42
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabolism and structure of PDA as the target for new therapies: possibilities and limitations for nanotechnology

&
Pages 845-865 | Received 23 Jan 2024, Accepted 17 Jun 2024, Published online: 25 Jun 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  • Orth M, Metzger P, Gerum S, et al. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol. 2019;14(1):141. doi: 10.1186/s13014-019-1345-6
  • Mizrahi JD, Surana R, Valle WV, et al. Pancreatic cancer. Lancet. 2020;395(10242):2008–2020. doi: 10.1016/S0140-6736(20)30974-0
  • Ye L, Shi S, Chen W. Innate immunity in pancreatic cancer: lineage tracing and function. Front Immunol. 2022;13:1081919. doi: 10.3389/fimmu.2022.1081919
  • Melstrom LG, Salazar MD, Diamond DJ. The pancreatic cancer microenvironment: a true double agent. J Surg Oncol. 2017;116(1):7–15. doi: 10.1002/jso.24643
  • Murakami T, Hiroshima Y, Matsuyama R, et al. Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg. 2019;3(2):130–137. doi: 10.1002/ags3.12225
  • Zhang T, Ren Y, Yang P, et al. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death Dis. 2022;13(10):897. doi: 10.1038/s41419-022-05351-1
  • Sunami Y, Häußler J, Kleeff J. Cellular heterogeneity of pancreatic stellate cells, mesenchymal stem cells, and cancer-associated fibroblasts in pancreatic cancer. Cancers (Basel). 2020;12(12). doi: 10.3390/cancers12123770
  • Feig C, Gopinathan A, Neesse A, et al. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266–4276. doi: 10.1158/1078-0432.CCR-11-3114
  • Bannoura SF, Uddin MH, Nagasaka M, et al. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev. 2021;40(3):819–835. doi: 10.1007/s10555-021-09990-2
  • Bryant KL, Mancias JD, Kimmelma AC, et al. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39(2):91–100. doi: 10.1016/j.tibs.2013.12.004
  • Gaglio D, Metallo CM, Gameiro PA, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011;7(1):523. doi: 10.1038/msb.2011.56
  • Conroy T, Hammel P, Hebbar M, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379(25):2395–2406. doi: 10.1056/NEJMoa1809775
  • Lambert A, Gavoille C, Conroy T. Current status on the place of FOLFIRINOX in metastatic pancreatic cancer and future directions. Therap Adv Gastroenterol. 2017;10(8):631–645. doi: 10.1177/1756283X17713879
  • Atiq S, Atiq O, Atiq Z, et al. A case of metastatic pancreatic adenocarcinoma in complete remission using chemotherapy and immunotherapy. Cureus. 2021;13(2):e13133. doi: 10.7759/cureus.13133
  • Koskowska E, Lesnikow A, Pałucki J, et al. Long-term complete remission of pancreatic cancer after first-line chemotherapy with gemcitabine and nab-paclitaxel in a patient with depressive disorder. Oncol Clin Pract. 2020;16(2):83–86. doi: 10.5603/OCP.2020.0016
  • Sherman MH, Beatty GL. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu Rev Pathol. 2023;18(1):123–148. doi: 10.1146/annurev-pathmechdis-031621-024600
  • Ferrara B, Pignatelli B, Cossutta M, et al. The extracellular matrix in pancreatic cancer: description of a complex network and promising therapeutic options. Cancers (Basel). 2021;13(17):4442. doi: 10.3390/cancers13174442
  • Kawada K, Toda K, Sakai Y. Targeting metabolic reprogramming in KRAS-driven cancers. Int J Clin Oncol. 2017;22(4):651–659. doi: 10.1007/s10147-017-1156-4
  • Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27(1):441–464. doi: 10.1146/annurev-cellbio-092910-154237
  • Upadhyay M, Samal J, Kandpal M, et al. The Warburg effect: insights from the past decade. Pharmacol Ther. 2013;137(3):318–330. doi: 10.1016/j.pharmthera.2012.11.003
