23
Views
0
CrossRef citations to date
0
Altmetric
Review

Harness arsenic in medicine: current status of arsenicals and recent advances in drug delivery

, , , , , , & show all
Received 21 Jan 2024, Accepted 21 Jun 2024, Published online: 28 Jun 2024

References

  • Paul NP, Galván AE, Yoshinaga-Sakurai K, et al. Arsenic in medicine: past, present and future. Biomet Int J Role Met Ions Biol Biochem Med. 2023;36(2):283–301. doi: 10.1007/s10534-022-00371-y
  • Cholujova D, Bujnakova Z, Dutkova E, et al. Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol. 2017;179(5):756–771. doi: 10.1111/bjh.14974
  • Shen Z-X, Chen G-Q, Ni J-H, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89(9):3354–3360. doi: 10.1182/blood.V89.9.3354
  • Gallagher RE. Arsenic — new life for an old potion. N Engl J Med. 1998;339(19):1389–1391. doi: 10.1056/NEJM199811053391909
  • Kwong YL, Todd D. Delicious poison: arsenic trioxide for the treatment of leukemia. Blood. 1997;89(9):3487–3487. doi: 10.1182/blood.V89.9.3487
  • Dilda PJ, Hogg PJ. Arsenical-based cancer drugs. Cancer Treat Rev. 2007;33(6):542–564. doi: 10.1016/j.ctrv.2007.05.001
  • Khairul I, Wang QQ, Jiang YH, et al. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget. 2017;8(14):23905–23926. doi: 10.18632/oncotarget.14733
  • Emadi A, Gore SD. Arsenic trioxide — an old drug rediscovered. Blood Rev. 2010;24(4–5):191–199. doi: 10.1016/j.blre.2010.04.001
  • Chen G, Zhu J, Shi X, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood. 1996;88(3):1052–1061. doi: 10.1182/blood.V88.3.1052.1052
  • Lallemand-Breitenbach V, de Thé H. PML nuclear bodies: from architecture to function. Curr Opin Cell Biol. 2018;52:154–161. doi: 10.1016/j.ceb.2018.03.011
  • Wang Z-G, Rivi R, Delva L, et al. Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a pml and pml-rar? independent manner. Blood. 1998;92(5):1497–1504. doi: 10.1182/blood.V92.5.1497
  • Ye Y, Gaugler B, Mohty M, et al. Old dog, new trick: trivalent arsenic as an immunomodulatory drug. Br J Pharmacol. 2020;177(10):2199–2214. doi: 10.1111/bph.15011
  • Miller WH, Schipper HM, Lee JS, et al. Mechanisms of action of arsenic trioxide. Cancer Res. 2002;62:3893–3903.
  • Shen S, Li X-F, Cullen WR, et al. Arsenic binding to proteins. Chem Rev. 2013;113(10):7769–7792. doi: 10.1021/cr300015c
  • Mancini I, Defant A. Bioactive Poly(Arsenic) compounds. In: Biomedical Inorganic Polymers: Bioactivity and Applications of Natural and Synthetic Polymeric Inorganic Molecules [Internet]. Berlin Heidelberg: Springer; 2013 Nov 22. p.175–195.
  • Swindell EP, Hankins PL, Chen H, et al. Anticancer activity of small-molecule and nanoparticulate arsenic(III) complexes. Inorg Chem. 2013;52(21):12292–12304. doi: 10.1021/ic401211u
  • National Research Council (US). Chemistry of Arsenic. In: Arsenic: Medical and Biological Effects of Environmental Pollutants [Internet]. National Academies Press (US); 1977. p. 4–15.
