34
Views
0
CrossRef citations to date
0
Altmetric
Review

An update on the latest strategies in retinal drug delivery

, , , ORCID Icon, ORCID Icon, , , , ORCID Icon & show all
Received 23 Jan 2024, Accepted 20 May 2024, Published online: 27 May 2024

References

  • Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–562. doi: 10.1046/j.1440-1681.2000.03288.x
  • Ranta V-P, Mannermaa E, Lummepuro K, et al. Barrier analysis of periocular drug delivery to the posterior segment. J Controlled Release. 2010;148(1):42–48. doi: 10.1016/j.jconrel.2010.08.028
  • Knop E, Knop N. Anatomy and immunology of the ocular surface. 2007.
  • Newell FW. Ophthalmology: principles and concepts. 1982.
  • Cunha-Vaz JG. The blood–retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78(3):715–721. doi: 10.1016/S0014-4835(03)00213-6
  • Cunha-Vaz J. Blood–Retinal Barrier. Encycl Eye. 2010:209–215.
  • Kim HM, Woo SJ. Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics. 2021;13(1):108. doi: 10.3390/pharmaceutics13010108
  • Loftsson T. Topical drug delivery to the retina: obstacles and routes to success. Expert Opin Drug Delivery. 2022;19(1):9–21. doi: 10.1080/17425247.2022.2017878
  • Ramsay E, Lajunen T, Bhattacharya M, et al. Selective drug delivery to the retinal cells: biological barriers and avenues. J Controlled Release. 2023 Sep 1;361:1–19. doi: 10.1016/j.jconrel.2023.07.028
  • Han H, Li S, Xu M, et al. Polymer- and lipid-based nanocarriers for ocular drug delivery: current status and future perspectives. Adv Drug Deliv Rev. 2023 May;196:114770. doi: 10.1016/j.addr.2023.114770
  • Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Delivery Rev. 1995;16(1):39–43. doi: 10.1016/0169-409X(95)00012-V
  • Hughes P, Mitra A. Overview of ocular drug delivery and iatrogenic ocular cytopathologies. Drugs Pharm Sci. 1993;58:1–27.
  • Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Delivery. 2008;5(5):567–581. doi: 10.1517/17425247.5.5.567
  • Wang W, Sasaki H, Chien DS, et al. Lipophilicity influence on conjunctival drug penetration in the pigmented rabbit: a comparison with corneal penetration. Curr Eye Res. 1991 Jun;10(6):571–579. doi: 10.3109/02713689109001766
  • Löscher M, Seiz C, Hurst J, et al. Topical drug delivery to the posterior segment of the eye. Pharmaceutics. 2022 Jan 6;14(1):134. doi: 10.3390/pharmaceutics14010134
  • Hämäläinen K-M, Kananen K, Auriola S, et al. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Visual Sci. 1997;38(3):627–634.
  • Yadav D, Varma LT, Yadav K. Drug Delivery to Posterior Segment of the Eye: Conventional Delivery Strategies, Their Barriers, and Restrictions. In: Patel J, Sutariya V, Kanwar J, Pathak Y, editors. Drug Delivery for the Retina and Posterior Segment Disease. Cham: Springer; 2018. doi: 10.1007/978-3-319-95807-1_3
  • Samoilă L, Voștinaru O, Dinte E, et al. Topical treatment for retinal degenerative pathologies: a systematic review. Int J Mol Sci. 2023;24(9):8045. doi: 10.3390/ijms24098045
  • Lindstrom R, Kim T. Ocular permeation and inhibition of retinal inflammation: an examination of data and expert opinion on the clinical utility of nepafenac. Curr Med Res Opin. 2006 Feb 01;22(2):397–404. doi: 10.1185/030079906X89775
