19
Views
0
CrossRef citations to date
0
Altmetric
Review

Challenges and opportunities in neurometabolic disease treatment with enzyme delivery

, , , , , , & show all
Received 30 Dec 2023, Accepted 28 Jun 2024, Published online: 04 Jul 2024

References

  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. doi: 10.1101/cshperspect.a028035
  • Kingdom R, Wright CF. Incomplete penetrance and variable expressivity: from clinical studies to population cohorts. Front Genet. 2022;13:920390. doi: 10.3389/fgene.2022.920390
  • Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 2018;27(6):1176–1199. doi: 10.1016/j.cmet.2018.05.011
  • Wallings RL, Humble SW, Ward ME, et al. Lysosomal dysfunction at the centre of Parkinson’s disease and frontotemporal dementia/amyotrophic lateral sclerosis. Trends Neurosci. 2019;42(12):899–912. doi: 10.1016/j.tins.2019.10.002
  • Parlar SC, Grenn FP, Kim JJ, et al. Classification of GBA1 variants in Parkinson’s disease: the GBA1-PD browser. Mov Disord. 2023;38(3):489–495. doi: 10.1002/mds.29314
  • Mamais A, Wallings R, Rocha EM. Disease mechanisms as subtypes: lysosomal dysfunction in the endolysosomal Parkinson’s disease subtype. Handb Clin Neurol. 2023;193:33–51.
  • D’Angelo E, Jirsa V. The quest for multiscale brain modeling. Trends Neurosci. 2022;45(10):777–790. doi: 10.1016/j.tins.2022.06.007
  • Ferreira CR, Rahman S, Keller M, et al. An international classification of inherited metabolic disorders (ICIMD). J Inherit Metab Dis. 2021;44(1):164–177. doi: 10.1002/jimd.12348
  • Saudubray JM, Mochel F, Lamari F, et al. Proposal for a simplified classification of IMD based on a pathophysiological approach: a practical guide for clinicians. J Inherit Metab Dis. 2019;42(4):706–727. doi: 10.1002/jimd.12086
  • García-Cazorla À, Saudubray JM. Cellular neurometabolism: a tentative to connect cell biology and metabolism in neurology.]J Inherit Metab Dis. J Inherit Metabol Disease. 2018;41(6):1043–1054. doi: 10.1007/s10545-018-0226-8
  • Kuge H, Akahori K, Yagyu KI, et al. Functional compartmentalization of the plasma membrane of neurons by a unique acyl chain composition of phospholipids. J Biol Chem. 2014;289(39):26783–26793. doi: 10.1074/jbc.M114.571075
  • Jankowska-Kulawy A, Klimaszewska-Łata J, Gul-Hinc S, et al. Metabolic and cellular compartments of acetyl-CoA in the healthy and diseased brain. Int J Mol Sci. 2022;23(17):10073. doi: 10.3390/ijms231710073
  • Kirch C, Gollo LL, Peer J. Spatially resolved dendritic integration: towards a functional classification of neurons. PeerJ. 2020;8:e10250. doi: 10.7717/peerj.10250
  • Swanson RA. A thermodynamic function of glycogen in brain and muscle. Prog Neurobiol. 2020;189:101787. doi: 10.1016/j.pneurobio.2020.101787
  • Kumar A, Juhász C, Luat A, et al. Evolution of brain glucose metabolic abnormalities in children with epilepsy and SCN1A gene variants. Gene Variants J Child Neurol. 2018;33(13):832–836. doi: 10.1177/0883073818796373
  • Oliveira M, Koshibu K, Rytz A, et al. Early life to adult brain lipidome dynamic: a temporospatial study investigating dietary polar lipid supplementation efficacy. Front Nutr. 2022;9:898655. doi: 10.3389/fnut.2022.898655
  • Oyarzábal A, Musokhranova U, Barros FL, et al. Energy metabolism in childhood neurodevelopmental disorders. EBioMedicine. 2021;69:103474. doi: 10.1016/j.ebiom.2021.103474