  • Maranhão RC, Vital CG, Tavoni TM, et al. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents. Expert Opin Drug Deliv. 2017;14(10):1217–1226. doi: 10.1080/17425247.2017.1276560
  • Zhang H, Wang G, Yang H. Drug delivery systems for differential release in combination therapy. Expert Opin Drug Deliv. 2011;8(2):171–190. doi: 10.1517/17425247.2011.547470
  • Gao J, Karp JM, Langer R, et al. The future of drug delivery. Chem Mater. 2023;35(2):359–363. doi: 10.1021/acs.chemmater.2c03003
  • Sönksen M, Kerl K, Bunzen H. Current status and future prospects of nanomedicine for arsenic trioxide delivery to solid tumors. Med Res Rev. 2022;42(1):374–398. doi: 10.1002/med.21844
  • Yu M, Zhang Y, Fang M, et al. Current advances of nanomedicines delivering arsenic trioxide for enhanced tumor therapy. Pharmaceutics. 2022;14(4):743. doi: 10.3390/pharmaceutics14040743
  • Mondal R, Majumdar A, Sarkar S, et al. An extensive review of arsenic dynamics and its distribution in soil-aqueous-rice plant systems in south and Southeast Asia with bibliographic and meta-data analysis. Chemosphere. 2024;352:141460. doi: 10.1016/j.chemosphere.2024.141460
  • Waxman S, Anderson KC. History of the development of arsenic derivatives in cancer therapy. Oncology. 2001;6(S2):3–10. doi: 10.1634/theoncologist.6-suppl_2-3
  • Liu F, Hooks DE, Li N, et al. Mechanical properties of anhydrous and hydrated uric acid crystals. Chem Mater. 2018;30(11):3798–3805. doi: 10.1021/acs.chemmater.8b00939
  • Liu F, Hooks DE, Li N, et al. Molecular crystal mechanical properties altered via dopant inclusion. Chem Mater. 2020;32(9):3952–3959. doi: 10.1021/acs.chemmater.0c00433
  • Liu F, Bagi SD, Su Q, et al. Targeting particle size specification in pharmaceutical crystallization: a review on recent process design and development strategies and particle size measurements. Org Process Res Dev. 2022;26(12):3190–3203. doi: 10.1021/acs.oprd.2c00277
  • Liu F, Li H, Li Y. Breakage-facilitated mixed-suspension-mixed-product-removal (MSMPR) crystallization of pharmaceutical compounds. Cryst Growth Des. 2024;24(4):1591–1602. doi: 10.1021/acs.cgd.3c01220
  • Lin M, Wang Z, Zhang D. Preparation of orpiment nanoparticles and their cytotoxic effect on cultured leukemia k562 cells. J Nanosci Nanotechnol. 2007;7(2):490–496. doi: 10.1166/jnn.2007.145
  • Baláž P, Sedlák J. Arsenic in cancer treatment: challenges for application of realgar nanoparticles (a minireview). Toxins (Basel). 2010;2(6):1568–1581. doi: 10.3390/toxins2061568
  • Liu J, Lu Y, Wu Q, et al. Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmacol Exp Ther. 2008;326(2):363–368. doi: 10.1124/jpet.108.139543
  • Wu J-Z, Ho PC. Evaluation of the in vitro activity and in vivo bioavailability of realgar nanoparticles prepared by cryo-grinding. Eur J Pharm Sci. 2006;29(1):35–44. doi: 10.1016/j.ejps.2006.05.002
  • Wu J, Shao Y, Liu J, et al. The medicinal use of realgar (As₄s₄) and its recent development as an anticancer agent. Journal Of Ethnopharmacology. 2011;135(3):595–602. doi: 10.1016/j.jep.2011.03.071
  • Zhang J, Wang J-C, Han Y-H, et al. High expression of bcl-xL in K562 cells and its role in the low sensitivity of K562 to realgar-induced apoptosis. Acta Haematol. 2005;113:247–254. doi: 10.1159/000084678
  • Zhao W, Lu X, Yuan Y, et al. Effect of size and processing method on the cytotoxicity of realgar nanoparticles in cancer cell lines. Int J Nanomedicine. 2011;6:1569–1577. doi: 10.2147/IJN.S21373
  • Wang J, Lin M, Zhang T, et al. Arsenic(ii) sulfide quantum dots prepared by a wet process from its bulk. J Am Chem Soc. 2008;130(35):11596–11597. doi: 10.1021/ja804436w
  • Chen H, MacDonald RC, Li S, et al. Lipid encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release. J Am Chem Soc. 2006;128:13348–13349. doi: 10.1021/ja064864h
  • Ni Dhubhghaill OM, Sadler PJ. The structure and reactivity of arsenic compounds: biological activity and drug design. In: Bioinorganic chemistry [Internet]. Berlin Heidelberg: Springer; 1991. p. 129–190.
  • Yang H-C, Fu H-L, Lin Y-F, et al. Chapter Twelve - Pathways of Arsenic Uptake and Efflux. In: Argüello J, and Lutsenko S, editors. Current Topics in Membranes. Vol. 69. Academic Press; 2012. p. 325–358.