  • Chastain JE, Sanders ME, Curtis MA, et al. Distribution of topical ocular nepafenac and its active metabolite amfenac to the posterior segment of the eye. Exp Eye Res. 2016 Apr 01;145:58–67. doi: 10.1016/j.exer.2015.10.009
  • Hussain RM, Shaukat BA, Ciulla LM, et al. Vascular endothelial growth factor antagonists: promising players in the treatment of neovascular age-related macular degeneration. Drug Design Develop Therapy. 2021;15:2653–2665. doi: 10.2147/DDDT.S295223
  • Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther. 2003;3(1):45–56. doi: 10.1517/14712598.3.1.45
  • Duffy AG, Ma C, Ulahannan SV, et al. Phase I and preliminary phase II study of TRC105 in combination with Sorafenib in hepatocellular carcinoma. Clin Cancer Res. 2017;23(16):4633–4641. doi: 10.1158/1078-0432.CCR-16-3171
  • Tian H, Huang JJ, Golzio C, et al. Endoglin interacts with VEGFR2 to promote angiogenesis. FASEB J. 2018;32(6):2934–2949. doi: 10.1096/fj.201700867RR
  • Nolan-Stevaux O, Zhong W, Culp S, et al. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLOS ONE. 2012;7(12):e50920. doi: 10.1371/journal.pone.0050920
  • Gordon MS, Robert F, Matei D, et al. An Open-Label Phase Ib Dose-Escalation Study of TRC105 (anti-endoglin antibody) with Bevacizumab in patients with advanced cancer. Clin Cancer Res. 2014;20(23):5918–5926. doi: 10.1158/1078-0432.CCR-14-1143
  • Rosen LS, Hurwitz HI, Wong MK, et al. A phase I first-in-human study of TRC105 (anti-endoglin antibody) in patients with advanced cancer. Clin Cancer Res. 2012;18(17):4820–4829. doi: 10.1158/1078-0432.CCR-12-0098
  • Gonzalez VH, Berger B, Goldberg R, et al. Safety and tolerability of intravitreal carotuximab (DE-122) in patients with persistent exudative age-related macular degeneration: a phase i study. Trans Vision Sci Technol. 2021;10(14):27–27. doi: 10.1167/tvst.10.14.27
  • Wells JA, Gonzales CR, Berger BB, et al. A Phase 1, Open-Label, Dose-Escalation Trial to Investigate Safety and Tolerability of Single Intravitreous Injections of ICON-1 Targeting Tissue Factor in Wet AMD. Ophthalmic Surg Lasers Imaging Retina. 2018;49(5):336–345. doi: 10.3928/23258160-20180501-07
  • Samanta A, Aziz AA, Jhingan M, et al. Emerging therapies in Neovascular Age-Related Macular Degeneration in 2020. Asia-Pac J Ophthalmol. 2020;9(3):250–259. doi: 10.1097/APO.0000000000000291
  • Iconic Therapeutics I. Open-Label Study of Intravitreal ICON-1 in Patients with Choroidal Neovascularization Secondary to Age-related Macular Degeneration (AMD) (DECO). 2018.
  • Al-Khersan H, Hussain RM, Ciulla TA, et al. Innovative therapies for neovascular age-related macular degeneration. Expert Opin Pharmacother. 2019 Oct 13;20(15):1879–1891. doi: 10.1080/14656566.2019.1636031
  • Chandrasekaran PR, Madanagopalan VG. KSI-301: antibody biopolymer conjugate in retinal disorders. Ther Adv Ophthalmol. 2021;13:251584142110277. doi: 10.1177/25158414211027708
  • Liang h, Huang X, Ngo W, et al. KSI-301: an anti-VEGF antibody biopolymer conjugate with extended half-life for treatment of neovascular retinal diseases. Invest Ophthalmol Visual Sci. 2018;59(9):211–211.
  • Patel SS, Naor J, Qudrat A, et al. Phase 1 first-in-human study of KSI-301: a novel anti-VEGF antibody biopolymer conjugate with extended durability. Invest Ophthalmol Visual Sci. 2019;60(9):3670–3670.
  • Lucas Kim BB, Shah VA, Sharma P, et al. CMV Retinitis. 2023.
