42
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanomedicine revolutionizes epilepsy treatment: overcoming therapeutic hurdles with nanoscale solutions

, , , , , & show all
Pages 735-750 | Received 18 Mar 2024, Accepted 23 May 2024, Published online: 26 May 2024

References

  • Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet. 2019;393(10172):689–701. doi: 10.1016/S0140-6736(18)32596-0
  • Manole AM, Sirbu CA, Mititelu MR, et al. State of the art and challenges in epilepsy–a narrative review. J Pers Med. 2023;13(4):623. doi: 10.3390/jpm13040623
  • Fiest KM, Sauro KM, Wiebe S, et al. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology. 2017;88:296–303. doi: 10.1212/WNL.0000000000003509
  • Perucca P, Scheffer IE, Kiley M. The management of epilepsy in children and adults. Med J Aust. 2018;208(5):226–233. doi: 10.5694/mja17.00951
  • Falco-Walter JJ, Scheffer IE, Fisher RS. The new definition and classification of seizures and epilepsy. Epilepsy Res. 2018;139:73–79. doi: 10.1016/j.eplepsyres.2017.11.015
  • Kim YS, Choi J, Yoon BE. Neuron-glia interactions in neurodevelopmental disorders. Cells. 2020;9(10):2176. doi: 10.3390/cells9102176
  • Kobylarek D, Iwanowski P, Lewandowska Z, et al. Advances in the potential biomarkers of epilepsy. Front Neurol. 2019;10:685. doi: 10.3389/fneur.2019.00685
  • Enright N, Simonato M, Henshall DC. Discovery and validation of blood microRnas as molecular biomarkers of epilepsy: ways to close current knowledge gaps. Epilepsia Open. 2018;3(4):427–436. doi: 10.1002/epi4.12275
  • Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy. Acta Neurol Scand. 2022;146(4):362–368. doi: 10.1111/ane.13616
  • Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 2019;15(8):459–472. doi: 10.1038/s41582-019-0217-x
  • Gu X, Hao D, Xiao P. Research progress of Chinese herbal medicine compounds and their bioactivities: fruitful 2020. Chin Herb Med. 2022;14(2):171–186. doi: 10.1016/j.chmed.2022.03.004
  • Kaur K, Sharma R, Singh A, et al. Pharmacological and analytical aspects of alkannin/shikonin and their derivatives: An update from 2008 to 2022. Chin Herb Med. 2022;14:511–527. doi: 10.1016/j.chmed.2022.08.001
  • Huang B, Wu Y, Li C, et al. Molecular basis and mechanism of action of Albizia julibrissin in depression treatment and clinical application of its formulae. Chin Herb Med. 2023;15(2):201–213. doi: 10.1016/j.chmed.2022.10.004
  • Xie J, Xu D, Wang C, et al. Jiawei Xiaoyao San in treatment of anxiety disorder and anxiety: a review. Chin Herb Med. 2023;15(2):214–221. doi: 10.1016/j.chmed.2022.12.007
  • Friedrich RP, Pöttler M, Cicha I, et al. Nanomedicine for neuroprotection. Nanomedicine. 2019;14(2):127–130. doi: 10.2217/nnm-2018-0401
  • Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics. 2019;11(3):118. doi: 10.3390/pharmaceutics11030118
  • Matias M, Santos AO, Silvestre S, et al. Fighting epilepsy with nanomedicines—Is this the right weapon? Pharmaceutics. 2023;15(2):306. doi: 10.3390/pharmaceutics15020306
  • Kou L, Bhutia YD, Yao Q, et al. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front Pharmacol. 2018;9:27. doi: 10.3389/fphar.2018.00027
  • Kou L, Yao Q, Zhang H, et al. Transporter-targeted nano-sized vehicles for enhanced and site-specific drug delivery. Cancers (Basel). 2020;12(10):2837. doi: 10.3390/cancers12102837
  • Lin L, Geng D, She D, et al. Targeted nanotheranostics for the treatment of epilepsy through in vivo hijacking of locally activated macrophages. Acta Biomater. 2024;174:314–330. doi: 10.1016/j.actbio.2023.11.027