  • Liu Z, Shen J, Carbrey JM, et al. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci. 2002;99(9):6053–6058. doi: 10.1073/pnas.092131899
  • Liu J, Chen H, Miller DS, et al. Overexpression of glutathione s -transferase ii and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol. 2001;60(2):302–309. doi: 10.1124/mol.60.2.302
  • Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, et al. PML/RAR oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell. 2010;18(1):88–98. doi: 10.1016/j.ccr.2010.06.003
  • Ajees AA, Marapakala K, Packianathan C, et al. Structure of an As(iii) s -adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation. Biochemistry. 2012;51(27):5476–5485. doi: 10.1021/bi3004632
  • Platanias LC. Biological responses to arsenic compounds. J Biol Chem. 2009;284(28):18583–18587. doi: 10.1074/jbc.R900003200
  • Lin S, Shi Q, Nix FB, et al. A novel s-adenosyl-l-methionine: arsenic(iii) methyltransferase from rat liver cytosol. J Biol Chem. 2002;277(13):10795–10803. doi: 10.1074/jbc.M110246200
  • Leslie EM, Haimeur A, Waalkes MP. Arsenic transport by the human multidrug resistance protein 1 (mrp1/abcc1): evidence that a tri-glutathione conjugate is required. J Biol Chem. 2004;279(31):32700–32708. doi: 10.1074/jbc.M404912200
  • Zhang H, Yang L, Ling J, et al. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proc Natl Acad Sci. 2015;112(49):15084–15089. doi: 10.1073/pnas.1521316112
  • Hu X, Li H, Ip T-Y, et al. Arsenic trioxide targets Hsp60, triggering degradation of p53 and survivin. Chem Sci. 2021;12(32):10893–10900. doi: 10.1039/D1SC03119H
  • Hoonjan M, Jadhav V, Bhatt P. Arsenic trioxide: insights into its evolution to an anticancer agent. JBIC J Biol Inorg Chem. 2018;23(3):313–329. doi: 10.1007/s00775-018-1537-9
  • Akao Y, Nakagawa Y, Akiyama K. Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro. FEBS Lett. 1999;455(1–2):59–62. doi: 10.1016/S0014-5793(99)00841-8
  • Jiang X-H, Chun-Yu Wong B, Yuen S-T, et al. Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation of P53 and activation of caspase-3. Int J Cancer. 2001;91(2):173–179. doi: 10.1002/1097-0215(200002)9999:9999<:AID-IJC1039>3.0.CO;2-D
  • Park J-W, Choi Y-J, Jang MA, et al. Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and Bcl-2 phosphorylation in Promonocytic U937 Cells. Biochem Biophys Res Commun. 2001;286(4):726–734. doi: 10.1006/bbrc.2001.5416
  • Mahieux R, Pise-Masison C, Gessain A, et al. Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1– and type 2–infected cells by a caspase-3–dependent mechanism involving Bcl-2 cleavage. Blood. 2001;98(13):3762–3769. doi: 10.1182/blood.V98.13.3762
  • Gupta S, Yel L, Kim D, et al. Arsenic trioxide induces apoptosis in peripheral blood t lymphocyte subsets by inducing oxidative stress: a role of bcl-2. Mol Cancer Ther. 2003;2(8):711–719.
  • Liu Q, Hilsenbeck S, Gazitt Y, et al. Arsenic trioxide–induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL: presented in preliminary form at the 43rd annual meeting of the American society of hematology. Blood. 2003 [2001 Dec 8];101(10):4078–4087. doi: 10.1182/blood-2002-10-3231
  • Xu W, Li X, Quan L, et al. Arsenic trioxide decreases the amount and inhibits the function of regulatory T cells, which may contribute to its efficacy in the treatment of acute promyelocytic leukemia. Leuk Lymphoma. 2018;59(3):650–659. doi: 10.1080/10428194.2017.1346253
  • Huang W, Zeng YC. A candidate for lung cancer treatment: arsenic trioxide. Clin Transl Oncol. 2019;21(9):1115–1126. doi: 10.1007/s12094-019-02054-6
  • Zheng Y, Zhou M, Ye A, et al. The conformation change of Bcl-2 is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in SGC7901 human gastric cancer cells. World J Surg Oncol. 2010;8(1):31. doi: 10.1186/1477-7819-8-31
  • Chow SKY, Chan JYW, Fung KP. Inhibition of cell proliferation and the action mechanisms of arsenic trioxide (As2O3) on human breast cancer cells. J Cell Biochem. 2004;93:173–187. doi: 10.1002/jcb.20102
  • Oketani M, Kohara K, Tuvdendorj D, et al. Inhibition by arsenic trioxide of human hepatoma cell growth. Cancer Lett. 2002;183(2):147–153. doi: 10.1016/S0304-3835(01)00800-X
  • Miller WH Jr, Schipper HM, Lee JS, et al. Mechanisms of action of arsenic Trioxide1. Cancer Res. 2002;62:3893–3903.
