.3390/ijms20215372
  • Rhea EM, Banks WA. Role of the blood-brain barrier in central nervous system insulin resistance. Front Neurosci. 2019;13:13. doi: 10.3389/fnins.2019.00521
  • Tietz S, Engelhardt B. Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Bio. 2015;209(4):493–506. doi: 10.1083/jcb.201412147
  • Huttunen KM, Terasaki T, Urtti A, et al. Pharmacoproteomics of brain barrier transporters and substrate design for the brain targeted drug delivery. Pharm Res. 2022;39(7):1363–1392. doi: 10.1007/s11095-022-03193-2
  • Zhang SL, Lahens NF, Yue Z, et al. A circadian clock regulates efflux by the blood-brain barrier in mice and human cells. Nat Commun. 2021;12(1):617. doi: 10.1038/s41467-020-20795-9
  • Pulido RS, Munji RN, Chan TC, et al. Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes. Neuron. 2020;108(5):937–952.e7. doi: 10.1016/j.neuron.2020.09.002
  • Kervezee L, Hartman R, van den Berg D-J, et al. Diurnal variation in P-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain. Aaps J. 2014;16(5):1029–1037. doi: 10.1208/s12248-014-9625-4
  • Esposito E, Li WT, Mandeville E, et al. Potential circadian effects on translational failure for neuroprotection. Nature. 2020;582(7812):395–398. doi: 10.1038/s41586-020-2348-z
  • Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019;20(1):49–65. doi: 10.1038/s41583-018-0088-y
  • Ogata S, Ito S, Masuda T, et al. Diurnal changes in protein expression at the blood–brain barrier in mice. Biol Pharm Bull. 2022;45(6):751–756. doi: 10.1248/bpb.b22-00016
  • Ek CJ, Dziegielewska KM, Habgood MD, et al. Barriers in the developing brain and Neurotoxicology. Neurotoxicol. 2012;33(3):586–604. doi: 10.1016/j.neuro.2011.12.009
  • Cousins O, Hodges A, Schubert J, et al. The blood–CSF–brain route of neurological disease: the indirect pathway into the brain. Neuropathol Appl Neurobiol. 2022;48(4):e12789. doi: 10.1111/nan.12789
  • Poustforoosh A, Nematollahi MH, Hashemipour H, et al. Recent advances in bio-conjugated nanocarriers for crossing the blood-brain barrier in (pre-)clinical studies with an emphasis on vesicles. JControlled Release. 2022;343:777–797. doi: 10.1016/j.jconrel.2022.02.015
  • Pardridge WM. Drug transport in brain via the cerebrospinal fluid. Fluids and Barriers of the CNS. Fluids Barriers CNS. 2011;8(1):7. doi: 10.1186/2045-8118-8-7
  • Pietilä R, Del Gaudio F, He L, et al. Molecular anatomy of adult mouse leptomeninges. Neuron. 2023;111(23):3745–3764.e7. doi: 10.1016/j.neuron.2023.09.002
  • Keller L-A, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2022;12(4):735–757. doi: 10.1007/s13346-020-00891-5
  • Lochhead J, Thorne R. Intranasal delivery of biologics to the central nervous system. Adv Drug Delivery Rev. 2012;64(7):614–628. doi: 10.1016/j.addr.2011.11.002
  • Stevens J, Ploeger BA, van der Graaf PH, et al. Systemic and direct nose-to-brain transport pharmacokinetic Model for remoxipride after intravenous and intranasal administration. Drug Metab Dispos. 2011;39(12):2275–2282. doi: 10.1124/dmd.111.040782
  • Dalpiaz A, Ferraro L, Perrone D, et al. Brain uptake of a zidovudine prodrug after nasal administration of solid lipid microparticles. Mol Pharmaceut. 2014;11(5):1550–1561. doi: 10.1021/mp400735c
  • de Oliveira Junior ER, Truzzi E, Ferraro L, et al. Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: towards a new approach for the management of Parkinson’s disease. JControlled Release. 2020;321:540–552. doi: 10.1016/j.jconrel.2020.02.033
  • Partridge B, Eardley A, Morales BE, et al. Advancements in drug delivery methods for the treatment of brain disease. Front Vet Sci. 2022;9:1039745. doi: 10.3389/fvets.2022.1039745
  • Profaci CP, Munji RN, Pulido RS, et al. The blood–brain barrier in health and disease: important unanswered questions. J Exp Med. 2020;217(4):e20190062. doi: 10.1084/jem.20190062
  • Huttunen KM, Raunio H, Rautio J. Prodrugs–from serendipity to rational design. Pharmacol Rev. 2011;63(3):750–771. doi: 10.1124/pr.110.003459
  • Huttunen KM. Identification of human, rat and mouse hydrolyzing enzymes bioconverting amino acid ester prodrug of ketoprofen. Bioorg Chem. 2018;81:494–503. doi: 10.1016/j.bioorg.2018.09.018
  • Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci. 2006;95(6):1177–1195. doi: 10.1002/jps.20542
  • Prabha M, Ravi V, Ramachandra Swamy N. Activity of hydrolytic enzymes in various regions of normal human brain tissue. Indian J Clin Biochem. 2013;28(3):283–291. doi: 10.1007/s12291-012-0273-0
  • Ferguson C, Tyndale R. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011;32(12):708–714. doi: 10.1016/j.tips.2011.08.005
  • Li Y, Zhao L, Li X-F. Targeting hypoxia: hypoxia-activated prodrugs in cancer therapy. Front Oncol. 2021;11. doi: 10.3389/fonc.2021.700407
  • Hugele A, Löffler S, Molina BH, et al. Aminopeptidase B can bioconvert L-type amino acid transporter 1 (LAT1)-utilizing amide prodrugs in the brain. Front Pharmacol. 2022;13:13. doi: 10.3389/fphar.2022.1034964
  • Khor SP, Hsu A. The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson’s disease. Curr Clin Pharmacol. 2007;2(3):234–243. doi: 10.2174/157488407781668802
  • Ahram M, Litou ZI, Fang R, et al. Estimation of membrane proteins in the human proteome. Silico Biol. 2006;6:379–386.