  • Dugel PU, Boyer DS, Antoszyk AN, et al. Phase 1 Study of OPT-302 Inhibition of Vascular Endothelial Growth Factors C and D for Neovascular Age-Related Macular Degeneration. Ophthalmol Retina. 2020 Mar 01;4(3):250–263. doi: 10.1016/j.oret.2019.10.008
  • Jackson TL, Slakter J, Buyse M, et al. A randomized controlled trial of OPT-302, a VEGF-C/D inhibitor for neovascular age-related macular degeneration. Ophthalmol. 2023;130(6):588–597. doi: 10.1016/j.ophtha.2023.02.001
  • Baum U, Peyman GA, Barza M. Intravitreal administration of antibiotic in the treatment of bacterial endophthalmitis. III. Consensus. Survey Of Ophthalmology. 1982;26(4):204–206. doi: 10.1016/0039-6257(82)90080-7
  • Peynshaert K, Vanluchene H, De Clerck K, et al. ICG-mediated photodisruption of the inner limiting membrane enhances retinal drug delivery. J Controlled Release. 2022 Sep 01;349:315–326. doi: 10.1016/j.jconrel.2022.07.002
  • Käsdorf Benjamin T, Arends F, Lieleg O. Diffusion Regulation in the Vitreous Humor. Biophys J. 2015 Nov 17;109(10):2171–2181. doi: 10.1016/j.bpj.2015.10.002
  • Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Exp Eye Res. 1985;40(5):687–696. doi: 10.1016/0014-4835(85)90138-1
  • Sarao V, Veritti D, Boscia F, et al. Intravitreal Steroids for the Treatment of Retinal Diseases. Sci World J. 2014 Jan 08;2014:989501. doi: 10.1155/2014/989501
  • Castellarin A, Pieramici DJ. Anterior segment complications following periocular and intraocular injections. Ophthalmol Clini North Am. 2004;17(4):583–590, vii. doi: 10.1016/j.ohc.2004.06.010
  • Ebner R, Devoto M, Weil D, et al. Treatment of thyroid associated ophthalmopathy with periocular injections of triamcinolone. Br J Ophthalmol. 2004;88(11):1380–1386. doi: 10.1136/bjo.2004.046193
  • Van den Berg A. An audit of peribulbar blockade using 15 mm, 25 mm and 37.5 mm needles, and sub‐Tenon’s injection*. Anaesthesia. 2004;59(8):775–780. doi: 10.1111/j.1365-2044.2004.03799.x
  • Watkins R, Beigi B, Yates M, et al. Intraocular pressure and pulsatile ocular blood flow after retrobulbar and peribulbar anaesthesia. Br J Ophthalmol. 2001;85(7):796–798. doi: 10.1136/bjo.85.7.796
  • Klein ML, Jampol L, Condon P, et al. Central retinal artery occlusion without retrobulbar hemorrhage after retrobulbar anesthesia. Am J Ophthalmol. 1982;93(5):573–577. doi: 10.1016/S0002-9394(14)77371-4
  • Roman SJ, Sit DAC, Boureau CM, et al. Sub-Tenon’s anaesthesia: an efficient and safe technique. Br J Ophthalmol. 1997;81(8):673–676. doi: 10.1136/bjo.81.8.673
  • Wylie J, Henderson M, Doyle M, et al. Persistent binocular diplopia following cataract surgery: aetiology and management. Eye. 1994;8(5):543–546. doi: 10.1038/eye.1994.134
  • Trivedi H, Todkar H, Arbhave V, et al. Ocular anaesthesia for cataract surgery. Lancet. 2003;3:1312–1313.
  • Hyndiuk RA, Reagan MG. Radioactive depot-corticosteroid penetration into monkey ocular tissue: I. Retrobulbar and systemic administration. Arch Ophtalmol. 1968;80(4):499–503. doi: 10.1001/archopht.1968.00980050501019
  • Canavan K, Dark A, Garrioch M. Sub-Tenon’s administration of local anaesthetic: a review of the technique. Br J Anaesth. 2003;90(6):787. doi: 10.1093/bja/aeg105
  • Tyagi P, Kadam RS, Kompella UB, et al. Comparison of suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive fluorophotometry. PLOS ONE. 2012;7(10):e48188. doi: 10.1371/journal.pone.0048188
  • Campochiaro PA, Wykoff CC, Brown DM, et al. Suprachoroidal Triamcinolone Acetonide for Retinal Vein Occlusion: Results of the Tanzanite Study. Ophthalmol Retina. 2018 Apr 01;2(4):320–328. doi: 10.1016/j.oret.2017.07.013
  • Wykoff CC, Khurana RN, Lampen SIR, et al. Suprachoroidal Triamcinolone Acetonide for Diabetic Macular Edema: The HULK Trial. Ophthalmol Retina. 2018 Aug;2(8):874–877. doi: 10.1016/j.oret.2018.03.008
  • Yeh S, Khurana RN, Shah M, et al. Efficacy and safety of suprachoroidal CLS-TA for Macular Edema Secondary to noninfectious uveitis. Ophthalmol. 2020;127(7):948–955. doi: 10.1016/j.ophtha.2020.01.006
  • Kim TW, Lindsey JD, Aihara M, et al. Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice. Invest Ophthalmol Visual Sci. 2002;43(6):1809–1816.
