0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Intranasal delivery of glucagon-like peptide-1 to the brain for obesity treatment: opportunities and challenges

ORCID Icon, , , , , , & show all
Received 22 Apr 2024, Accepted 29 Jul 2024, Accepted author version posted online: 31 Jul 2024
Accepted author version

REFERENCES

  • Caballero B Humans against Obesity: Who Will Win? Adv Nutr. 2019 Jan 1;10(suppl_1):S4–S9. 10.1093/advances/nmy055
  • Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne). 2021;12:706978.
  • Rinonapoli G, Pace V, Ruggiero C, et al. Obesity and Bone: A Complex Relationship. Int J Mol Sci. 2021 Dec 20;22(24). 13662 10.3390/ijms222413662
  • Mayoral LP, Andrade GM, Mayoral EP, et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res. 2020 Jan;151(1):11–21.10.4103/ijmr.IJMR_1768_17
  • Fitch A, Ingersoll AB Patient initiation and maintenance of GLP-1 RAs for treatment of obesity: a narrative review and practical considerations for primary care providers. Postgrad Med. 2021 Apr;133(3):310–319. 10.1080/00325481.2020.1845534
  • Wang JY, Wang QW, Yang XY, et al. GLP-1 receptor agonists for the treatment of obesity: Role as a promising approach. Front Endocrinol (Lausanne). 2023;14:1085799.
  • Grill HJ A Role for GLP-1 in Treating Hyperphagia and Obesity. Endocrinology. 2020 Aug 1;161(8).10.1210/endocr/bqaa093
  • Jensen AB, Renstrom F, Aczel S, et al. Efficacy of the Glucagon-Like Peptide-1 Receptor Agonists Liraglutide and Semaglutide for the Treatment of Weight Regain After Bariatric surgery: a Retrospective Observational Study. Obes Surg. 2023 Apr;33(4):1017–1025.10.1007/s11695-023-06484-8
  • Beyea MM, Garg AX, Weir MA Does orlistat cause acute kidney injury? Ther Adv Drug Saf. 2012 Apr;3(2):53–57. 10.1177/2042098611429985
  • Muller TD, Bluher M, Tschop MH, et al. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov. 2022 Mar;21(3):201–223.10.1038/s41573-021-00337-8
  • Tak YJ, Lee SY Long-Term Efficacy and Safety of Anti-Obesity Treatment: Where Do We Stand? Curr Obes Rep. 2021 Mar;10(1):14–30.10.1007/s13679-020-00422-w
  • Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide Once Weekly for the Treatment of Obesity. N Engl J Med. 2022 Jul 21;387(3):205–216.10.1056/NEJMoa2206038
  • Formica ML, Real DA, Picchio ML, et al. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Applied Materials Today. 2022;29. 10.1016/j.apmt.2022.101631 29
  • Lee D, Minko T Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics. 2021 Nov 30;13(12). 10.3390/pharmaceutics13122049 2049
  • Usach I, Martinez R, Festini T, et al. Subcutaneous Injection of Drugs: Literature Review of Factors Influencing Pain Sensation at the Injection Site. Adv Ther. 2019 Nov;36(11):2986–2996.10.1007/s12325-019-01101-6
  • Ueno H, Mizuta M, Shiiya T, et al. Exploratory trial of intranasal administration of glucagon-like peptide-1 in Japanese patients with type 2 diabetes. Diabetes Care. 2014 Jul;37(7):2024–2027.10.2337/dc13-0690
  • Zhao X, Wang M, Wen Z, et al. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front Endocrinol (Lausanne). 2021;12:721135. 10.3389/fendo.2021.721135