  • Shi C, Zhang J, Wang H, et al. Trojan horse nanocapsule enabled in situ modulation of the phenotypic conversion of Th17 cells to Treg cells for the treatment of multiple sclerosis in mice. Adv Mater. 2023;35(11):e2210262. doi: 10.1002/adma.202210262
  • Rho JM, White HS. Brief history of anti-seizure drug development. Epilepsia Open. 2018;3(S2):114–119. doi: 10.1002/epi4.12268
  • Hakami T. Efficacy and tolerability of antiseizure drugs. Ther Adv Neurol Disord. 2021;14:17562864211037430. doi: 10.1177/17562864211037430
  • Perucca E, Brodie MJ, Kwan P, et al. 30 years of second-generation antiseizure medications: impact and future perspectives. Lancet Neurol. 2020;19(6):544–556. doi: 10.1016/S1474-4422(20)30035-1
  • Ilyas-Feldmann M, Asselin MC, Wang S, et al. P-glycoprotein overactivity in epileptogenic developmental lesions measured in vivo using (R)-[11 C]verapamil PET. Epilepsia. 2020;61(7):1472–1480. doi: 10.1111/epi.16581
  • Achar A, Ghosh C. Multiple hurdle mechanism and blood-brain barrier in epilepsy: glucocorticoid receptor-heat shock proteins on drug regulation. Neural Regen Res. 2021;16(12):2427–2428. doi: 10.4103/1673-5374.313046
  • Kanner AM, Bicchi MM. Antiseizure medications for adults with epilepsy. A Review JAMA. 2022;327(13):1269–1281. doi: 10.1001/jama.2022.3880
  • Moores G, D’Souza R, Bui E. Antiseizure medications and pregnancy. CMAJ. 2021;193(32):E1253. doi: 10.1503/cmaj.210065
  • Ding J, Wang Y, Lin W, et al. A population pharmacokinetic model of valproic acid in pediatric patients with epilepsy: a non-linear pharmacokinetic model based on protein-binding saturation. Clin Pharmacokinet. 2015;54:305–317. doi: 10.1007/s40262-014-0212-8
  • Wiebe S, Blume WT, Girvin JP, et al. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311–318. doi: 10.1056/NEJM200108023450501
  • Madaan P, Gupta A, Gulati S. Pediatric epilepsy surgery: indications and evaluation. Indian J Pediatr. 2021;88(10):1000–1006. doi: 10.1007/s12098-021-03668-x
  • Liu Y, Wu H, Li H, et al. Severity grading, risk factors, and prediction model of complications after epilepsy surgery: a large-scale and retrospective study. Front Neurol. 2021;12:722478. doi: 10.3389/fneur.2021.722478
  • Baxendale S. The cognitive costs, contraindications and complications of epilepsy surgery in adults. Curr Opin Neurol. 2020;33(2):207–212. doi: 10.1097/WCO.0000000000000799
  • Khoo A, de Tisi J, Mannan S, et al. Reasons for not having epilepsy surgery. Epilepsia. 2021;62(12):2909–2919. doi: 10.1111/epi.17083
  • Rugg-Gunn F, Miserocchi A, McEvoy A. Epilepsy surgery. Pract Neurol. 2020;20:4–14. doi: 10.1136/practneurol-2019-002192
  • Ryvlin P, Rheims S, Hirsch LJ, et al. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol. 2021;20(12):1038–1047. doi: 10.1016/S1474-4422(21)00300-8
  • Zhang H, Jin B, You X, et al. Pharmacodynamic advantages and characteristics of traditional Chinese medicine in prevention and treatment of ischemic stroke. Chin Herb Med. 2023;15(4):496–508. doi: 10.1016/j.chmed.2023.09.003
  • A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. The vagus nerve stimulation study group. Neurology. 1995;45(2):224–230. doi: 10.1212/WNL.45.2.224
  • Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908. doi: 10.1111/j.1528-1167.2010.02536.x
  • Morris GL 3rd, Gloss D, Buchhalter J, et al. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2013;81:1453–1459. doi: 10.1212/WNL.0b013e3182a393d1