  • Almén MS, Nordström KJ, Fredriksson R, et al. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 2009;7(1):50. doi: 10.1186/1741-7007-7-50
  • Colas C, Ung PM, Schlessinger A. SLC transporters: structure, function, and drug discovery. Med Chem Commun. 2016;7(6):1069–1081. doi: 10.1039/C6MD00005C
  • Majumder P, Mallela AK, Penmatsa A. Transporters through the looking glass. An insight into the mechanisms of ion-coupled transport and methods that help reveal them. J Indian Inst Sci. 2018;98(3):283–300. doi: 10.1007/s41745-018-0081-5
  • Seeger MA. Membrane transporter research in times of countless structures. Biochim Biophys Acta Biomembr. 2018;1860(4):804–808. doi: 10.1016/j.bbamem.2017.08.009
  • Januliene D, Moeller A. Cryo-EM of ABC transporters: an ice-cold solution to everything? FEBS Lett. 2020;594(23):3776–3789. doi: 10.1002/1873-3468.13989
  • Sahoo S, Aurich MK, Jonsson JJ, et al. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front Physiol. 2014;5:5. doi: 10.3389/fphys.2014.00091
  • Cesar-Razquin A, Snijder B, Frappier-Brinton T, et al. A call for systematic research on solute carriers. Cell (Cambridge, MA, US). 2015;162(3):478–487. doi: 10.1016/j.cell.2015.07.022
  • Hu C, Tao L, Cao X, et al. The solute carrier transporters and the brain: physiological and pharmacological implications. Asian J Pharm Sci. 2020;15(2):131–144. doi: 10.1016/j.ajps.2019.09.002
  • Huttunen J, Adla SK, Markowicz-Piasecka M, et al. Increased/targeted brain (pro)drug delivery via utilization of solute carriers (SLCs). Pharmaceutics. 2022;14(6):1234. doi: 10.3390/pharmaceutics14061234
  • Pizzagalli MD, Bensimon A, Superti-Furga G. A guide to plasma membrane solute carrier proteins. FEBS J. 2021;288(9):2784–2835. doi: 10.1111/febs.15531
  • Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–292. doi: 10.1038/nrd.2015.21
  • Saunders NR, Habgood MD, Møllgård K, et al. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? F1000Res. 2016;5:313. doi: 10.12688/f1000research.7378.1
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55(1):613–631. doi: 10.1146/annurev-pharmtox-010814-124852.
  • Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019;12:12. doi: 10.3389/fnins.2018.01019
  • Hervé F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. Aaps J. 2008;10(3):455–472. doi: 10.1208/s12248-008-9055-2
  • Moura RP, Martins C, Pinto S, et al. Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Delivery. 2019;16(3):271–285. doi: 10.1080/17425247.2019.1583205
  • Agrawal N, Rowe J, Lan J, et al. Potential tools for eradicating HIV reservoirs in the brain: development of trojan horse prodrugs for the inhibition of P-Glycoprotein with anti-HIV-1 activity. J Med Chem. 2020;63(5):2131–2138. doi: 10.1021/acs.jmedchem.9b00779
  • Namanja HA, Emmert D, Davis DA, et al. Toward Eradicating HIV reservoirs in the brain: Inhibiting P-Glycoprotein at the blood-brain barrier with prodrug abacavir dimers. J Am Chem Soc. 2012;134:2976. doi: 10.1021/ja206867t
  • Dalpiaz A, Paganetto G, Pavan B, et al. Zidovudine and ursodeoxycholic acid conjugation: design of a new prodrug potentially able to bypass the active efflux transport systems of the central nervous system. Mol Pharm. 2012;9(4):957. doi: 10.1021/mp200565g
  • Uchida Y, Ohtsuki S, Katsukura Y, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem. 2011;117(2):333–345. doi: 10.1111/j.1471-4159.2011.07208.x
  • Hediger MA, Clémençon B, Burrier RE, et al. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspect Med. 2013;34(2):95–107. doi: 10.1016/j.mam.2012.12.009
  • Lin L, Yee SW, Kim RB, et al. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 2015;14(8):543–560. doi: 10.1038/nrd4626
  • Rives M-L, Javitch JA, Wickenden AD. Potentiating SLC transporter activity: emerging drug discovery opportunities. Biochem Pharmacol. 2017;135:1–11. doi: 10.1016/j.bcp.2017.02.010
  • Ose A, Kusuhara H, Endo C, et al. Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metab Dispos. 2010;38(1):168–176. doi: 10.1124/dmd.109.029454
  • Uchino H, Kanai Y, Kim DK, et al. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol. 2002;61(4):729–737. doi: 10.1124/mol.61.4.729
  • Sharma S, Zhang Y, Akter KA, et al. Permeability of metformin across an in vitro blood–brain barrier model during normoxia and oxygen-glucose deprivation conditions: role of organic cation transporters (Octs). Pharmaceutics. 2023;15(5):1357. doi: 10.3390/pharmaceutics15051357
  • Lam NSK, Long XX, Li X, et al. The potential use of folate and its derivatives in treating psychiatric disorders: A systematic review. Biomed Pharm. 2022;146:112541. doi: 10.1016/j.biopha.2021.112541
  • Singh VK, Subudhi BB. Development and characterization of lysine-methotrexate conjugate for enhanced brain delivery. Drug Delivery. 2016;23(7):2327–2337. doi: 10.3109/10717544.2014.984369
  • Gynther M, Peura L, Vernerová M, et al. Amino acid promoieties alter valproic acid pharmacokinetics and enable extended brain exposure. Neurochem Res. 2016;41(10):2797–2809. doi: 10.1007/s11064-016-1996-8
  • Montaser AB, Järvinen J, Löffler S, et al. L-type amino acid transporter 1 enables the efficient brain delivery of small-sized prodrug across the blood–brain barrier and into human and mouse brain parenchymal cells. ACS Chem Neurosci. 2020;11(24):4301–4315. doi: 10.1021/acschemneuro.0c00564
  • Peura L, Malmioja K, Huttunen K, et al. Design, synthesis and brain uptake of LAT1-targeted amino acid prodrugs of dopamine. Pharm Res. 2013;30(10):2523–2537. doi: 10.1007/s11095-012-0966-3
  • Puris E, Gynther M, Huttunen J, et al. L-type amino acid transporter 1 utilizing prodrugs: how to achieve effective brain delivery and low systemic exposure of drugs. J Control Release. 2017;261:93–104. doi: 10.1016/j.jconrel.2017.06.023
  • Puris E, Gynther M, Huttunen J, et al. L-type amino acid transporter 1 utilizing prodrugs of ferulic acid revealed structural features supporting the design of prodrugs for brain delivery. Eur J Pharm Sci. 2019;129:99–109. doi: 10.1016/j.ejps.2019.01.002
  • Boado RJ, Li JY, Nagaya M, et al. Selective expression of the large neutral amino acid transporter at the blood–brain barrier. Proc Natl Acad Sci USA. 1999;96(21):12079–12084. doi: 10.1073/pnas.96.21.12079
  • Scalise M, Galluccio M, Console L, et al. The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem. 2018;6:243. doi: 10.3389/fchem.2018.00243
  • Duelli R, Enerson BE, Gerhart DZ, et al. Expression of large amino acid transporter LAT1 in rat brain endothelium. J Cereb Blood Flow Metab. 2000;20(11):1557–1562. doi: 10.1097/00004647-200011000-00005