  • Bito L, Baroody R. The penetration of exogenous prostaglandin and arachidonic acid into, and their distribution within, the mammalian eye. Curr Eye Res. 1981;1(11):659–669. doi: 10.3109/02713688109001870
  • Weijtens O, Schoemaker RC, Romijn FP, et al. Intraocular penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmol. 2002;109(10):1887–1891. doi: 10.1016/S0161-6420(02)01176-4
  • Yasukawa T, Ogura Y, Sakurai E, et al. Intraocular sustained drug delivery using implantable polymeric devices. Adv Drug Delivery Rev. 2005;57(14):2033–2046. doi: 10.1016/j.addr.2005.09.005
  • Bourges J, Bloquel C, Thomas A, et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Delivery Rev. 2006;58(11):1182–1202. doi: 10.1016/j.addr.2006.07.026
  • Yohe S, Maass KF, Horvath J, et al. In-vitro characterization of ranibizumab release from the Port Delivery System. JControlled Release. 2022;345:101–107. doi: 10.1016/j.jconrel.2022.03.005
  • Ranade SV, Wieland MR, Tam T, et al. The Port Delivery System with ranibizumab: a new paradigm for long-acting retinal drug delivery. Drug Deliv. 2022 Dec;29(1):1326–1334. doi: 10.1080/10717544.2022.2069301
  • Kuppermann BD, Patel SS, Boyer DS, et al. PHASE 2 STUDY of the SAFETY and EFFICACY of BRIMONIDINE DRUG DELIVERY SYSTEM (BRIMO DDS) GENERATION 1 in PATIENTS with GEOGRAPHIC ATROPHY SECONDARY to AGE-RELATED MACULAR DEGENERATION. Retina. 2021;41(1):144–155. doi: 10.1097/IAE.0000000000002789
  • Hori T, Ito Y, Raut B, et al. Three-dimensional-printed refillable drug delivery device for long-term sustained drug delivery to Retina. Sens Mater. 2023;35(4):1301–1313. doi: 10.18494/SAM4167
  • Barratt GM. Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today. 2000;3(5):163–171. doi: 10.1016/S1461-5347(00)00255-8
  • Zhang L, Li Y, Zhang C, et al. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomed. 2009;4:175. doi: 10.2147/IJN.S6428
  • Luo L, Yang J, Oh Y, et al. Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis. J Controlled Release. 2019;296:68–80. doi: 10.1016/j.jconrel.2019.01.018
  • Kicková E, Sadeghi A, Puranen J, et al. Pharmacokinetics of Pullulan–Dexamethasone Conjugates in Retinal Drug Delivery. Pharmaceutics. 2021;14(1):12–12. doi: 10.3390/pharmaceutics14010012
  • Liu J, Zhang X, Li G, et al. Anti-Angiogenic Activity of Bevacizumab-Bearing Dexamethasone-Loaded PLGA Nanoparticles for Potential Intravitreal Applications. Int J Nanomed. 2019;14:8819–8834. doi: 10.2147/IJN.S217038
  • Pandit J, Sultana Y, Aqil M. Chitosan coated nanoparticles for efficient delivery of bevacizumab in the posterior ocular tissues via subconjunctival administration. Carbohydr Polym. 2021;267:118217–118217. doi: 10.1016/j.carbpol.2021.118217
  • Luis de Redín I, Boiero C, Martínez-Ohárriz MC, et al. Human serum albumin nanoparticles for ocular delivery of bevacizumab. Int J Pharmaceut. 2018;541(1–2):214–223. doi: 10.1016/j.ijpharm.2018.02.003
  • Hsu X-L, Wu L-C, Hsieh J-Y, et al. Nanoparticle-Hydrogel Composite Drug Delivery System for Potential Ocular Applications. Polymers. 2021;13(4):642–642. doi: 10.3390/polym13040642
  • Qiu F, Meng T, Chen Q, et al. Fenofibrate-Loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration. Mol Pharmaceut. 2019;16(5):1958–1970. doi: 10.1021/acs.molpharmaceut.8b01319
  • Lorenzo‐Soler L, Praphanwittaya P, Olafsdottir OB, et al. Topical noninvasive retinal drug delivery of a tyrosine kinase inhibitor: 3% cediranib maleate cyclodextrin nanoparticle eye drops in the rabbit eye. Acta Ophthalmol. 2022;100(7):788–796. doi: 10.1111/aos.15101