  • Rusek M, Pluta R, Ułamek-Kozioł M, et al. Ketogenic diet in Alzheimer’s disease. Int J Mol Sci. 2019;20(16):3892. doi: 10.3390/ijms20163892
  • Ułamek-Kozioł M, Czuczwar SJ, Januszewski S, et al. Ketogenic diet and epilepsy. Nutrients. 2019;11(10):2510. doi: 10.3390/nu11102510
  • Calderón N, Betancourt L, Hernández L, et al. A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: a microdialysis study. Neurosci Lett. 2017;642:158–162. doi: 10.1016/j.neulet.2017.02.014
  • Barzegar M, Afghan M, Tarmahi V, et al. Ketogenic diet: overview, types, and possible anti-seizure mechanisms. Nutr Neurosci. 2021;24(4):307–316. doi: 10.1080/1028415X.2019.1627769
  • Heinrich M, Yao R, Xiao P. ‘Food and medicine continuum’ – why we should promote cross-cultural communication between the global east and West. Chin Herb Med. 2022;14(1):3–4. doi: 10.1016/j.chmed.2021.12.002
  • Hao D, Liu C. Deepening insights into food and medicine continuum within the context of pharmacophylogeny. Chin Herb Med. 2023;15(1):1–2. doi: 10.1016/j.chmed.2022.12.001
  • Ułamek-Kozioł M, Pluta R, Bogucka-Kocka A, et al. To treat or not to treat drug-refractory epilepsy by the ketogenic diet? That is the question. Ann Agric Environ Med. 2016;23(4):533–536. doi: 10.5604/12321966.1226841
  • Wells J, Swaminathan A, Paseka J, et al. Efficacy and safety of a ketogenic diet in children and adolescents with refractory epilepsy—a review. Nutrients. 2020;12(6):1809. doi: 10.3390/nu12061809
  • Yao Q, Chen R, Ganapathy V, et al. Therapeutic application and construction of bilirubin incorporated nanoparticles. J Control Release. 2020;328:407–424. doi: 10.1016/j.jconrel.2020.08.054
  • Kou L, Jiang X, Xiao S, et al. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release. 2020;318:25–37. doi: 10.1016/j.jconrel.2019.12.007
  • Xu Y, Lv L, Wang Q, et al. Emerging application of nanomedicine-based therapy in acute respiratory distress syndrome. Colloids Surf B Biointerfaces. 2024;237:113869. doi: 10.1016/j.colsurfb.2024.113869
  • Chen R, Jiang Z, Cheng Y, et al. Multifunctional iron-apigenin nanocomplex conducting photothermal therapy and triggering augmented immune response for triple negative breast cancer. Int J Pharmaceut. 2024;655:124016. doi: 10.1016/j.ijpharm.2024.124016
  • Chen R, Zhai Y-Y, Sun L, et al. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating STAT3 pathway and restricting immune cell recruitment. Asian J Pharm Sci. 2022;17(2):268–283. doi: 10.1016/j.ajps.2022.02.003
  • Shen X, Sheng H, Zhang Y, et al. Nanomedicine-based disulfiram and metal ion co-delivery strategies for cancer treatment. Int J Pharm X. 2024;7:100248. doi: 10.1016/j.ijpx.2024.100248
  • Kou L, Hou Y, Yao Q, et al. L-Carnitine-conjugated nanoparticles to promote permeation across blood-brain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. Artif Cells Nanomed Biotechnol. 2018;46:1605–1616. doi: 10.1080/21691401.2017.1384385
  • Bao S, Zheng H, Ye J, et al. Dual targeting EGFR and STAT3 with erlotinib and alantolactone co-loaded PLGA nanoparticles for pancreatic cancer treatment. Front Pharmacol. 2021;12:625084. doi: 10.3389/fphar.2021.625084
  • Kou L, Huang H, Tang Y, et al. Opsonized nanoparticles target and regulate macrophage polarization for osteoarthritis therapy: A trapping strategy. J Control Release. 2022;347:237–255. doi: 10.1016/j.jconrel.2022.04.037
  • Kou L, Jiang X, Tang Y, et al. Resetting amino acid metabolism of cancer cells by ATB(0,+)-targeted nanoparticles for enhanced anticancer therapy. Bioact Mater. 2022;9:15–28. doi: 10.1016/j.bioactmat.2021.07.009