  • Tsuzuki A, Fujioka Y, Yoshida A, et al. Direct visualization of glucagon-like peptide-1 secretion by fluorescent fusion proteins. J Diabetes Investig. 2022 Jul;13(7):1134–1139. 10.1111/jdi.13800
  • Cabou C, Burcelin R GLP-1, the gut-brain, and brain-periphery axes. Rev Diabet Stud. 2011 Fall;8(3):418–431.10.1900/RDS.2011.8.418
  • Andersen A, Lund A, Knop FK, et al. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018 Jul;14(7):390–403.10.1038/s41574-018-0016-2
  • Smith NK, Hackett TA, Galli A, et al. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int. 2019 Sep;128:94–105. 10.1016/j.neuint.2019.04.010
  • Nowell J, Blunt E, Edison P Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s disease. Mol Psychiatry. 2023 Jan;28(1):217–229.10.1038/s41380-022-01792-4
  • Torekov SS, Madsbad S, Holst JJ Obesity - an indication for GLP-1 treatment? Obesity pathophysiology and GLP-1 treatment potential. Obes Rev. 2011 Aug;12(8):593–601. 10.1111/j.1467-789X.2011.00860.x
  • Athauda D, Foltynie T The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov Today. 2016 May;21(5):802–818.10.1016/j.drudis.2016.01.013
  • Fu Z, Gong L, Liu J, et al. Brain Endothelial Cells Regulate Glucagon-Like Peptide 1 Entry Into the Brain via a Receptor-Mediated Process. Front Physiol. 2020;11:555. 10.3389/fphys.2020.00555
  • Oh S, Lee M, Ko KS, et al. GLP-1 gene delivery for the treatment of type 2 diabetes. Mol Ther. 2003 Apr;7(4):478–483. 10.1016/S1525-0016(03)00036-4
  • Challa TD, Beaton N, Arnold M, et al. Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem. 2012 Feb 24;287(9):6421–6430. 10.1074/jbc.M111.310342
  • Bartel S, McElroy SL, Levangie D, et al. Use of glucagon-like peptide-1 receptor agonists in eating disorder populations. Int J Eat Disord. 2024 Feb;57(2):286–293. 10.1002/eat.24109
  • Ryan D, Acosta A. GLP-1 receptor agonists: Nonglycemic clinical effects in weight loss and beyond. Obesity (Silver Spring). 2015 Jun;23(6):1119–29.
  • Klausen MK, Thomsen M, Wortwein G, et al. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br J Pharmacol. 2022 Feb;179(4):625–641. 10.1111/bph.15677
  • Muller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019 Dec;30:72–130. 10.1016/j.molmet.2019.09.010
  • Muskiet MHA, Tonneijck L, Smits MM, et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol. 2017 Oct;13(10):605–628.10.1038/nrneph.2017.123
  • Kanoski SE, Hayes MR, Skibicka KP GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol. 2016 May 15;310(10):R885–95. 10.1152/ajpregu.00520.2015
  • Trapp S, Brierley DI Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment. Br J Pharmacol. 2022 Feb;179(4):557–570. 10.1111/bph.15638
  • Shah M, Vella A Effects of GLP-1 on appetite and weight. Rev Endocr Metab Disord. 2014 Sep;15(3):181–187.10.1007/s11154-014-9289-5
  • van Bloemendaal L, Ten Kulve JS, la Fleur SE, et al. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol. 2014 Apr;221(1):T1–16.
  • Krieger JP, Arnold M, Pettersen KG, et al. Knockdown of GLP-1 Receptors in Vagal Afferents Affects Normal Food Intake and Glycemia. Diabetes. 2016 Jan;65(1):34–43.10.2337/db15-0973
  • Bai L, Mesgarzadeh S, Ramesh KS, et al. Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell. 2019 Nov 14;179(5):1129–1143 e23.