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–1033. doi: 10.1126/science.1160809
  • Dong S, Li W, Li X, et al. Glucose metabolism and tumour microenvironment in pancreatic cancer: a key link in cancer progression. Front Immunol. 2022;13:1038650. doi: 10.3389/fimmu.2022.1038650
  • Sharen G, Peng Y, Cheng H, et al. Prognostic value of GLUT-1 expression in pancreatic cancer: results from 538 patients. Oncotarget. 2017;8(12):19760–19767. doi: 10.18632/oncotarget.15035
  • Kurahara H, Maemura K, Mataki Y, et al. Significance of glucose transporter type 1 (GLUT-1) expression in the therapeutic strategy for pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2018;25(5):1432–1439. doi: 10.1245/s10434-018-6357-1
  • Melstrom LG, Salabat M, Ding X, et al. Apigenin down-regulates the hypoxia response genes: HIF-1alpha, GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res. 2011;167(2):173–181. doi: 10.1016/j.jss.2010.10.041
  • Melstrom LG, Salabat M, Ding X, et al. Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cancer cells. Pancreas. 2008;37(4):426–431. doi: 10.1097/MPA.0b013e3181735ccb
  • Xu D, Zhou Y, Xie X, et al. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter‑1 and lactate dehydrogenase A. Int J Oncol. 2020;57(5):1223–1233. doi: 10.3892/ijo.2020.5120
  • Huang D, Li C, Zhang H. Hypoxia and cancer cell metabolism. Acta Biochim Biophys Sin (Shanghai). 2014;46(3):214–219. doi: 10.1093/abbs/gmt148
  • Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol. 2014;4:64. doi: 10.3389/fonc.2014.00064
  • Elstrom RL, Bauer D, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004;64(11):3892–3899. doi: 10.1158/0008-5472.CAN-03-2904
  • Hamada S, Matsumoto R, Masamune A. HIF-1 and NRF2; key molecules for malignant phenotypes of pancreatic cancer. Cancers (Basel). 2022;14(2):14(2. doi: 10.3390/cancers14020411
  • Cui XG, Han Z, He S, et al. HIF1/2α mediates hypoxia-induced LDHA expression in human pancreatic cancer cells. Oncotarget. 2017;8(15):24840–24852. doi: 10.18632/oncotarget.15266
  • Yang J, Ren B, Yang G, et al. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci. 2020;77(2):305–321. doi: 10.1007/s00018-019-03278-z
  • He G, Jiang Y, Zhang B, et al. The effect of HIF-1alpha on glucose metabolism, growth and apoptosis of pancreatic cancerous cells. Asia Pac J Clin Nutr. 2014;23(1):174–180. doi: 10.6133/apjcn.2014.23.1.14
  • Li R, Li H, Zhu L, et al. Reciprocal regulation of LOXL2 and HIF1alpha drives the Warburg effect to support pancreatic cancer aggressiveness. Cell Death Dis. 2021;12(12):1106. doi: 10.1038/s41419-021-04391-3
  • Park JS, Lee J, Lee Y, et al. Emerging role of LOXL2 in the promotion of pancreas cancer metastasis. Oncotarget. 2016;7(27):42539–42552. doi: 10.18632/oncotarget.9918
  • Buchler P, Reber H, Buchler M, et al. Antiangiogenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia-inducible factor-1 and the down-regulation of VEGF gene expression. Cancer. 2004;100(1):201–210. doi: 10.1002/cncr.11873
  • Li Y, Zhao X, Tang H, et al. Effects of YC-1 on hypoxia-inducible factor 1 alpha in hypoxic human bladder transitional carcinoma cell line T24 cells. Urol Int. 2012;88(1):95–101. doi: 10.1159/000331881
  • Xiao Y, Qin T, Sun L, et al. Resveratrol ameliorates the malignant progression of pancreatic cancer by inhibiting hypoxia-induced pancreatic stellate cell activation. Cell Transplant. 2020;29:963689720929987. doi: 10.1177/0963689720929987
  • Romero-Garcia S, Moreno-Altamirano M, Prado-Garcia H, et al. Lactate contribution to the tumor microenvironment: mechanisms, effects on Immune Cells and therapeutic relevance. Front Immunol. 2016;7:52.
  • Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013;123(9):3685–3692. doi: 10.1172/JCI69741
  • Rong Y, Wu W, Ni X, et al. Lactate dehydrogenase a is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biol. 2013;34(3):1523–1530. doi: 10.1007/s13277-013-0679-1
  • Mohammad GH, Damink S, Malago M, et al. Pyruvate kinase M2 And lactate dehydrogenase a are overexpressed in pancreatic cancer and correlate with poor outcome. PLOS ONE. 2016;11(3):e0151635. doi: 10.1371/journal.pone.0151635
  • Le A, Cooper C, Gouw A, et al. Inhibition of lactate dehydrogenase a induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 2010;107(5):2037–2042. doi: 10.1073/pnas.0914433107
  • Mohammad GH, Vassileva V, Acedo P, et al. Targeting pyruvate kinase M2 and lactate dehydrogenase a is an effective combination strategy for the treatment of pancreatic cancer. Cancers (Basel). 2019;11(9):11(9. doi: 10.3390/cancers11091372
  • Cheng CS, Tan H, Wang N, et al. Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progression. Clin Transl Med. 2021;11(6):e467. doi: 10.1002/ctm2.467
  • Payen VL, Mina E, Hee VF, et al. Monocarboxylate transporters in cancer. Mol Metab. 2020;33:48–66. doi: 10.1016/j.molmet.2019.07.006
  • Kong SC, Nohr-Nielsen A, Zeeberg K, et al. Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells. Pancreas. 2016;45(7):1036–1047. doi: 10.1097/MPA.0000000000000571
  • Baek G, Tse YF, Hu Z, et al. MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep. 2014;9(6):2233–2249. doi: 10.1016/j.celrep.2014.11.025
  • Singh M, Afonso J, Sharma D, et al. Targeting monocarboxylate transporters (MCTs) in cancer: how close are we to the clinics? Semin Cancer Biol. 2023;90:1–14. doi: 10.1016/j.semcancer.2023.01.007
  • Liu T, Han S, Yao Y, et al. Role of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4) In tumor cells and the tumor microenvironment. Cancer Manag Res. 2023;15:957–975. doi: 10.2147/CMAR.S421771
  • Renner K, Bruss C, Schnell A, et al. Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep. 2019;29(1):135–150.e9. doi: 10.1016/j.celrep.2019.08.068
  • Kumstel S, Schreiber T, Goldstein L, et al. Targeting pancreatic cancer with combinatorial treatment of CPI-613 and inhibitors of lactate metabolism. PLOS ONE. 2022;17(4):e0266601. doi: 10.1371/journal.pone.0266601
  • Benjamin D, Colombi M, Hindupur SK, et al. Syrosingopine sensitizes cancer cells to killing by metformin. Sci Adv. 2016;2(12):e1601756. doi: 10.1126/sciadv.1601756
  • Qin C, Yang G, Yang J, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer. 2020;19(1):50. doi: 10.1186/s12943-020-01169-7
  • Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. Embo J. 2017;36(10):1302–1315. doi: 10.15252/embj.201696151
  • Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–105. doi: 10.1038/nature12040
  • Abrego J, Gunda V, Vernucci E, et al. GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Lett. 2017;400:37–46. doi: 10.1016/j.canlet.2017.04.029
  • Chakrabarti G, Moore ZR, Luo X, et al. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer Metab. 2015;3:12. doi: 10.1186/s40170-015-0137-1
  • Wang W, Pan H, Ren F, et al. Targeting ASCT2-mediated glutamine metabolism inhibits proliferation and promotes apoptosis of pancreatic cancer cells. Bioscience Reports query. 2022;42(3). doi: 10.1042/BSR20212171
  • Xu Y, Yu Z, Fu H, et al. Dual inhibitions on glucose/glutamine metabolisms for nontoxic pancreatic cancer therapy. ACS Appl Mater Interfaces. 2022;14(19):21836–21847. doi: 10.1021/acsami.2c00111
  • Gerber DE, Beg MS, Fattah F, et al. Phase 1 study of ARQ 761, a β-lapachone analogue that promotes NQO1-mediated programmed cancer cell necrosis. Br J Cancer. 2018;119(8):928–936. doi: 10.1038/s41416-018-0278-4
  • Buwenge M, Macchia G, Arcelli A, et al. Stereotactic radiotherapy of pancreatic cancer: a systematic review on pain relief. J Pain Res. 2018;11:2169–2178. doi: 10.2147/JPR.S167994