  • Seol JG, Park WH, Kim ES, et al. Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. Biochem Biophys Res Commun. 1999;265(2):400–404. doi: 10.1006/bbrc.1999.1697
  • Li X, Ding X, Adrian TE. Arsenic trioxide causes redistribution of cell cycle, caspase activation, and Gadd expression in human colonic, breast, and pancreatic cancer cells. Cancer Invest. 2004;22(3):389–400. doi: 10.1081/CNV-200029068
  • Ramos AM, Fernàndez C, Amràn D, et al. Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood. 2005;105(10):4013–4020. doi: 10.1182/blood-2004-07-2802
  • Chiu H-W, Ho S-Y, Guo H-R, et al. Combination treatment with arsenic trioxide and irradiation enhances autophagic effects in U118-MG cells through increased mitotic arrest and regulation of PI3K/Akt and ERK1/2 signaling pathways. Autophagy. 2009;5(4):472–483. doi: 10.4161/auto.5.4.7759
  • Park WH, Seol JG, Kim ES, et al. Arsenic trioxide-mediated growth inhibition in mc/car myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis1. Cancer Res. 2000;60:3065–3071.
  • Hyun Park W, Hee Cho Y, Won Jung C, et al. Arsenic trioxide inhibits the growth of A498 renal cell carcinoma cells via cell cycle arrest or apoptosis. Biochem Biophys Res Commun. 2003;300(1):230–235. doi: 10.1016/S0006-291X(02)02831-0
  • Goussetis DJ, Altman JK, Glaser H, et al. Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide. J Biol Chem. 2010;285:29989–29997. doi: 10.1074/jbc.M109.090530
  • Lau A, Zheng Y, Tao S, et al. Arsenic inhibits autophagic flux, activating the nrf2-keap1 pathway in a p62-dependent manner. Mol Cell Biol. 2013;33(12):2436–2446. doi: 10.1128/MCB.01748-12
  • Fang S, Wan X, Zou X, et al. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis. 2021;12(1):88. doi: 10.1038/s41419-020-03357-1
  • Liang C, Feng Z, Manthari RK, et al. Arsenic induces dysfunctional autophagy via dual regulation of mTOR pathway and Beclin1-Vps34/PI3K complex in MLTC-1 cells. J Hazard Mater. 2020;391:122227. doi: 10.1016/j.jhazmat.2020.122227
  • Wang G, Zhang T, Sun W, et al. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med. 2017;106:24–37. doi: 10.1016/j.freeradbiomed.2017.02.015
  • Cui Z, Zhang Y, Xia K, et al. Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nat Commun. 2018;9(1):4347. doi: 10.1038/s41467-018-06749-2
  • Sun Z, Li M, Bai L, et al. Arsenic trioxide inhibits angiogenesis in vitro and in vivo by upregulating FoxO3a. Toxicol Lett. 2019;315:1–8. doi: 10.1016/j.toxlet.2019.08.009
  • Zhang L, Liu L, Zhan S, et al. Arsenic trioxide suppressed migration and angiogenesis by targeting FOXO3a in gastric cancer cells. Int J Mol Sci. 2018;19(12):3739. doi: 10.3390/ijms19123739
  • Yancy SL, Shelden EA, Gilmont RR, et al. Sodium arsenite exposure alters cell migration, focal adhesion localization and decreases tyrosine phosphorylation of focal adhesion kinase in H9C2 myoblasts. Toxicological Sciences. 2005;84(2):278–286. doi: 10.1093/toxsci/kfi032
  • Zhang L, Kim S, Ding W, et al. Arsenic sulfide inhibits cell migration and invasion of gastric cancer in vitro and in vivo. Drug Des Devel Ther. 2015;9:5579–5590. doi: 10.2147/DDDT.S89805
  • Hayashi T, Hideshima T, Akiyama M, et al. Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment 1. Mol Cancer Ther. 2002;1:851–860.