  • Dong M, Wen S, Zhou L The Relationship Between the Blood-Brain-Barrier and the Central Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter-2 Inhibitors. Diabetes Metab Syndr Obes. 2022;15:2583–2597. 10.2147/DMSO.S375559
  • Monti G, Gomes Moreira D, Richner M, et al. GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells. 2022 Jun 25;11(13). 2023 10.3390/cells11132023
  • Zhang YL, Zhou C, Li XF, et al. Beinaglutide showed significant weight-loss benefit and effective glycaemic control for the treatment of type 2 diabetes in a real-world setting: a 3-month, multicentre, observational, retrospective, open-label study. Obes Sci Pract. 2019 Aug;5(4):366–375. 10.1002/osp4.342
  • Rodgers M, Migdal AL, Rodriguez TG, et al. Weight Loss Outcomes Among Early High Responders to Exenatide Treatment: A Randomized, Placebo Controlled Study in Overweight and Obese Women. Front Endocrinol (Lausanne). 2021;12:742873. 10.3389/fendo.2021.742873
  • Barnett AH Lixisenatide: evidence for its potential use in the treatment of type 2 diabetes. Core Evid. 2011;6:67–79. 10.2147/CE.S15525
  • Pi-Sunyer X, Astrup A, Fujioka K, et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med. 2015 Jul 2;373(1):11–22.10.1056/NEJMoa1411892
  • Wilding JPH, Batterham RL, Calanna S, et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N Engl J Med. 2021 Mar 18;384(11):989–1002.10.1056/NEJMoa2032183
  • Home PD, Ahren B, Reusch JEB, et al. Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy. Diabetes Res Clin Pract. 2017 Sep;131:49–60. 10.1016/j.diabres.2017.06.013
  • Bonora E, Frias JP, Tinahones FJ, et al. Effect of dulaglutide 3.0 and 4.5 mg on weight in patients with type 2 diabetes: Exploratory analyses of AWARD-11. Diabetes Obes Metab. 2021 Oct;23(10):2242–2250. 10.1111/dom.14465
  • Muscogiuri G, DeFronzo RA, Gastaldelli A, et al. Glucagon-like Peptide-1 and the Central/Peripheral Nervous System: Crosstalk in Diabetes. Trends Endocrinol Metab. 2017 Feb;28(2):88–103. 10.1016/j.tem.2016.10.001
  • Trenson L, Trenson S, van Nes F, et al. Liraglutide for weight management in the real world: significant weight loss even if the maximal daily dose is not achieved. Obes Facts. 2022;15(1):83–89. doi: 10.1159/000520217
  • Mehta A, Marso SP, Neeland IJ Liraglutide for weight management: a critical review of the evidence. Obes Sci Pract. 2017 Mar;3(1):3–14. 10.1002/osp4.84
  • Astrup A, Rossner S, Van Gaal L, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. The Lancet. 2009 Nov 7;374(9701):1606–1616. 10.1016/S0140-6736(09)61375-1
  • Astrup A, Carraro R, Finer N, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes (Lond). 2012 Jun;36(6):843–854.10.1038/ijo.2011.158
  • Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes (Lond). 2013 Nov;37(11):1443–1451.10.1038/ijo.2013.120
  • Davies MJ, Bergenstal R, Bode B, et al. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial. JAMA. 2015 Aug 18;314(7):687–699.10.1001/jama.2015.9676
  • Sorli C, Harashima SI, Tsoukas GM, et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017 Apr;5(4):251–260. 10.1016/S2213-8587(17)30013-X
  • Ahren B, Masmiquel L, Kumar H, et al. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): a 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol. 2017 May;5(5):341–354. 10.1016/S2213-8587(17)30092-X
  • Ahmann AJ, Capehorn M, Charpentier G, et al. Efficacy and Safety of Once-Weekly Semaglutide Versus Exenatide ER in Subjects With Type 2 Diabetes (SUSTAIN 3): A 56-Week, Open-Label, Randomized Clinical Trial. Diabetes Care. 2018 Feb;41(2):258–266.10.2337/dc17-0417
  • Aroda VR, Bain SC, Cariou B, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017 May;5(5):355–366.10.1016/S2213-8587(17)30085-2
  • Rodbard HW, Lingvay I, Reed J, et al. Semaglutide Added to Basal Insulin in Type 2 Diabetes (SUSTAIN 5): A Randomized, Controlled Trial. J Clin Endocrinol Metab. 2018 Jun 1;103(6):2291–2301. 10.1210/jc.2018-00070
  • Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016 Nov 10;375(19):1834–1844.10.1056/NEJMoa1607141
  • Pratley RE, Aroda VR, Lingvay I, et al. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018 Apr;6(4):275–286. 10.1016/S2213-8587(18)30024-X
  • Lingvay I, Catarig AM, Frias JP, et al. Efficacy and safety of once-weekly semaglutide versus daily canagliflozin as add-on to metformin in patients with type 2 diabetes (SUSTAIN 8): a double-blind, phase 3b, randomised controlled trial. Lancet Diabetes Endocrinol. 2019 Nov;7(11):834–844. 10.1016/S2213-8587(19)30311-0
  • Zinman B, Bhosekar V, Busch R, et al. Semaglutide once weekly as add-on to SGLT-2 inhibitor therapy in type 2 diabetes (SUSTAIN 9): a randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019 May;7(5):356–367. 10.1016/S2213-8587(19)30066-X
  • Capehorn MS, Catarig AM, Furberg JK, et al. Efficacy and safety of once-weekly semaglutide 1.0mg vs once-daily liraglutide 1.2mg as add-on to 1-3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. 2020 Apr;46(2):100–109.