  • Musokhranova U, Grau C, Vergara C, et al. Mitochondrial modulation with leriglitazone as a potential treatment for Rett syndrome. J Transl Med. 2023;21(1):756. doi: 10.1186/s12967-023-04622-5
  • Soto D, Olivella M, Grau C, et al. L-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy. Sci Signal. 2019;12(586):eaaw0936. doi: 10.1126/scisignal.aaw0936
  • Fernández-Eulate G, Carreau C, Benoist J-F, et al. Diagnostic approach in adult-onset neurometabolic diseases. J Neurol Neurosurg Psychiatry. 2022;93(4):413–421. doi: 10.1136/jnnp-2021-328045
  • Tein I. Recent advances in neurometabolic diseases: the genetic role in the modern era. Epilepsy Behav. 2023;145:109338. doi: 10.1016/j.yebeh.2023.109338
  • El Mouzan MI, Al Salloum AA, Al Herbish AS, et al. Consanguinity and major genetic disorders in Saudi children: a community based cross-sectional study. Ann Saudi Med. 2008;28(3):169–173. doi: 10.5144/0256-4947.2008.169
  • Almuqbil M. Prevalence of neurometabolic diseases in Saudi Arabia. J Biochem Clin Genet. 2020;3(1):14–21. doi: 10.24911/JBCGenetics/183-1585310179
  • Jeanmonod R, Asuka E, Jeanmonod D. StatPearls. Inborn errors of metabolism. Inborn errors of metabolism. Treasure Island (FL): StatPearls Publishing; 2023.
  • Matalonga L, Hernández-Ferrer C, Piscia D, et al. Solving patients with rare diseases through programmatic reanalysis of genome-phenome data. Eur J Hum Genet. 2021;29(9):1337–1347. doi: 10.1038/s41431-021-00852-7
  • Susgun S, Kesim Y, Khalilov D, et al. Reanalysis of exome sequencing data reveals a treatable neurometabolic origin in two previously undiagnosed siblings with neurodevelopmental disorder. Neurol Sci. 2023;44:2527–2540. doi: 10.1007/s10072-023-06699-8
  • Lloyd-Evans E, Haslett LJ. The lysosomal storage disease continuum with ageing-related neurodegenerative disease. Ageing Res Rev. 2016;132:104–121. doi: 10.1016/j.arr.2016.07.005
  • Malnar M, Hecimovic S, Mattsson N, et al. Bidirectional links between Alzheimer’s disease and Niemann-pick type C disease. Neurobiol Dis. 2014;72:37–47. doi: 10.1016/j.nbd.2014.05.033
  • Deng H, Xiu X, Jankovic J. Genetic convergence of Parkinson’s disease and lysosomal storage disorders. Mol Neurobiol. 2015;51:1554–1568. doi: 10.1007/s12035-014-8832-4
  • Salvalaio M, D’Avanzo F, Rigon L, et al. Brain RNA-Seq profiling of the mucopolysaccharidosis type II mouse model. Int J Mol Sci. 2017;18:1072. doi: 10.3390/ijms18051072
  • Ferreira CR, Rahman S, Keller M, et al. An international classification of inherited metabolic disorders (ICIMD). J Inherit Metab Dis. 2021;44:164–177. doi: 10.1002/jimd.12348
  • Kaminiów K, Ryguła I, Paprocka J. Ataxia in neurometabolic disorders. Metabolites. 2022;13(1):47. doi: 10.3390/metabo13010047
  • Lee JJY, Wasserman WW, Hoffmann GF, et al. Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism. Genet Med. 2018;20(1):151–158. doi: 10.1038/gim.2017.108
  • Latzer IT, Blau N, Ferreira CR, et al. Clinical and biochemical footprints of inherited metabolic diseases. XV. Epilepsies Mol Genet Metab. 2023;140(3):107690. doi: 10.1016/j.ymgme.2023.107690
  • Merritt JL 2nd, Chang IJ. Medium-chain acyl-coenzyme a dehydrogenase deficiency. In: Adam MP, Feldman J, Mirzaa GM, et al. editors. GeneReviews®. Seattle: University of Washington, Seattle; 1993. 2000 Apr 20 [cited 2019 Jun 27].