  • Zuzčák M, Trnka J. Cellular metabolism in pancreatic cancer as a tool for prognosis and treatment (Review). Int J Oncol. 2022;61(2). doi: 10.3892/ijo.2022.5383
  • Shetty A, Nagesh P, Setua S, et al. Novel paclitaxel nanoformulation impairs de novo lipid synthesis in pancreatic cancer cells and enhances gemcitabine efficacy. ACS Omega. 2020;5(15):8982–8991. doi: 10.1021/acsomega.0c00793
  • Fritz V, Benfodda Z, Rodier G, et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther. 2010;9(6):1740–1754. doi: 10.1158/1535-7163.MCT-09-1064
  • Eser S, Schnieke A, Schneider G, et al. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014;111(5):817–822. doi: 10.1038/bjc.2014.215
  • Yin X, Xu R, Song J, et al. Lipid metabolism in pancreatic cancer: emerging roles and potential targets. Cancer Commun (Lond). 2022;42(12):1234–1256. doi: 10.1002/cac2.12360
  • Catalina-Rodriguez O, Kolukula VK, Tomita Y, et al. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget. 2012;3(10):1220–1235. doi: 10.18632/oncotarget.714
  • Dean EJ, Falchook GS, Patel MR, et al. Preliminary activity in the first in human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640. J Clin Oncol. 2016;34(15_suppl):2512–2512. doi: 10.1200/JCO.2016.34.15_suppl.2512
  • Reyes-Castellanos G, Hadi NA, Gallardo-Arriaga S, et al. Combining the antianginal drug perhexiline with chemotherapy induces complete pancreatic cancer regression in vivo. iScience. 2023;26(6):106899. doi: 10.1016/j.isci.2023.106899
  • Andreasson C, Ansari D, Ekbom F, et al. Macropinocytosis: the Achilles’ heel of pancreatic cancer? Scand J Gastroenterol. 2021;56(2):177–179. doi: 10.1080/00365521.2020.1855471
  • Zhang Y, Commisso C. Macropinocytosis in cancer: a complex signaling network. Trends Cancer. 2019;5(6):332–334. doi: 10.1016/j.trecan.2019.04.002
  • Palm W. Metabolic functions of macropinocytosis. Philos Trans R Soc Lond B Biol Sci. 2019;374(1765):20180285. doi: 10.1098/rstb.2018.0285
  • Davidson SM, Jonas O, Keibler MA, et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat Med. 2017;23(2):235–241. doi: 10.1038/nm.4256
  • Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab. 2017;25(5):1037–1043. doi: 10.1016/j.cmet.2017.04.004
  • Yang S, Wang X, Contino G, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25(7):717–729. doi: 10.1101/gad.2016111
  • Gillson J, El-Aziz Y, Leck L, et al. Autophagy: a key player in pancreatic cancer progression and a potential drug target. Cancers (Basel). 2022;14(14):3528. doi: 10.3390/cancers14143528
  • Liu C, Li C, Liu Y. The role of metabolic reprogramming in pancreatic cancer chemoresistance. Front Pharmacol. 2022;13:1108776. doi: 10.3389/fphar.2022.1108776
  • Peyssonnaux C, Eychène A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell. 2001;93(1–2):53–62. doi: 10.1016/S0248-4900(01)01125-X
  • Xu R, Yang J, Ren B, et al. Reprogramming of amino acid metabolism in pancreatic cancer: recent advances and therapeutic strategies. Front Oncol. 2020;10:572722. doi: 10.3389/fonc.2020.572722
  • Commisso C, Davidson MS, Soydaner-Azeloglu RG, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633–637. doi: 10.1038/nature12138
  • Liu H, Sun M, Liu Z, et al. KRAS-enhanced macropinocytosis and reduced FcRn-mediated recycling sensitize pancreatic cancer to albumin-conjugated drugs. J Control Release. 2019;296:40–53. doi: 10.1016/j.jconrel.2019.01.014
  • Sheng W, Geng J, Li L, et al. An albumin‑binding domain and targeting peptide‑based recombinant protein and its enediyne‑integrated analogue exhibit directional delivery and potent inhibitory activity on pancreatic cancer with K‑ras mutation. Oncol Rep. 2020;43(3):851–863. doi: 10.3892/or.2020.7468
  • Wang X, Sheng W, Wang Y, et al. A macropinocytosis-intensifying albumin domain-based scFv antibody and its conjugate directed against K-Ras mutant pancreatic cancer. Mol Pharm. 2018;15(6):2403–2412. doi: 10.1021/acs.molpharmaceut.8b00234