  • Aroda VR, Rosenstock J, Terauchi Y, et al. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison With Placebo in Patients With Type 2 Diabetes. Diabetes Care. 2019 Sep;42(9):1724–1732.10.2337/dc19-0749
  • Rodbard HW, Rosenstock J, Canani LH, et al. Oral Semaglutide Versus Empagliflozin in Patients With Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial. Diabetes Care. 2019 Dec;42(12):2272–2281.10.2337/dc19-0883
  • Rosenstock J, Allison D, Birkenfeld AL, et al. Effect of Additional Oral Semaglutide vs Sitagliptin on Glycated Hemoglobin in Adults With Type 2 Diabetes Uncontrolled With Metformin Alone or With Sulfonylurea: The PIONEER 3 Randomized Clinical Trial. JAMA. 2019 Apr 16;321(15):1466–1480.10.1001/jama.2019.2942
  • Pratley R, Amod A, Hoff ST, et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. The Lancet. 2019 Jul 6;394(10192):39–50. 10.1016/S0140-6736(19)31271-1
  • Mosenzon O, Blicher TM, Rosenlund S, et al. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019 Jul;7(7):515–527. 10.1016/S2213-8587(19)30192-5
  • Husain M, Birkenfeld AL, Donsmark M, et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2019 Aug 29;381(9):841–851.10.1056/NEJMoa1901118
  • Pieber TR, Bode B, Mertens A, et al. Efficacy and safety of oral semaglutide with flexible dose adjustment versus sitagliptin in type 2 diabetes (PIONEER 7): a multicentre, open-label, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019 Jul;7(7):528–539. 10.1016/S2213-8587(19)30194-9
  • Zinman B, Aroda VR, Buse JB, et al. Efficacy, Safety, and Tolerability of Oral Semaglutide Versus Placebo Added to Insulin With or Without Metformin in Patients With Type 2 Diabetes: The PIONEER 8 Trial. Diabetes Care. 2019 Dec;42(12):2262–2271.10.2337/dc19-0898
  • Yamada Y, Katagiri H, Hamamoto Y, et al. Dose-response, efficacy, and safety of oral semaglutide monotherapy in Japanese patients with type 2 diabetes (PIONEER 9): a 52-week, phase 2/3a, randomised, controlled trial. Lancet Diabetes Endocrinol. 2020 May;8(5):377–391. 10.1016/S2213-8587(20)30075-9
  • Yabe D, Nakamura J, Kaneto H, et al. Safety and efficacy of oral semaglutide versus dulaglutide in Japanese patients with type 2 diabetes (PIONEER 10): an open-label, randomised, active-controlled, phase 3a trial. Lancet Diabetes Endocrinol. 2020 May;8(5):392–406. 10.1016/S2213-8587(20)30074-7
  • Davies M, Faerch L, Jeppesen OK, et al. Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet. 2021 Mar 13;397(10278):971–984.