  • Bonina F, Puglia C, Rimoli MG, et al. Glycosyl derivatives of dopamine and L-dopa as Anti-Parkinson prodrugs: synthesis, pharmacological activity and in vitro stability studies. J Drug Target. 2003;11(1):25–36. doi: 10.1080/10611860305553
  • Bilsky EJ, Egleton RD, Mitchell SA, et al. Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J Med Chem. 2000;43(13):2586–2590. doi: 10.1021/jm000077y
  • Manfredini S, Pavan B, Vertuani S, et al. Design, synthesis and activity of ascorbic acid prodrugs of nipecotic, kynurenic and diclophenamic acids, liable to increase neurotropic activity. J Med Chem. 2002;45(3):559–562. doi: 10.1021/jm015556r
  • Zhao Y, Qu B, Wu X, et al. Design, synthesis and biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen with “lock-in” function. Eur J Med Chem. 2014;82:314–323. doi: 10.1016/j.ejmech.2014.05.072
  • Wang L, Zhang L, Zhao Y, et al. Design, synthesis, and neuroprotective effects of dual-brain targeting naproxen prodrug. Arch Pharm (Weinheim). 2018;351(5):e1700382. doi: 10.1002/ardp.201700382
  • Maekawa-Matsuura M, Fujieda K, Maekawa Y, et al. LAT1-targeting thermoresponsive liposomes for effective cellular uptake by cancer cells. ACS Omega. 2019;4(4):6443–6451. doi: 10.1021/acsomega.9b00216
  • Wang Z, Chi D, Wu X, et al. Tyrosine modified irinotecan-loaded liposomes capable of simultaneously targeting LAT1 and ATB0,+ for efficient tumor therapy. J Control Release. 2019;316:22–33. doi: 10.1016/j.jconrel.2019.10.037
  • Fu Q, Zhao Y, Yang Z, et al. Liposomes actively recognizing the glucose transporter GLUT1 and integrin αvβ3 for dual-targeting of glioma. Arch Pharm (Weinheim). 2019;352(2):1800219. doi: 10.1002/ardp.201800219
  • Ronaldson PT, Davis TP, Sibley DR. Targeted drug delivery to treat pain and cerebral hypoxia. Pharmacol Rev. 2013;65(1):291–314. doi: 10.1124/pr.112.005991
  • Roth M, Obaidat A, Hagenbuch B. Oatps, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–1287. doi: 10.1111/j.1476-5381.2011.01724.x
  • Schäfer AM, Meyer Zu Schwabedissen HE, Bien-Möller S, et al. OATP1A2 and OATP2B1 are interacting with dopamine-receptor agonists and antagonists. Mol Pharm. 2020;17(6):1987–1995. doi: 10.1021/acs.molpharmaceut.0c00159
  • Tonduru AK, Maljaei SH, Adla SK, et al. Targeting glial cells by organic anion-transporting polypeptide 1C1 (OATP1C1)-utilizing l-thyroxine-derived prodrugs. J Med Chem. 2023;66(22):15094–15114. doi: 10.1021/acs.jmedchem.3c01026
  • Zhu P, Ye Z, Guo D, et al. Irinotecan alters the disposition of morphine via inhibition of organic cation transporter 1 (OCT1) and 2 (OCT2). Pharm Res. 2018;35(12):243. doi: 10.1007/s11095-018-2526-y
  • Shnitsar V, Eckardt R, Gupta S, et al. Expression of human organic cation transporter 3 in kidney carcinoma cell lines increases chemosensitivity to melphalan, irinotecan, and vincristine. Cancer Res. 2009;69(4):1494–1501. doi: 10.1158/0008-5472.CAN-08-2483
  • Sachdev JC, Munster P, Northfelt DW, et al. Phase I study of liposomal irinotecan in patients with metastatic breast cancer: findings from the expansion phase. Breast Cancer Res Treat. 2021;185(3):759–771. doi: 10.1007/s10549-020-05995-7
  • Abdel Karim N, Bhatt A, Chiec L, et al. Systemic chemotherapy for progression of brain metastases in extensive-stage small cell lung cancer. Case Rep Oncol Med. 2015;2015:1–3. doi: 10.1155/2015/620582
  • Cundy KC, Branch R, Chernov-Rogan T, et al. XP13512 [(±)-1-([(α-Isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane Acetic Acid], a novel gabapentin prodrug: I. design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J Pharmacol Exp Ther. 2004;311(1):315–323. doi: 10.1124/jpet.104.067934
  • Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta Gen Subj. 2012;1820(3):291–317. doi: 10.1016/j.bbagen.2011.07.016
  • Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22(3):225–250. doi: 10.1002/med.10008
  • Uchida Y, Goto R, Takeuchi H, et al. Abundant expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1, and xCT transporters in blood-arachnoid barrier of Pig and polarized localizations at CSF- and blood-facing plasma membranes. Drug Metab Dispos. 2020;48(2):135–145. doi: 10.1124/dmd.119.089516
  • Uchida Y, Zhang Z, Tachikawa M, et al. Quantitative targeted absolute proteomics of rat blood–cerebrospinal fluid barrier transporters: comparison with a human specimen. J Neurochem. 2015;134(6):1104–1115. doi: 10.1111/jnc.13147
  • Kongpracha P, Wiriyasermkul P, Isozumi N, et al. Simple but efficacious enrichment of integral membrane proteins and their interactions for in-depth membrane proteomics. Mol Cell Proteomics. 2022;21(5):100206. doi: 10.1016/j.mcpro.2022.100206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.