  • Morrison T, Bösch F, Landolt MA, et al. Homocystinuria patient and caregiver survey: experiences of diagnosis and patient satisfaction. Orphanet J Rare Dis. 2021;16:124. doi: 10.1186/s13023-021-01764-x
  • Pastores GM, Barnett NL, Kolodny EH. An open-label, noncomparative study of miglustat in type I gaucher disease: efficacy and tolerability over 24 months of treatment. Clin Ther. 2005;27:1215–1227. doi: 10.1016/j.clinthera.2005.08.004
  • Patterson MC, Vecchio D, Prady H, et al. Miglustat for treatment of Niemann-pick C disease: a randomised controlled study. Lancet Neurol. 2007;6(9):765–772. doi: 10.1016/S1474-4422(07)70194-1
  • Krivit W, Shapiro EG, Peters C, et al. Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med. 1998;338(16):1119–1126. doi: 10.1056/NEJM199804163381605
  • Messina C, Rampazzo A, Cesaro S, et al. Eighteen-year follow-up of the first Italian MPSI patient treated with bone marrow transplantation. Bone Marrow Transplant. 2008;41(10):905–906. doi: 10.1038/sj.bmt.1705988
  • Gardin A, Castelle M, Pichard S, et al. Long term follow-up after haematopoietic stem cell transplantation for mucopolysaccharidosis type I-H: a retrospective study of 51 patients. Bone Marrow Transplant. 2023;58(3):295–302. doi: 10.1038/s41409-022-01886-1
  • Groeschel S, Kühl JS, Bley AE, et al. Long-term outcome of allogeneic hematopoietic stem cell transplantation in patients with juvenile metachromatic leukodystrophy compared with nontransplanted control patients. JAMA Neurol. 2016;73(9):1133–1140. doi: 10.1001/jamaneurol.2016.2067
  • Taylor M, Khan S, Stapleton M, et al. Hematopoietic stem cell transplantation for mucopolysaccharidoses: past, present, and future. Biol Blood Marrow Transplant. 2019;25(7):e226–e246. doi: 10.1016/j.bbmt.2019.02.012
  • Hon YY, Wang J, Abodakpi H, et al. Dose selection for biological enzyme replacement therapy indicated for inborn errors of metabolism. Clin Transl Sci. 2023;16(12):2438–2457. doi: 10.1111/cts.13652
  • Muenzer J, Burton BK, Harmatz P, et al. Intrathecal idursulfase-IT in patients with neuronopathic mucopolysaccharidosis II: results from a phase 2/3 randomized study. Mol Genet Metab. 2022;137(1–2):127–139. doi: 10.1016/j.ymgme.2022.07.017
  • Boado RJ, Hui E-W, Lu JZ, et al. Glycemic control and chronic dosing of rhesus monkeys with a fusion protein of iduronidase and a monoclonal antibody against the human insulin receptor. Drug Metab Dispos. 2012;40(10):2021–2025. doi: 10.1124/dmd.112.046375
  • Boado RJ, Hui E-W, Zhiqiang Lu J, et al. Insulin receptor antibody-iduronate 2-sulfatase fusion protein: pharmacokinetics, anti-drug antibody, and safety pharmacology in rhesus monkeys: safety pharmacology of an IgG-enzyme fusion protein. Biotechnol Bioeng. 2014;111:2317–2325. doi: 10.1002/bit.25289
  • Boado RJ, Lu JZ, Hui E-W, et al. Insulin receptor antibody–sulfamidase fusion protein penetrates the primate blood–brain barrier and reduces glycosoaminoglycans in Sanfilippo type a cells. Mol Pharm. 2014;11(8):2928–2934. doi: 10.1021/mp500258p
  • Boado RJ, Lu JZ, Hui E-W, et al. Insulin receptor antibody−α-N-acetylglucosaminidase fusion protein penetrates the primate blood–brain barrier and reduces glycosoaminoglycans in Sanfilippo type B fibroblasts. Mol Pharm. 2016;13(4):1385–1392. doi: 10.1021/acs.molpharmaceut.6b00037
  • Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437–449. doi: 10.1007/s10545-013-9608-0