  • Wadden TA, Bailey TS, Billings LK, et al. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA. 2021 Apr 13;325(14):1403–1413.10.1001/jama.2021.1831
  • Rubino D, Abrahamsson N, Davies M, et al. Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults With Overweight or Obesity: The STEP 4 Randomized Clinical Trial. JAMA. 2021 Apr 13;325(14):1414–1425.10.1001/jama.2021.3224
  • Garvey WT, Batterham RL, Bhatta M, et al. Two-year effects of semaglutide in adults with overweight or obesity: the STEP 5 trial. Nat Med. 2022 Oct;28(10):2083–2091.10.1038/s41591-022-02026-4
  • Ard J, Fitch A, Fruh S, et al. Weight Loss and Maintenance Related to the Mechanism of Action of Glucagon-Like Peptide 1 Receptor Agonists. Adv Ther. 2021 Jun;38(6):2821–2839.10.1007/s12325-021-01710-0
  • Gorgojo-Martinez JJ, Mezquita-Raya P, Carretero-Gomez J, et al. Clinical Recommendations to Manage Gastrointestinal Adverse Events in Patients Treated with Glp-1 Receptor Agonists: A Multidisciplinary Expert Consensus. J Clin Med. 2022 Dec 24;12(1). 145 10.3390/jcm12010145
  • Wilding JPH, Batterham RL, Davies M, et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: The STEP 1 trial extension. Diabetes Obes Metab. 2022 Aug;24(8):1553–1564. 10.1111/dom.14725
  • Jensen SBK, Blond MB, Sandsdal RM, et al. Healthy weight loss maintenance with exercise, GLP-1 receptor agonist, or both combined followed by one year without treatment: a post-treatment analysis of a randomised placebo-controlled trial. EClinicalMedicine. 2024 Mar;69:102475.10.1016/j.eclinm.2024.102475
  • Garvey WT, Birkenfeld AL, Dicker D, et al. Efficacy and Safety of Liraglutide 3.0 mg in Individuals With Overweight or Obesity and Type 2 Diabetes Treated With Basal Insulin: The SCALE Insulin Randomized Controlled Trial. Diabetes Care. 2020 May;43(5):1085–1093.10.2337/dc19-1745
  • Blundell J, Finlayson G, Axelsen M, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab. 2017 Sep;19(9):1242–1251. 10.1111/dom.12932
  • Garvey WT, Frias JP, Jastreboff AM, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. The Lancet. 2023 Aug 19;402(10402):613–626. 10.1016/S0140-6736(23)01200-X
  • Wadden TA, Chao AM, Machineni S, et al. Tirzepatide after intensive lifestyle intervention in adults with overweight or obesity: the SURMOUNT-3 phase 3 trial. Nat Med. 2023 Nov;29(11):2909–2918.10.1038/s41591-023-02597-w
  • Aronne LJ, Sattar N, Horn DB, et al. Continued Treatment With Tirzepatide for Maintenance of Weight Reduction in Adults With Obesity: The SURMOUNT-4 Randomized Clinical Trial. JAMA. 2024 Jan 2;331(1):38–48.10.1001/jama.2023.24945
  • Dushay J, Gao C, Gopalakrishnan GS, et al. Short-term exenatide treatment leads to significant weight loss in a subset of obese women without diabetes. Diabetes Care. 2012 Jan;35(1):4–11.10.2337/dc11-0931
  • Dar S, Tahrani AA, Piya MK. The role of GLP‐1 receptor agonists as weight loss agents in patients with and without type 2 diabetes. Practical Diabetes. 2015;32(8).