  • Wang Y, Liu C-H, Ji T, et al. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat Commun. 2019;10(1):804–804. doi: 10.1038/s41467-019-08690-4
  • Bhatt P, Narvekar P, Lalani R, et al. An in vitro Assessment of Thermo-Reversible Gel Formulation Containing Sunitinib Nanoparticles for Neovascular Age-Related Macular Degeneration. AAPS Pharm Sci Tech. [2019 Aug 9];20(7):281. doi: 10.1208/s12249-019-1474-0
  • Ramazani F, Hiemstra C, Steendam R, et al. Sunitinib microspheres based on [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers for ocular drug delivery. Eur J Pharm Biopharm. 2015 Sep;95(Pt B):368–377. doi: 10.1016/j.ejpb.2015.02.011
  • Dib E, Maia M, Lima Ade S, et al. In vivo, in vitro toxicity and in vitro angiogenic inhibition of sunitinib malate. Curr Eye Res. 2012 Jul;37(7):567–574. doi: 10.3109/02713683.2011.635916
  • Li Q, Weng J, Wong SN, et al. Nanoparticulate Drug Delivery to the Retina. Mol Pharmaceut. 2021 Feb 01;18(2):506–521. doi: 10.1021/acs.molpharmaceut.0c00224
  • Mainardes RM, Silva LP. Drug delivery systems: past, present, and future. Curr Drug Targets. 2004;5(5):449–455. doi: 10.2174/1389450043345407
  • Kaur IP, Garg A, Singla AK, et al. Vesicular systems in ocular drug delivery: an overview. Int J Pharmaceut. 2004;269(1):1–14. doi: 10.1016/j.ijpharm.2003.09.016
  • Peyman GA, Ganiban GJ. Delivery systems for intraocular routes. Adv Drug Delivery Rev. 1995;16(1):107–123. doi: 10.1016/0169-409X(95)00018-3
  • Mu H, Wang Y, Chu Y, et al. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Delivery. 2018;25(1):1372–1383. doi: 10.1080/10717544.2018.1474967
  • Tavakoli S, Puranen J, Bahrpeyma S, et al. Liposomal sunitinib for ocular drug delivery: a potential treatment for choroidal neovascularization. Int J Pharmaceut. 2022;620:121725–121725. doi: 10.1016/j.ijpharm.2022.121725
  • Li J, Cheng T, Tian Q, et al. A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye. Drug Delivery. 2019;26(1):188–198. doi: 10.1080/10717544.2019.1571122
  • Asasutjarit R, Managit C, Phanaksri T, et al. Formulation development and in vitro evaluation of transferrin-conjugated liposomes as a carrier of ganciclovir targeting the retina. Int J Pharmaceut. 2020;577:119084–119084. doi: 10.1016/j.ijpharm.2020.119084
  • Zeng S, Chen Y, Zhou F, et al. Recent advances and prospects for lipid-based nanoparticles as drug carriers in the treatment of human retinal diseases. Adv Drug Delivery Rev. 2023 Aug 01;199:114965. doi: 10.1016/j.addr.2023.114965
  • Wadhwa S, Paliwal R, Paliwal SR, et al. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des. 2009;15(23):2724–2750. doi: 10.2174/138161209788923886
  • Kattar A, Quelle-Regaldie A, Sánchez L, et al. Formulation and Characterization of Epalrestat-Loaded Polysorbate 60 Cationic Niosomes for Ocular Delivery. Pharmaceutics. 2023;15(4):1247. doi: 10.3390/pharmaceutics15041247
  • Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther. 2009;11(6):329–337. doi: 10.1089/dia.2008.0103
  • Jiang J, Moore JS, Edelhauser HF, et al. Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res. 2009;26(2):395–403. doi: 10.1007/s11095-008-9756-3
  • Roy G, Garg P, Venuganti VVK. Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye. Int J Pharmaceut. 2022;612:121305–121305. doi: 10.1016/j.ijpharm.2021.121305