  • Tanouchi A, Taniuchi K, Furihata M, et al. CCDC88A, a prognostic factor for human pancreatic cancers, promotes the motility and invasiveness of pancreatic cancer cells. J Exp Clin Cancer Res. 2016;35(1):190. doi: 10.1186/s13046-016-0466-0
  • Latario CJ, Schoenfeld LW, Howarth CL, et al. Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner. Mol Biol Cell. 2020;31(12):1259–1272. doi: 10.1091/mbc.E19-11-0605
  • Teranishi F, Takahashi N, Gao N, et al. Phosphoinositide 3-kinase inhibitor (wortmannin) inhibits pancreatic cancer cell motility and migration induced by hyaluronan in vitro and peritoneal metastasis in vivo. Cancer Sci. 2009;100(4):770–777. doi: 10.1111/j.1349-7006.2009.01084.x
  • Zheng YT, Yang H, Li T, et al. Amiloride sensitizes human pancreatic cancer cells to erlotinib in vitro through inhibition of the PI3K/AKT signaling pathway. Acta Pharmacol Sin. 2015;36(5):614–626. doi: 10.1038/aps.2015.4
  • Lin HP, Singla B, Ghoshal P, et al. Identification of novel macropinocytosis inhibitors using a rational screen of food and drug administration-approved drugs. Br J Pharmacol. 2018;175(18):3640–3655. doi: 10.1111/bph.14429
  • Meng H, Zhao Y, Dong J, et al. Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS Nano. 2013;7(11):10048–10065. doi: 10.1021/nn404083m
  • Chen X, Tao Y, He M, et al. Co-delivery of autophagy inhibitor and gemcitabine using a pH-activatable core-shell nanobomb inhibits pancreatic cancer progression and metastasis. Theranostics. 2021;11(18):8692–8705. doi: 10.7150/thno.60437
  • Wolpin BM, Rubinson DA, Wang X, et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist. 2014;19(6):637–638. doi: 10.1634/theoncologist.2014-0086
  • van Kuilenburg AB, Maring JG. Evaluation of 5-fluorouracil pharmacokinetic models and therapeutic drug monitoring in cancer patients. Pharmacogenomics. 2013;14(7):799–811. doi: 10.2217/pgs.13.54
  • Raczyński I, Radecka B, Krzakowski M. Survival of pancreatic cancer patients treated with nab-paclitaxel (nab-P) in clinical practice: analysis of national health fund data. Oncol Clin Pract. 2023;19(6):391–397. doi: 10.5603/OCP.2022.0055
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–284. doi: 10.1016/S0168-3659(99)00248-5
  • Mohammadzadeh V, Rahiman N, Hosseinikhah SM, et al. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: an update. J Drug Delivery Sci Technol. 2022;73:103459. doi: 10.1016/j.jddst.2022.103459
  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–79. doi: 10.1016/j.addr.2012.10.002
  • Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38. doi: 10.1016/j.addr.2018.07.007
  • Hansen AE, Petersen AL, Henriksen JR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano. 2015;9(7):6985–6995. doi: 10.1021/acsnano.5b01324
  • Grodzinski P, Kircher M, Goldberg M, et al. Integrating nanotechnology into cancer care. ACS Nano. 2019;13(7):7370–7376. doi: 10.1021/acsnano.9b04266
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nature Rev Mater. 2016;1(5):16014. doi: 10.1038/natrevmats.2016.14
  • Viegas C, Patricio AB, Prata J, et al. Advances in pancreatic cancer treatment by nano-based drug delivery systems. Pharmaceutics. 2023;15(9):2363. doi: 10.3390/pharmaceutics15092363
  • Liu L, Kshirsagar PG, Gautam SK, et al. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics. 2022;12(3):1030–1060. doi: 10.7150/thno.64805
  • Nielsen MF, Mortensen MB, Detlefsen S. Key players in pancreatic cancer-stroma interaction: cancer-associated fibroblasts, endothelial and inflammatory cells. World J Gastroenterol. 2016;22(9):2678–2700. doi: 10.3748/wjg.v22.i9.2678
  • Ansari D, Carvajo M, Bauden M, et al. Pancreatic cancer stroma: controversies and current insights. Scand J Gastroenterol. 2017;52(6–7):641–646. doi: 10.1080/00365521.2017.1293726
  • Tao J, Yang G, Zhou W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol. 2021;14(1):14. doi: 10.1186/s13045-020-01030-w