  • Hunter K, Holscher C Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012 Mar 23;13:33. 1 10.1186/1471-2202-13-33
  • Ding X, Saxena NK, Lin S, et al. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology. 2006 Jan;43(1):173–181.10.1002/hep.21006
  • Gabery S, Salinas CG, Paulsen SJ, et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight. 2020 Mar 26;5(6).10.1172/jci.insight.133429
  • Zhang L, Zhang M, Zhang Y, et al. Efficacy and safety of dulaglutide in patients with type 2 diabetes: a meta-analysis and systematic review. Sci Rep. 2016 Jan 8;6:18904. 1 10.1038/srep18904
  • Secher A, Jelsing J, Baquero AF, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014 Oct;124(10):4473–4488. 10.1172/JCI75276
  • Sisley S, Gutierrez-Aguilar R, Scott M, et al. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J Clin Invest. 2014 Jun;124(6):2456–2463. 10.1172/JCI72434
  • Lam JKW, Cheung CCK, Chow MYT, et al. Transmucosal drug administration as an alternative route in palliative and end-of-life care during the COVID-19 pandemic. Adv Drug Deliv Rev. 2020;160:234–243. 10.1016/j.addr.2020.10.018
  • Hanson LR, Frey WH, 2nd. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008 Dec 10;9 Suppl 3(Suppl 3):S5.
  • Mittal D, Ali A, Md S, et al. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv. 2014 Mar;21(2):75–86. 10.3109/10717544.2013.838713
  • Al Bakri W, Donovan MD, Cueto M, et al. Overview of intranasally delivered peptides: key considerations for pharmaceutical development. Expert Opin Drug Deliv. 2018 Oct;15(10):991–1005. doi: 10.1080/17425247.2018.1517742
  • Wang Z, Xiong G, Tsang WC, et al. Nose-to-Brain Delivery. J Pharmacol Exp Ther. 2019 Sep;370(3):593–601.10.1124/jpet.119.258152
  • Lochhead JJ, Davis TP Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration. Pharmaceutics. 2019 Nov 12;11(11). 598 10.3390/pharmaceutics11110598
  • Meredith ME, Salameh TS, Banks WA Intranasal Delivery of Proteins and Peptides in the Treatment of Neurodegenerative Diseases. AAPS J. 2015 Jul;17(4):780–787.10.1208/s12248-015-9719-7
  • Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012 Nov;32(11):1959–72.
  • Ruigrok MJ, de Lange EC. Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans. AAPS J. 2015 May;17(3):493–505.
  • Akita T, Oda Y, Kimura R, et al. Involvement of trigeminal axons in nose-to-brain delivery of glucagon-like peptide-2 derivative. J Control Release. 2022 Nov;351:573–580.10.1016/j.jconrel.2022.09.047
  • Crowe TP, Greenlee MHW, Kanthasamy AG, et al. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018 Feb 15;195:44–52. 10.1016/j.lfs.2017.12.025
  • Mikitsh JL, Chacko AM Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem. 2014;6:11–24.10.4137/PMC.S13384
  • Dong X. Current strategies for brain drug delivery. Theranostics. 2018;8(6):1481–1493. doi: 10.7150/thno.21254
  • Ong HX, Jackson CL, Cole JL, et al. Primary Air-Liquid Interface Culture of Nasal Epithelium for Nasal Drug Delivery. Mol Pharm. 2016 Jul 5;13(7):2242–52.
  • Vaka SR, Sammeta SM, Day LB, et al. Delivery of nerve growth factor to brain via intranasal administration and enhancement of brain uptake. J Pharm Sci. 2009 Oct;98(10):3640–6.
  • Falcone JA, Salameh TS, Yi X, et al. Intranasal administration as a route for drug delivery to the brain: evidence for a unique pathway for albumin. J Pharmacol Exp Ther. 2014 Oct;351(1):54–60.10.1124/jpet.114.216705
  • Trevino JT, Quispe RC, Khan F, et al. Non-Invasive Strategies for Nose-to-Brain Drug Delivery. J Clin Trials. 2020;10(7).
  • Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem. 2018 Jun 1;26(10):2888–2905.