  • Chen R, Lin X, Wang Q, et al. Dual-targeting celecoxib nanoparticles protect intestinal epithelium and regulate macrophage polarization for ulcerative colitis treatment. Chem Eng J. 2023;452:139445. doi: 10.1016/j.cej.2022.139445
  • Kou L, Sun R, Jiang X, et al. Tumor microenvironment-responsive, multistaged liposome induces apoptosis and ferroptosis by amplifying oxidative stress for enhanced cancer therapy. ACS Appl Mater Interfaces. 2020;12(27):30031–30043. doi: 10.1021/acsami.0c03564
  • Jabir NR, Tabrez S, Firoz CK, et al. A synopsis of nano-technological approaches toward anti-epilepsy therapy: present and future research implications. Curr Drug Metab. 2015;16(5):336–345. doi: 10.2174/1389200215666141125142605
  • Jiang X, Jiang Z, Huang S, et al. Ultraviolet B radiation-induced JPH203-loaded keratinocyte extracellular vesicles exert etiological interventions for psoriasis therapy. J Control Release. 2023;362:468–478. doi: 10.1016/j.jconrel.2023.08.059
  • Kou L, Yao Q, Sun M, et al. Cotransporting Ion is a trigger for cellular endocytosis of transporter-targeting nanoparticles: a case study of high-efficiency SLC22A5 (OCTN2)-mediated carnitine-conjugated nanoparticles for oral delivery of therapeutic drugs. Adv Healthcare Mater. 2017;6(17):1700165. doi: 10.1002/adhm.201700165
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18. doi: 10.1016/j.colsurfb.2009.09.001
  • Chen Z, Chen H, Huang L, et al. ATB(0,+)-targeted nanoparticles initiate autophagy suppression to overcome chemoresistance for enhanced colorectal cancer therapy. Int J Pharmaceut. 2023;641:123082. doi: 10.1016/j.ijpharm.2023.123082
  • Qi B, Ding Y, Zhang Y, et al. Biomaterial-assisted strategies to improve islet graft revascularization and transplant outcomes. Biomater Sci. 2024;12(4):821–836. doi: 10.1039/D3BM01295F
  • Deng S, Gigliobianco MR, Censi R, et al. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials (Basel). 2020;10(5):847. doi: 10.3390/nano10050847
  • Adhikari C. Polymer nanoparticles-preparations, applications and future insights: a concise review. Polym Plast Technol Eng. 2021;1–29. doi: 10.1080/25740881.2021.1939715
  • Marin E, Briceño MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine. 2013;8:3071–3090. doi: 10.2147/IJN.S47186
  • Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. doi: 10.3390/molecules25163731
  • Bonilla L, Esteruelas G, Ettcheto M, et al. Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges. Epilepsia Open. 2022;7(Suppl 1):S121–s132. doi: 10.1002/epi4.12567
  • Kaur IP, Bhandari R, Bhandari S, et al. Potential of solid lipid nanoparticles in brain targeting. J Control Release. 2008;127(2):97–109. doi: 10.1016/j.jconrel.2007.12.018
  • Tabatt K, Kneuer C, Sameti M, et al. Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. J Control Release. 2004;97(2):321–332. doi: 10.1016/j.jconrel.2004.02.029
  • Mosallaei N, Jaafari MR, Hanafi-Bojd MY, et al. Docetaxel-loaded solid lipid nanoparticles: preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci. 2013;102(6):1994–2004. doi: 10.1002/jps.23522
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery â–a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177. doi: 10.1016/S0939-6411(00)00087-4
  • Abudurexiti M, Xue J, Li X, et al. Curcumin/TGF-β1 siRNA loaded solid lipid nanoparticles alleviate cerebral injury after intracerebral hemorrhage by transnasal brain targeting. Colloids Surf B Biointerfaces. 2024;237:113857. doi: 10.1016/j.colsurfb.2024.113857