  • Tian C, Clauser KR, Ohlund D, et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc Natl Acad Sci USA. 2019;116(39):19609–19618. doi: 10.1073/pnas.1908626116
  • Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–1461. doi: 10.1126/science.1171362
  • Olson P, Chu GC, Perry SR, et al. Imaging guided trials of the angiogenesis inhibitor sunitinib in mouse models predict efficacy in pancreatic neuroendocrine but not ductal carcinoma. Proc Natl Acad Sci USA. 2011;108(49):E1275–84. doi: 10.1073/pnas.1111079108
  • Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–747. doi: 10.1016/j.ccr.2014.04.021
  • Smith NR, Baker D, Farren M, et al. Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res. 2013;19(24):6943–6956. doi: 10.1158/1078-0432.CCR-13-1637
  • Hosoya H, Kadowaki K, Matsusaki M, et al. Engineering fibrotic tissue in pancreatic cancer: a novel three-dimensional model to investigate nanoparticle delivery. Biochem Biophys Res Commun. 2012;419(1):32–37. doi: 10.1016/j.bbrc.2012.01.117
  • Adiseshaiah PP, Crist R, Hook SS, et al. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol. 2016;13(12):750–765. doi: 10.1038/nrclinonc.2016.119
  • Craven KE, Gore J, Wilson JL, et al. Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes. Oncotarget. 2016;7(1):323–341. doi: 10.18632/oncotarget.6345
  • Gore J, Craven KE, Wilson JL, et al. TCGA data and patient-derived orthotopic xenografts highlight pancreatic cancer-associated angiogenesis. Oncotarget. 2015;6(10):7504–7521. doi: 10.18632/oncotarget.3233
  • Di Maggio F, Arumugam P, Delvecchio FR, et al. Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma. Pancreatology. 2016;16(6):995–1004. doi: 10.1016/j.pan.2016.05.393
  • Wong PP, Demircioglu F, Ghazaly E, et al. Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell. 2015;27(1):123–137. doi: 10.1016/j.ccell.2014.10.015
  • Kaelin WG Jr., Shrivastav S, Shand DG, et al. Effect of verapamil on malignant tissue blood flow in SMT-2A tumor-bearing rats. Cancer Res. 1982;42(10):3944–3949.
  • Rath N, Morton JP, Julian L, et al. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Mol Med. 2017;9(2):198–218. doi: 10.15252/emmm.201606743
  • Vennin C, Chin VT, Warren SC, et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci Transl Med query. 2017;9(384). doi: 10.1126/scitranslmed.aai8504
  • Mei XL, Yang Y, Zhang YJ, et al. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am J Cancer Res. 2015;5(11):3311–3324.
  • Haider M, Elsherbeny A, Pittala V, et al. The potential role of sildenafil in cancer management through EPR augmentation. J Pers Med. 2021;11(6):585. doi: 10.3390/jpm11060585
  • Black KL, Yin D, Ong JM, et al. PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model. Brain Res. 2008;1230:290–302. doi: 10.1016/j.brainres.2008.06.122
  • Curnis F, Sacchi A, Corti A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest. 2002;110(4):475–482. doi: 10.1172/JCI0215223
  • Chen X, Jia F, Li Y, et al. Nitric oxide-induced stromal depletion for improved nanoparticle penetration in pancreatic cancer treatment. Biomaterials. 2020;246:119999. doi: 10.1016/j.biomaterials.2020.119999
  • Webb DJ, Muirhead GJ, Wulff M, et al. Sildenafil citrate potentiates the hypotensive effects of nitric oxide donor drugs in male patients with stable angina. J Am Coll Cardiol. 2000;36(1):25–31. doi: 10.1016/S0735-1097(00)00705-1
  • Seki T, Fang J, Maeda H. Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application. Cancer Sci. 2009;100(12):2426–2430. doi: 10.1111/j.1349-7006.2009.01323.x
  • Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater. 2013;12(11):958–962. doi: 10.1038/nmat3792
  • Sun D, Zhou S, Gao W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano. 2020;14(10):12281–12290. doi: 10.1021/acsnano.9b09713
  • Syrigos KN, Michalaki B, Alevyzaki F, et al. A phase-II study of liposomal doxorubicin and docetaxel in patients with advanced pancreatic cancer. Anticancer Res. 2002;22(6b):3583–3588.