  • Maeng J, Lee K Systemic and brain delivery of antidiabetic peptides through nasal administration using cell-penetrating peptides. Front Pharmacol. 2022;13:1068495. 10.3389/fphar.2022.1068495
  • Kamei N, Okada N, Ikeda T, et al. Effective nose-to-brain delivery of exendin-4 via coadministration with cell-penetrating peptides for improving progressive cognitive dysfunction. Sci Rep. 2018 Dec 5;8(1):17641.10.1038/s41598-018-36210-9
  • Alorfi NM, Algarni AS Clinical Impact of Semaglutide, a Glucagon-Like Peptide-1 Receptor Agonist, on Obesity Management: A Review. Clin Pharmacol. 2022;14:61–67. 10.2147/CPAA.S374741
  • Pardridge WM A Historical Review of Brain Drug Delivery. Pharmaceutics. 2022 Jun 16;14(6). 1283 10.3390/pharmaceutics14061283
  • Lofts A, Abu-Hijleh F, Rigg N, et al. Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs. 2022 Jul;36(7):739–770.10.1007/s40263-022-00930-4
  • Henriques P, Fortuna A, Doktorovova S Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm. 2022 Jul;176:1–20. 10.1016/j.ejpb.2022.05.002
  • Trenkel M, Scherliess R Nasal Powder Formulations: In-Vitro Characterisation of the Impact of Powders on Nasal Residence Time and Sensory Effects. Pharmaceutics. 2021 Mar 13;13(3). 385 10.3390/pharmaceutics13030385
  • Paudwal G, Banjare N, Gupta PN. Chapter 5 - Nanovesicles for nasal drug delivery. In: Nayak AK, Hasnain MS, Aminabhavi TM, et al., editors. Applications of Nanovesicular Drug Delivery: Academic Press; 2022. p. 81–101.
  • Crowe TP, Hsu WH Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics. 2022 Mar 12;14(3). 629 10.3390/pharmaceutics14030629
  • Grassin-Delyle S, Buenestado A, Naline E, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012 Jun;134(3):366–379. 10.1016/j.pharmthera.2012.03.003
  • Cheng YS Mechanisms of pharmaceutical aerosol deposition in the respiratory tract. AAPS PharmSciTech. 2014 Jun;15(3):630–640.10.1208/s12249-014-0092-0
  • Alabsi W, Eedara BB, Encinas-Basurto D, et al. Nose-to-Brain Delivery of Therapeutic Peptides as Nasal Aerosols. Pharmaceutics. 2022 Sep 5;14(9). 1870 10.3390/pharmaceutics14091870
  • Cobarrubia A, Tall J, Crispin-Smith A, et al. Empirical and Theoretical Analysis of Particle Diffusion in Mucus. Frontiers in Physics. 2021;9.
  • Araujo F, Fonte P, Santos HA, et al. Oral delivery of glucagon-like peptide-1 and analogs: alternatives for diabetes control? J Diabetes Sci Technol. 2012 Nov 1;6(6):1486–1497.10.1177/193229681200600630
  • Calder D, Fathi A, Oveissi F, et al. Thermoresponsive and Injectable Hydrogel for Tissue Agnostic Regeneration. Adv Healthc Mater. 2022 Dec;11(23):e2201714. 10.1002/adhm.202201714
  • Warnken ZN, Smyth HDC, Watts AB, et al. Formulation and device design to increase nose to brain drug delivery. Journal of Drug Delivery Science and Technology. 2016;35:213–222.10.1016/j.jddst.2016.05.003
  • Picone P, Sabatino MA, Ditta LA, et al. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J Control Release. 2018 Jan 28;270:23–36.10.1016/j.jconrel.2017.11.040
  • Bendicho-Lavilla C, Seoane-Viano I, Otero-Espinar FJ, et al. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B. 2022 Feb;12(2):621–636.10.1016/j.apsb.2021.08.003
  • Lin T, Liu E, He H, et al. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharm Sin B. 2016 Jul;6(4):352–358.10.1016/j.apsb.2016.04.001
  • Gholizadeh H, Cheng S, Pozzoli M, et al. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Deliv. 2019 Apr;16(4):453–466. 10.1080/17425247.2019.1597051
  • Li Y, He J, Lyu X, et al. Chitosan-based thermosensitive hydrogel for nasal delivery of exenatide: Effect of magnesium chloride. Int J Pharm. 2018 Dec 20;553(1–2):375–385. 10.1016/j.ijpharm.2018.10.071
  • De Martini LB, Sulmona C, Brambilla L, et al. Cell-Penetrating Peptides as Valuable Tools for Nose-to-Brain Delivery of Biological Drugs. Cells. 2023 Jun 16;12(12). 1643 10.3390/cells12121643
  • Gomes Dos Reis L, Traini D Advances in the use of cell penetrating peptides for respiratory drug delivery. Expert Opin Drug Deliv. 2020 May;17(5):647–664. 10.1080/17425247.2020.1739646
  • Borrajo ML, Alonso MJ. Using nanotechnology to deliver biomolecules from nose to brain - peptides, proteins, monoclonal antibodies and RNA. Drug Deliv Transl Res. 2022 Apr;12(4):862–880.