  • Palmer AM. The role of the blood–CNS barrier in CNS disorders and their treatment. Neurobiol Dis. 2010;37(1):3–12. doi: 10.1016/j.nbd.2009.07.029
  • Greene C, Hanley N, Campbell M. Claudin 5: gatekeeper of neurological function. Fluids Barriers CNS. 2019;16(3):1–15. doi: 10.1186/s12987-019-0123-z
  • Sweeney MD, Zhao Z, Montagne A, et al. From physiology to disease and back. Physiol Rev. 2019;99(1):21–79. doi: 10.1152/physrev.00050.2017
  • Erdo F, Denes L, de Lange E. Age-associated physiological and pathological changes at the BBB: a review. J Cereb Blood Flow Metab. 2017;37(1):4–24. doi: 10.1177/0271678X16679420
  • Abbott NJ, Dolman DEM, Patabendige AK. Assays to predict drug permeation across the blood-brain barrier, and distribution to brain. Curr Drug Metab. 2008;9:901–910. doi: 10.2174/138920008786485182
  • de Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol. 2007;47(1):323–355. doi: 10.1146/annurev.pharmtox.47.120505.105237
  • Gabathuler R. Development of new vectors for the transport of therapeutics across the BBB. Therap Del. 2010;1(4):571–586. doi: 10.4155/tde.10.35
  • Banks WA. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–292. doi: 10.1038/nrd.2015.21
  • Qian ZM, Li H, Sun H, et al. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–587. doi: 10.1124/pr.54.4.561
  • Zhang Y, Pardridge WM. Blood-brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res. 2006;1111(1):227–229. doi: 10.1016/j.brainres.2006.07.005
  • Wells RC, Kariolis MS, Getz J, et al. Brain delivery of therapeutic proteins using a novel fc fragment blood-brain barrier transport vehicle in mice and monkey. Sci Transl Med. 2020;12(545):eaay1359. doi: 10.1126/scitranslmed.aay1359
  • Ullman JC, Arquello A, Getz JA, et al. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci Transl Med. 2020;12(545):eaay1163. doi: 10.1126/scitranslmed.aay1163
  • Bohrmann B, Baumann K, Benz J, et al. Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis. 2012;28:49–69. doi: 10.3233/JAD-2011-110977
  • Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60. doi: 10.1016/j.neuron.2013.10.061
  • Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res. 2000;17(3):266–274. doi: 10.1023/A:1007592720793
  • Boado RJ, Zhang Y, Zhang Y, et al. GDNF fusion protein for targeted-drug delivery across the human blood–brain barrier. Biotechnol Bioeng. 2008;100(2):387–396. doi: 10.1002/bit.21764
  • Kingwell K. Drug delivery: new targets for drug delivery across the BBB. Nat Rev Drug Discov. 2016;15(2):84–85. doi: 10.1038/nrd.2016.14
  • Willnow TE, Nykjaer A, Herz J. Lipoprotein receptors: new roles for ancient proteins. Nat Cell Biol. 1999;1(6):157–162. doi: 10.1038/14109
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 2012;161(2):264–273. doi: 10.1016/j.jconrel.2011.08.017
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002;10(4):317–325. doi: 10.1080/10611860290031877
  • Wagner S, Zensi A, Wien SL, et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS One. 2012;7(3):e32568. doi: 10.1371/journal.pone.0032568
  • Jefferies WA, Food MR, Gabathuler R, et al. Reactive microglia specifically associated with amyloid plaques in Alzheimer’s disease brain tissue express melanotransferrin. Brain Res. 1996;712(1):122–126. doi: 10.1016/0006-8993(95)01407-1