  • Schlick K, Kiem D, Huemer F, et al. Non-pegylated liposomal doxorubicin as palliative chemotherapy in pre-treated advanced pancreatic cancer: a retrospective analysis of twenty-eight patients. Technol Cancer Res Treat. 2021;20:15330338211042139. doi: 10.1177/15330338211042139
  • Wainberg ZA, Bekaii-Saab T, Boland PM, et al. First-line liposomal irinotecan with oxaliplatin, 5-fluorouracil and leucovorin (NALIRIFOX) in pancreatic ductal adenocarcinoma: a phase I/II study. Eur J Cancer. 2021;151:14–24. doi: 10.1016/j.ejca.2021.03.028
  • Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–823. doi: 10.1038/nnano.2011.166
  • Nedelcu A, Mocan T, Grapa C, et al. Recent advances in nanoparticle-mediated diagnosis and the treatment of pancreatic cancer. Int J Mol Sci. 2021;22(15):8060. doi: 10.3390/ijms22158060
  • Liu X, Jiang J, Meng H. Transcytosis - an effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery. Theranostics. 2019;9(26):8018–8025. doi: 10.7150/thno.38587
  • Akashi Y, Oda T, Ohara Y, et al. Anticancer effects of gemcitabine are enhanced by co-administered iRGD peptide in murine pancreatic cancer models that overexpressed neuropilin-1. Br J Cancer. 2014;110(6):1481–1487. doi: 10.1038/bjc.2014.49
  • Hu C, Chen X, Huang Y, et al. Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Sci Rep. 2018;8(1):2274. doi: 10.1038/s41598-018-20715-4
  • Tanaka HY, Kano MR. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci. 2018;109(7):2085–2092. doi: 10.1111/cas.13630
  • Kano MR, Bae Y, Iwata C, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc Natl Acad Sci USA. 2007;104(9):3460–3465. doi: 10.1073/pnas.0611660104
  • Chauhan VP, Stylianopoulos T, Martin JD, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nature Nanotechnol. 2012;7(6):383–388. doi: 10.1038/nnano.2012.45
  • Beik J, Abed Z, Ghoreishi FS, et al. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. JControlled Release. 2016;235:205–221. doi: 10.1016/j.jconrel.2016.05.062
  • van Rhoon GC, Franckena M, Ten Hagen TLM. A moderate thermal dose is sufficient for effective free and TSL based thermochemotherapy. Adv Drug Deliv Rev. 2020;163-164:145–156. doi: 10.1016/j.addr.2020.03.006
  • Lepock JR. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia. 2003;19(3):252–266. doi: 10.1080/0265673031000065042
  • Roti Roti JL. Cellular responses to hyperthermia (40-46 degrees C): cell killing and molecular events. Int J Hyperthermia. 2008;24(1):3–15. doi: 10.1080/02656730701769841
  • Hijnen N, Langereis S, Grüll H. Magnetic resonance guided high-intensity focused ultrasound for image-guided temperature-induced drug delivery. Adv Drug Delivery Rev. 2014;72:65–81. doi: 10.1016/j.addr.2014.01.006
  • Hohneck AL, Sadikaj L, Heinemann L, et al. Patients with advanced pancreatic cancer treated with mistletoe and hyperthermia in addition to palliative chemotherapy: a retrospective single-center analysis. Cancers (Basel). 2023;15(20):4929. doi: 10.3390/cancers15204929
  • Maebayashi T, Ishibashi N, Aizawa T, et al. Treatment outcomes of concurrent hyperthermia and chemoradiotherapy for pancreatic cancer: Insights into the significance of hyperthermia treatment. Oncol Lett. 2017;13(6):4959–4964. doi: 10.3892/ol.2017.6066
  • Hao C, Xu H, Yu L, et al. Heparin: an essential drug for modern medicine. Prog Mol Biol Transl Sci. 2019;163:1–19.