  • Parkinson TM, Ferguson E, Febbraro S, et al. Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther. 2003;19(2):145–151. doi: 10.1089/108076803321637672
  • Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Delivery Rev. 2005;57(14):2063–2079. doi: 10.1016/j.addr.2005.08.006
  • Roy P. La iontoforesis en la administración ocular de fármacos: alcanzando la madurez. Arch Soc Esp Oftalmol. 2007;82(10):601–606. doi: 10.4321/S0365-66912007001000002
  • Molokhia SA, Jeong E-K, Higuchi WI, et al. Transscleral iontophoretic and intravitreal delivery of a macromolecule: study of ocular distribution in vivo and postmortem with MRI. Exp Eye Res. 2009;88(3):418–425. doi: 10.1016/j.exer.2008.10.010
  • Jung JH, Chiang B, Grossniklaus HE, et al. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J Control Release. 2018 May 10;277:14–22. doi: 10.1016/j.jconrel.2018.03.001
  • Molokhia S, Papangkorn K, Butler C, et al. Transscleral Iontophoresis for Noninvasive Ocular Drug Delivery of Macromolecules. J Ocul Pharmacol Ther. 2020;36(4):247–256. doi: 10.1089/jop.2019.0081
  • Pepic I, Hafner A, Lovric J, et al. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci. 2010 Oct;99(10):4317–4325. doi: 10.1002/jps.22137
  • Velagaleti P, Anglade E, Khan J, et al. Topical Delivery of Hydrophobic Drugs Using a Novel Mixed Nanomicellar Technology to Treat Diseases of the Anterior & Posterior Segments of the Eye. Drug Delivery Technol. 2010;10(4):42–47.
  • Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. J Control Release. 2005 Jan 20;102(1):203–222. doi: 10.1016/j.jconrel.2004.09.021
  • Li L, Tan YB. Preparation and properties of mixed micelles made of pluronic polymer and PEG-PE. J Colloid Interface Sci. 2008;317(1):326–331. doi: 10.1016/j.jcis.2007.09.053
  • Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Delivery Rev. 2008;60(15):1663–1673. doi: 10.1016/j.addr.2008.09.002
  • Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharmaceut. 1998;172(1):33–70. doi: 10.1016/S0378-5173(98)00169-0
  • Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B. 2011;1(4):208–219. doi: 10.1016/j.apsb.2011.09.002
  • Cable C. An examination of the effect of surface modifications on the physicochemical and biological properties of non-ionic surfactant vesicles. University of Strathclyde; 1990.
  • Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine. 2010;5(3):485–505. doi: 10.2217/nnm.10.10
  • Wang D, Luo M, Huang B, et al. Localized co-delivery of CNTF and FK506 using a thermosensitive hydrogel for retina ganglion cells protection after traumatic optic nerve injury. Drug Delivery. 2020;27(1):556–564. doi: 10.1080/10717544.2020.1748759
  • Li C, Chen R, Xu M, et al. Hyaluronic acid modified MPEG-b-PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Delivery. 2018;25(1):1258–1265. doi: 10.1080/10717544.2018.1474972
  • Xu X, Sun L, Zhou L, et al. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym. 2020;227:115356–115356. doi: 10.1016/j.carbpol.2019.115356
  • Inokuchi Y, Hironaka K, Fujisawa T, et al. Physicochemical properties affecting retinal drug/coumarin-6 delivery from nanocarrier systems via eyedrop administration. Invest Ophthalmol Vis Sci. 2010 Jun;51(6):3162–3170. doi: 10.1167/iovs.09-4697
  • Gemayel MC, Bhatwadekar AD, Ciulla T. RNA therapeutics for retinal diseases. Expert Opin Biol Ther. 2021 May;21(5):603–613. doi: 10.1080/14712598.2021.1856365

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.