  • Food MR, Rothenberger S, Gabathuler R, et al. Transport and expression in human melanomas of a transferrin-like glycosylphosphatidylinositol-anchored protein. J Biol Chem. 1994;269(4):3034–3040. doi: 10.1016/S0021-9258(17)42043-6
  • Nounou MI, Adkins CE, Rubinchik E, et al. Anti-cancer antibody trastuzumab-melanotransferrin conjugate (BT2111) for the treatment of metastatic HER2+ breast cancer tumors in the brain: an in-vivo study. Pharm Res. 2016;33(12):2930–2942. doi: 10.1007/s11095-016-2015-0
  • Singh CSB, Eyford BA, Abraham T, et al. Discovery of a highly conserved peptide in the iron transporter melanotransferrin that traverses an intact blood brain barrier and localizes in neural cells. Front Neurosc. 2021;15:596976. doi: 10.3389/fnins.2021.596976
  • Tom G, Tian MM, Hatcher JP, et al. A peptide derived from melanoTf delivers a protein-based interleukin 1 receptor antagonist across the BBB and ameliorates neuropathic pain in a preclinical model. J Cereb Blood Flow Metab. 2019;39(10):2074–2088. doi: 10.1177/0271678X18772998
  • Vitalis TZ, Eyford BA, Singh CSB, et al. A nanomule peptide carrier delivers siRNA across the intact blood-brain barrier to attenuate ischemic stroke. Front Mol Biosc. 2021;8:611367. doi: 10.3389/fmolb.2021.611367
  • Demeule M, Régina A, Ché C, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther. 2008;324:1064–1072. doi: 10.1124/jpet.107.131318
  • Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem. 2008;106(4):1534–1544. doi: 10.1111/j.1471-4159.2008.05492.x
  • Régina A, Demeule M, Ché C, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol. 2008;155(2):185–197. doi: 10.1038/bjp.2008.260
  • Kurzrock R, Gabrail N, Chandhasin C, et al. Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol Cancer Ther. 2012;11(2):308–316. doi: 10.1158/1535-7163.MCT-11-0566
  • Nakazato R, Wawabe K, Yamado D, et al. Disruption of Bmal1 impairs blood-brain barrier integrity via pericyte dysfunction. J Neurosci. 2017;37(42):10052–10062. doi: 10.1523/JNEUROSCI.3639-16.2017
  • Kondratova AA, Kondratov RV. Circadian clock and pathology of the ageing brain. Nat Rev Neurosci. 2013;13(5):325–335. doi: 10.1038/nrn3208
  • Nestler EJ, Borrelli E, Allis CD, et al. Decoding the epigenetic language of neuronal plasticity. Neuron. 2008;60(6):961–974. doi: 10.1016/j.neuron.2008.10.012
  • Ronaldson PT, Davis TP. Blood-brain barrier transporters: a translational consideration for CNS delivery of neurotherapeutics. Expert Opin Drug Deliv. 2024;21(1):71–89. doi: 10.1080/17425247.2024.2306138
  • Ellison S, Parker H, Bigger B. Advances in therapies for neurological lysosomal storage disorders. J Inherit Metab Dis. 2023;46(5):874–905. doi: 10.1002/jimd.12615
  • Boado RJ, Lu JZ, Hui EK, et al. Bi-functional IgG-lysosomal enzyme fusion proteins for brain drug delivery. Sci Rep. 2019;9(1):18632. doi: 10.1038/s41598-019-55136-4
  • Moore TL, Pannuzzo G, Costabile G, et al. Nanomedicines to treat rare neurological disorders: the case of Krabbe disease. Adv Drug Deliv Rev. 2023;203:115132. doi: 10.1016/j.addr.2023.115132
  • Critchley BJ, Gaspar HB, Benedetti S. Targeting the central nervous system in lysosomal storage diseases: strategies to deliver therapeutics across the blood-brain barrier. Mol Ther. 2023;31(3):657–675. doi: 10.1016/j.ymthe.2022.11.015
  • Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater. 2021;4(1):75–99. doi: 10.1007/s42247-021-00168-8