  • Chen J, Jin Z, Zhang S, et al. Arsenic trioxide elicits prophylactic and therapeutic immune responses against solid tumors by inducing necroptosis and ferroptosis. Cell Mol Immunol. 2023;20(1):51–64. doi: 10.1038/s41423-022-00956-0
  • Zhang J, Qin Y, Wang Z, et al. Ferroptosis-inducing inorganic arsenic(II) sulfide nanocrystals enhance immune activation. Nano Res. 2023;16(7):9760–9767. doi: 10.1007/s12274-023-5617-y
  • Chen H, Ahn R, Van Den Bossche J, et al. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol Cancer Ther. 2009;8(7):1955–1963. doi: 10.1158/1535-7163.MCT-09-0045
  • Chen H, Pazicni S, Krett NL, et al. Coencapsulation of arsenic‐ and platinum‐based drugs for targeted cancer treatment. Angew Chem Int Ed. 2009;48(49):9295–9299. doi: 10.1002/anie.200903655
  • Zhao S, Zhang X, Zhang J, et al. Intravenous administration of arsenic trioxide encapsulated in liposomes inhibits the growth of c6 gliomas in rat brains. J Chemother. 2008;20(2):253–262. doi: 10.1179/joc.2008.20.2.253
  • Xu H, Li C, Wei Y, et al. Angiopep-2-modified calcium arsenite-loaded liposomes for targeted and pH-responsive delivery for anti-glioma therapy. Biochem Biophys Res Commun. 2021;551:14–20. doi: 10.1016/j.bbrc.2021.02.138
  • Li C, Zhang K, Liu A, et al. MMP2-responsive dual-targeting drug delivery system for valence-controlled arsenic trioxide prodrug delivery against hepatic carcinoma. Int J Pharm. 2021;609:121209. doi: 10.1016/j.ijpharm.2021.121209
  • Peng Y, Zhao Z, Liu T, et al. Smart human-serum-albumin–As 2 O 3 nanodrug with self-amplified folate receptor-targeting ability for chronic myeloid leukemia treatment. Angew Chem Int Ed Engl. 2017;56(36):10845–10849. doi: 10.1002/anie.201701366
  • Li T, Tan S, Li M, et al. Holographically activatable nanoprobe via Glutathione/Albumin‐mediated exponential signal amplification for High‐Contrast tumor imaging. Adv Mater. 2023;35(10):2209603. doi: 10.1002/adma.202209603
  • Zhai Y, Liu M, Yang T, et al. Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J Controlled Release. 2022;350:761–776. doi: 10.1016/j.jconrel.2022.08.054
  • Wang C, Zhang W, He Y, et al. Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects. Nat Nanotech. 2021;16(12):1413–1423. doi: 10.1038/s41565-021-00980-7
  • Song X, Wu J, Song W, et al. Thiolated chitosan nanoparticles for stable delivery and smart release of As2O3 for liver cancer through dual actions. Carbohydr Polym. 2023;303:120462. doi: 10.1016/j.carbpol.2022.120462
  • Shen X, Rao Y, Liu D, et al. Biocompatible cationic polypeptoids with antibacterial selectivity depending on hydrophobic carbon chain length. J Mater Chem B. 2023;11(25):5786–5793. doi: 10.1039/D3TB00643C
  • Akhtar A, Wang SX, Ghali L, et al. Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers. J Biomed Res. 2017;31(3):177–188. doi: 10.7555/JBR.31.20160059
  • Zhang Q, Vakili MR, Li X-F, et al. Polymeric micelles for GSH-triggered delivery of arsenic species to cancer cells. Biomaterials. 2014;35(25):7088–7100. doi: 10.1016/j.biomaterials.2014.04.072
  • Wang Z, Liu W, Xu H, et al. Preparation and in vitro studies of stealth PEGylated PLGA nanoparticles as carriers for arsenic trioxide. Chin J Chem Eng. 2007;15(6):795–801. doi: 10.1016/S1004-9541(08)60005-1
  • Ahn RW, Chen F, Chen H, et al. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin Cancer Res. 2010;16(14):3607–3617. doi: 10.1158/1078-0432.CCR-10-0068