  • Neves AR, van der Putten L, Queiroz JF, et al. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J Biotechnol. 2021;331:108–117. doi: 10.1016/j.jbiotec.2021.03.010
  • Xia X, Sun T, Zhao Y, et al. Bilirubin nanoparticles alleviate sepsis-induced acute lung injury by protecting pulmonary endothelia glycocalyx and reducing inflammation. ACS Appl Nano Mater. 2024. doi: 10.1021/acsanm.4c02015
  • Yao Q, Ye J, Chen Y, et al. Modulation of glucose metabolism through macrophage-membrane-coated metal-organic framework nanoparticles for triple-negative breast cancer therapy. Chem Eng J. 2024;480:148069. doi: 10.1016/j.cej.2023.148069
  • Huang H, Zheng S, Wu J, et al. Opsonization inveigles macrophages engulfing carrier-free bilirubin/JPH203 nanoparticles to suppress inflammation for osteoarthritis therapy. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2024:e2400713. doi: 10.1002/advs.202400713
  • Yao Q, Tang Y, Dai S, et al. A biomimetic nanoparticle exerting protection against acute liver failure by suppressing CYP2E1 activity and scavenging excessive ROS. Adv Healthc Mater. 2023;12(24):e2300571. doi: 10.1002/adhm.202300571
  • Liu Y, Luo J, Chen X, et al. Cell membrane coating technology: a promising strategy for biomedical applications. Nanomicro Lett. 2019;11(1):100. doi: 10.1007/s40820-019-0330-9
  • Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release. 2015;220:600–607. doi: 10.1016/j.jconrel.2015.07.019
  • Zhu J, Yang Y, Ma W, et al. Antiepilepticus effects of tetrahedral framework nucleic acid via inhibition of gliosis-induced downregulation of glutamine synthetase and increased AMPAR internalization in the postsynaptic membrane. Nano Lett. 2022;22(6):2381–2390. doi: 10.1021/acs.nanolett.2c00025
  • Scioli-Montoto S, Sbaraglini ML, Cisneros JS, et al. Novel phenobarbital-loaded nanostructured lipid carriers for epilepsy treatment: From QbD to in vivo evaluation. Front Chem. 2022;10:908386. doi: 10.3389/fchem.2022.908386
  • Drion CM, van Scheppingen J, Arena A, et al. Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo — in search of potential anti-epileptogenic strategies for temporal lobe epilepsy. J Neuroinflammation. 2018;15(1):212. doi: 10.1186/s12974-018-1247-9
  • Yavarpour-Bali H, Ghasemi-Kasman M, Pirzadeh M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomedicine. 2019;14:4449–4460. doi: 10.2147/IJN.S208332
  • Hashemian M, Anissian D, Ghasemi-Kasman M, et al. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79:462–471. doi: 10.1016/j.pnpbp.2017.07.025
  • Matias M, Silvestre S, Falcão A, et al. Considerations and pitfalls in selecting the drug vehicles for evaluation of new drug candidates: Focus on in vivo pharmaco-toxicological assays based on the rotarod performance test. J Pharm Pharm Sci. 2018;21:110–118. doi: 10.18433/jpps29656
  • Ren T, Hu M, Cheng Y, et al. Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control. Eur J Pharm Sci. 2019;137:104988. doi: 10.1016/j.ejps.2019.104988
  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030
  • Xie J, Shen Z, Anraku Y, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials. 2019;224:119491. doi: 10.1016/j.biomaterials.2019.119491
  • Han L, Jiang C. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B. 2021;11(8):2306–2325. doi: 10.1016/j.apsb.2020.11.023
  • Löscher W. Epilepsy and alterations of the blood-brain barrier: cause or consequence of epileptic seizures or both? Handb Exp Pharmacol. 2022;273:331–350.
  • Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnology. 2016;14(1):27. doi: 10.1186/s12951-016-0177-x
  • Siddiqui MA, Akhter J, Aarzoo D, et al. Resveratrol loaded nanoparticles attenuate cognitive impairment and inflammatory markers in PTZ-induced kindled mice. Int Immunopharmacol. 2021;101:108287. doi: 10.1016/j.intimp.2021.108287
  • Ugur Yilmaz C, Emik S, Orhan N, et al. Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats. Life Sci. 2020;257:118081. doi: 10.1016/j.lfs.2020.118081
  • Ammar HO, Ghorab MM, Mahmoud AA, et al. Lamotrigine loaded poly-ɛ-(d,l-lactide-co-caprolactone) nanoparticles as brain delivery system. Eur J Pharm Sci. 2018;115:77–87. doi: 10.1016/j.ejps.2018.01.028
  • Qushawy M, Prabahar K, Abd-Alhaseeb M, et al. Preparation and evaluation of carbamazepine solid lipid nanoparticle for alleviating seizure activity in pentylenetetrazole-kindled mice. Molecules. 2019;24(21):3971. doi: 10.3390/molecules24213971
  • Igartúa DE, Martinez CS, Temprana CF, et al. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int J Pharm. 2018;544(1):191–202. doi: 10.1016/j.ijpharm.2018.04.032
  • Cano A, Ettcheto M, Espina M, et al. Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy. Nanomedicine. 2018;14(4):1073–1085. doi: 10.1016/j.nano.2018.01.019
  • Yurtdaş Kırımlıoğlu G, Menceloğlu Y, Erol K, et al. In vitro/in vivo evaluation of gamma-aminobutyric acid-loadedN,N-dimethylacrylamide-based pegylated polymeric nanoparticles for brain delivery to treat epilepsy. J Microencapsul. 2016;33(7):625–635. doi: 10.1080/02652048.2016.1234515
  • Zhou Z, Li K, Chu Y, et al. ROS-removing nano-medicine for navigating inflammatory microenvironment to enhance anti-epileptic therapy. Acta Pharm Sin B. 2023;13(3):1246–1261. doi: 10.1016/j.apsb.2022.09.019
  • Zhou Z, Li K, Guo Y, et al. ROS/Electro dual-reactive nanogel for targeting epileptic foci to remodel aberrant circuits and inflammatory microenvironment. ACS Nano. 2023;17(8):7847–7864. doi: 10.1021/acsnano.3c01140
  • Zhang Q, Yang L, Zheng Y, et al. Electro-responsive micelle-based universal drug delivery system for on-demand therapy in epilepsy. J Control Release. 2023;360:759–771. doi: 10.1016/j.jconrel.2023.07.024
  • Lopalco A, Ali H, Denora N, et al. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast. Int J Nanomedicine. 2015;10:1985–1996. doi: 10.2147/IJN.S77498
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133–149. doi: 10.2147/IJN.S596
  • Fang Z, Chen S, Qin J, et al. Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy. Biomaterials. 2016;97:110–121. doi: 10.1016/j.biomaterials.2016.04.021
  • Zybina A, Anshakova A, Malinovskaya J, et al. Nanoparticle-based delivery of carbamazepine: a promising approach for the treatment of refractory epilepsy. Int J Pharm. 2018;547(1–2):10–23. doi: 10.1016/j.ijpharm.2018.05.023
  • Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–1681. doi: 10.2174/1389450115666140804124808
  • Zara GP, Cavalli R, Fundarò A, et al. Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN). Pharmacol Res. 1999;40(3):281–286. doi: 10.1006/phrs.1999.0509
  • Patel S, Chavhan S, Soni H, et al. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target. 2011;19(6):468–474. doi: 10.3109/1061186X.2010.523787
  • Musumeci T, Serapide MF, Pellitteri R, et al. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur J Pharm Biopharm. 2018;133:309–320. doi: 10.1016/j.ejpb.2018.11.002
  • Liu S, Yang S, Ho PC. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci. 2018;13(1):72–81. doi: 10.1016/j.ajps.2017.09.001
  • Ahmad N, Ahmad R, Alrasheed RA, et al. Quantification and evaluations of catechin hydrate polymeric nanoparticles used in brain targeting for the treatment of epilepsy. Pharmaceutics. 2020;12(3):203. doi: 10.3390/pharmaceutics12030203
  • Ahmad N, Ahmad R, Qatifi SA, et al. A bioanalytical UHPLC based method used for the quantification of thymoquinone-loaded-PLGA-nanoparticles in the treatment of epilepsy. BMC Chem. 2020;14(1):10. doi: 10.1186/s13065-020-0664-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.