  • Hashemi B, Akram FA, Amirazad H, et al. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol. 2022;67:102967. doi: 10.1016/j.jddst.2021.102967
  • Sharma S. The role of nanomedicine in COVID-19 therapeutics. Nanomedicine (Lond). 2022;17(3):133–136. doi: 10.2217/nnm-2021-0358
  • Jaradat E, Weaver E, Meziane A, et al. Microfluidics technology for the design and formulation of nanomedicines. Nanomaterials (Basel). 2021;11(12):3440. doi: 10.3390/nano11123440
  • Ottonelli I, Duskey JT, Rinaldi A, et al. Microfluidic technology for the production of hybrid nanomedicines. Pharmaceutics. 2021;13(9):1495. doi: 10.3390/pharmaceutics13091495
  • Osouli-Bostanabad K, Puliga S, Serrano DR, et al. Microfluidic manufacture of lipid-based Nanomedicines. Pharmaceutics. 2022;14(9):1940. doi: 10.3390/pharmaceutics14091940
  • Birolini G, Valenza M, Ottonelli I, et al. Chronic cholesterol administration to the brain supports complete and long-lasting cognitive and motor amelioration in Huntington’s disease. Pharmacol Res. 2023;194:106823. doi: 10.1016/j.phrs.2023.106823
  • Tosi G, Duskey J, Vandelli AM, et al. Nanomedicines for brain diseases: where we are and where we are going. Ther Deliv. 2021;12(9):631–635. doi: 10.4155/tde-2021-0051
  • Mulvihill JJ, Cunnane EM, Ross AM, et al. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond). 2020;15(2):205–214. doi: 10.2217/nnm-2019-0367
  • Mahmoudi M. The need for robust characterization of nanomaterials for nanomedicine applications. Nat Commun. 2021;12(1):5246. doi: 10.1038/s41467-021-25584-6
  • Dean SN, Turner KB, Medintz IL, et al. Targeting and delivery of therapeutic enzymes. Ther Deliv. 2017;8(7):577–595. doi: 10.4155/tde-2017-0020
  • Cruz MEM, Corvo ML, Martins MB, et al. Liposomes as tools to improve therapeutic enzyme performance. Pharmaceutics. 2022;14(3):531. doi: 10.3390/pharmaceutics14030531
  • Hennigan JN, Lynch MD. The past, present, and future of enzyme-based therapies. Drug Discov Today. 2022;27(1):117–133. doi: 10.1016/j.drudis.2021.09.004
  • Zhuang J, Duan Y, Zhang Q, et al. Multimodal enzyme delivery and therapy enabled by cell membrane-coated metal-organic framework nanoparticles. Nano Lett. 2020;20(5):4051–4058. doi: 10.1021/acs.nanolett.0c01654
  • Duskey JT, Ottonelli I, Rinaldi A, et al. Tween® preserves enzyme activity and stability in PLGA nanoparticles. Nanomaterials (Basel). 2021;11(11):2946. doi: 10.3390/nano11112946
  • Rigon L, Salvalaio M, Pederzoli F, et al. Targeting brain disease in MPSII: preclinical evaluation of IDS-Loaded PLGA nanoparticles. Int J Mol Sci. 2019;20(8):2014. doi: 10.3390/ijms20082014
  • Salvalaio M, Rigon L, Belletti D, et al. Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders. PLoS One. 2016;11(5):e0156452. doi: 10.1371/journal.pone.0156452
  • Weesner JA, Annunziata I, Yang T, et al. Preclinical enzyme replacement therapy with a recombinant β-galactosidase-lectin fusion for CNS delivery and treatment of GM1-Gangliosidosis. Cells. 2022 Aug 19;11(16):2579. doi: 10.3390/cells11162579
  • Bianchi M, Rossi L, Pierigè F, et al. Preclinical and clinical developments in enzyme-loaded red blood cells: an update. Expert Opin Drug Deliv. 2023;20(7):921–935. doi: 10.1080/17425247.2023.2219890
  • Tender GS, Bertozzi CR. Bringing enzymes to the proximity party. RSC Chem Biol. 2023;4(12):986–1002. doi: 10.1039/D3CB00084B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.