  • Gong F, Cheng X, Wang S, et al. Heparin-immobilized polymers as non-inflammatory and non-thrombogenic coating materials for arsenic trioxide eluting stents. Acta Biomater. 2010;6(2):534–546. doi: 10.1016/j.actbio.2009.07.013
  • Huang Y, Xu Z, Wei Y, et al. Albumin-embellished arsenic trioxide-loaded polymeric nanoparticles enhance tumor accumulation and anticancer efficacy via transcytosis for hepatocellular carcinoma therapy. AAPS Pharm Sci Tech. 2022;23(4):111. doi: 10.1208/s12249-022-02254-4
  • Song X, You J, Shao H, et al. Effects of surface modification of as 2 O 3 -loaded PLGA nanoparticles on its anti-liver cancer ability: An in vitro and in vivo study. Colloids Surf B Biointerfaces. 2018;169:289–297. doi: 10.1016/j.colsurfb.2018.05.024
  • Song X, Wang J, Xu Y, et al. Surface-modified PLGA nanoparticles with PEG/LA-chitosan for targeted delivery of arsenic trioxide for liver cancer treatment: Inhibition effects enhanced and side effects reduced. Colloids Surf B Biointerfaces. 2019;180:110–117. doi: 10.1016/j.colsurfb.2019.04.036
  • Qian C, Wang Y, Chen Y, et al. Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles. Biomaterials. 2013;34(26):6175–6184. doi: 10.1016/j.biomaterials.2013.04.056
  • Lu Y, Han S, Zheng H, et al. A novel RGDyC/PEG co-modified PAMAM dendrimer-loaded arsenic trioxide of glioma targeting delivery system. Int J Nanomedicine. 2018;13:5937–5952. doi: 10.2147/IJN.S175418
  • Lian Y, Wang X, Guo P, et al. Erythrocyte membrane-coated arsenic trioxide-loaded sodium alginate nanoparticles for tumor therapy. Pharmaceutics. 2019;12(1):21. doi: 10.3390/pharmaceutics12010021
  • Zou Y, Huang B, Cao L, et al. Tailored mesoporous inorganic biomaterials: assembly, functionalization, and drug delivery engineering. Adv Mater. 2021;33(2):2005215. doi: 10.1002/adma.202005215
  • Wu X, Han Z, Schur RM, et al. Targeted mesoporous silica nanoparticles delivering arsenic trioxide with environment sensitive drug release for effective treatment of triple negative breast cancer. ACS Biomater Sci Eng. 2016;2:501–507. doi: 10.1021/acsbiomaterials.5b00398
  • Ellison PA, Chen F, Goel S, et al. Intrinsic and stable conjugation of thiolated mesoporous silica nanoparticles with radioarsenic. ACS Appl Mater Interfaces. 2017;9(8):6772–6781. doi: 10.1021/acsami.6b14049
  • Jiang L, Wang X, Raza F, et al. PEG-grafted arsenic trioxide-loaded mesoporous silica nanoparticles endowed with pH-triggered delivery for liver cancer therapy. Biomater Sci. 2023;11(15):5301–5319. doi: 10.1039/D3BM00555K
  • Zhang B, Chen X, Fan X, et al. Lipid/PAA-coated mesoporous silica nanoparticles for dual-pH-responsive codelivery of arsenic trioxide/paclitaxel against breast cancer cells. Acta Pharmacol Sin. 2021;42(5):832–842. doi: 10.1038/s41401-021-00648-x
  • Wu Q, Chen X, Wang P, et al. Delivery of arsenic trioxide by multifunction nanoparticles to improve the treatment of hepatocellular carcinoma. ACS Appl Mater Interfaces. 2020;12(7):8016–8029. doi: 10.1021/acsami.9b22802
  • Ettlinger R, Sönksen M, Graf M, et al. Metal–organic framework nanoparticles for arsenic trioxide drug delivery. J Mater Chem B. 2018;6(40):6481–6489. doi: 10.1039/C8TB01899E
  • Ettlinger R, Moreno N, Volkmer D, et al. Zeolitic imidazolate framework‐8 as pH‐sensitive nanocarrier for “arsenic trioxide” drug delivery. Chem – Eur J. 2019;25(57):13189–13196. doi: 10.1002/chem.201902599
  • Schnabel J, Ettlinger R, Bunzen H. Zn‐MOF‐74 as pH‐responsive drug‐delivery system of arsenic trioxide. ChemNanomat. 2020;6(8):1229–1236. doi: 10.1002/cnma.202000221

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.