  • Campello E, Ilich A, Simioni P, et al. The relationship between pancreatic cancer and hypercoagulability: a comprehensive review on epidemiological and biological issues. Br J Cancer. 2019;121(5):359–371. doi: 10.1038/s41416-019-0510-x
  • Icli F, Akbulut H, Utkan G, et al. Low molecular weight heparin (LMWH) increases the efficacy of cisplatinum plus gemcitabine combination in advanced pancreatic cancer. J Surg Oncol. 2007;95(6):507–512. doi: 10.1002/jso.20728
  • von Delius S, Ayvaz M, Wagenpfeil S, et al. Effect of low-molecular-weight heparin on survival in patients with advanced pancreatic adenocarcinoma. Thromb Haemost. 2007;98(2):434–439. doi: 10.1160/TH07-01-0004
  • Hirsh J, Fuster V, Ansell J, et al. American Heart Association/American college of cardiology foundation guide to warfarin therapy. Circulation. 2003;107(12):1692–1711. doi: 10.1161/01.CIR.0000063575.17904.4E
  • Nakchbandi W, Muller H, Singer MV, et al. Effects of low-dose warfarin and regional chemotherapy on survival in patients with pancreatic carcinoma. Scand J Gastroenterol. 2006;41(9):1095–1104. doi: 10.1080/00365520600575720
  • Bever KM, Sugar EA, Bigelow E, et al. The prognostic value of stroma in pancreatic cancer in patients receiving adjuvant therapy. HPB (Oxford). 2015;17(4):292–298. doi: 10.1111/hpb.12334
  • Topalovski M, Brekken RA. Matrix control of pancreatic cancer: new insights into fibronectin signaling. Cancer Lett. 2016;381(1):252–258. doi: 10.1016/j.canlet.2015.12.027
  • Chitty JL, Yam M, Perryman L, et al. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. Nat Cancer. 2023;4(9):1326–1344. doi: 10.1038/s43018-023-00614-y
  • Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol. 2020;17(8):487–505. doi: 10.1038/s41575-020-0300-1
  • Murphy JE, Wo JY, Ryan DP, et al. Total neoadjuvant therapy with folfirinox in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol. 2019;5(7):1020–1027. doi: 10.1001/jamaoncol.2019.0892
  • Wang G, Zhou X, Guo Z, et al. The Anti-fibrosis drug Pirfenidone modifies the immunosuppressive tumor microenvironment and prevents the progression of renal cell carcinoma by inhibiting tumor autocrine TGF-β. Cancer Biol Ther. 2022;23(1):150–162. doi: 10.1080/15384047.2022.2035629
  • Qin W, Zou J, Huang Y, et al. Pirfenidone facilitates immune infiltration and enhances the antitumor efficacy of PD-L1 blockade in mice. Oncoimmunology. 2020;9(1):1824631. doi: 10.1080/2162402X.2020.1824631
  • Chanmee T, Ontong P, Itano N. Hyaluronan: a modulator of the tumor microenvironment. Cancer Lett. 2016;375(1):20–30. doi: 10.1016/j.canlet.2016.02.031
  • Cheng XB, Sato N, Kohi S, et al. Prognostic impact of hyaluronan and its regulators in pancreatic ductal adenocarcinoma. PLoS One. 2013;8(11):e80765. doi: 10.1371/journal.pone.0080765
  • Provenzano PP, Cuevas C, Chang AE, et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–429. doi: 10.1016/j.ccr.2012.01.007
  • Seki T, Saida Y, Kishimoto S, et al. PEGPH20, a PEGylated human hyaluronidase, induces radiosensitization by reoxygenation in pancreatic cancer xenografts. A molecular imaging study. Neoplasia. 2022;30:100793. doi: 10.1016/j.neo.2022.100793
  • Ramanathan RK, MacDonough SL, Philip PA, et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin Oncol. 2019;37(13):1062–1069. doi: 10.1200/JCO.18.01295
  • Tozzi M, Sorensen CE, Magni L, et al. Proton pump inhibitors reduce pancreatic adenocarcinoma progression by selectively targeting H+, K±ATPases in pancreatic cancer and stellate cells. Cancers (Basel). 2020;12(3):640. doi: 10.3390/cancers12030640
  • Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109(9):3812–3819. doi: 10.1182/blood-2006-07-035972
  • Desai N, Trieu V, Yao Z, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12(4):1317–1324. doi: 10.1158/1078-0432.CCR-05-1634
  • Blair HA. Daunorubicin/Cytarabine liposome: a review in acute myeloid leukaemia. Drugs. 2018;78(18):1903–1910. doi: 10.1007/s40265-018-1022-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.