  • Ghadiri M, Young PM, Traini D Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics. 2019 Mar 11;11(3). 113 10.3390/pharmaceutics11030113
  • Dholakia J, Prabhakar B, Shende P Strategies for the delivery of antidiabetic drugs via intranasal route. Int J Pharm. 2021 Oct 25;608:121068. 10.1016/j.ijpharm.2021.121068
  • Buocikova V, Rios-Mondragon I, Pilalis E, et al. Epigenetics in Breast Cancer Therapy-New Strategies and Future Nanomedicine Perspectives. Cancers (Basel). 2020 Dec 3;12(12).
  • Sonvico F, Clementino A, Buttini F, et al. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics. 2018 Mar 15;10(1). 34 10.3390/pharmaceutics10010034
  • Aderibigbe BA, Naki T Design and Efficacy of Nanogels Formulations for Intranasal Administration. Molecules. 2018 May 23;23(6). 1241 10.3390/molecules23061241
  • Picone P, Ditta LA, Sabatino MA, et al. Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials. 2016 Feb;80:179–194.10.1016/j.biomaterials.2015.11.057
  • Montegiove N, Calzoni E, Emiliani C, et al. Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. J Funct Biomater. 2022 Aug 24;13(3). 125 10.3390/jfb13030125
  • Kumar M, Pandey RS, Patra KC, et al. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int J Biol Macromol. 2013 Oct;61:189–195. 10.1016/j.ijbiomac.2013.06.041
  • Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013; 2013:238428.
  • Patharapankal EJ, Ajiboye AL, Mattern C, et al. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics. 2023 Dec 31;16(1). 66 10.3390/pharmaceutics16010066
  • Xinchen Y, Jing T, Jiaoqiong G Lipid-based nanoparticles via nose-to-brain delivery: a mini review. Front Cell Dev Biol. 2023;11:1214450. 10.3389/fcell.2023.1214450
  • Ganger S, Schindowski K Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics. 2018 Aug 3;10(3). 116 10.3390/pharmaceutics10030116
  • Cooper W, Ray S, Aurora SK, et al. Delivery of Dihydroergotamine Mesylate to the Upper Nasal Space for the Acute Treatment of Migraine: Technology in Action. J Aerosol Med Pulm Drug Deliv. 2022 Dec;35(6):321–332. 10.1089/jamp.2022.0005
  • Craft S, Raman R, Chow TW, et al. Safety, Efficacy, and Feasibility of Intranasal Insulin for the Treatment of Mild Cognitive Impairment and Alzheimer Disease Dementia: A Randomized Clinical Trial. JAMA Neurol. 2020 Sep 1;77(9):1099–1109.10.1001/jamaneurol.2020.1840
  • Akita T, Shimamura M, Tezuka A, et al. GLP-1 derivatives with functional sequences transit and migrate through trigeminal neurons. Eur J Pharm Biopharm. 2024 Feb;195:114176. 10.1016/j.ejpb.2024.114176
  • Akita T, Kimura R, Akaguma S, et al. Usefulness of cell-penetrating peptides and penetration accelerating sequence for nose-to-brain delivery of glucagon-like peptide-2. J Control Release. 2021 Jul 10;335:575–583.10.1016/j.jconrel.2021.06.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.