0
Views
0
CrossRef citations to date
0
Altmetric
Review

In vitro modeling of intramuscular injection site events

ORCID Icon &
Received 18 Oct 2023, Accepted 01 Aug 2024, Accepted author version posted online: 09 Aug 2024
Accepted author version

References

  • Vinarov Z, Abdallah M, Agundez JAG, et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur J Pharm Sci. 2021 Jul 1;162:105812. 10.1016/j.ejps.2021.105812
  • Frayn KN, Karpe F. Regulation of human subcutaneous adipose tissue blood flow. Int J Obesity. 2014;38(8):1019–1026. doi: 10.1038/ijo.2013.200
  • Schneider A, Mueller P, Jordi C, et al. Hold the device against the skin: the impact of injection duration on user’s force for handheld autoinjectors. Expert Opin Drug Delivery. 2020;17(2):225–236.
  • Schneider A, Jost R, Jordi C, et al. Autoinjectors for large-volume subcutaneous drug delivery: a review of current research and future directions. Expert Opin Drug Delivery. 2023:1–16.
  • Frontera WR, Ochala J Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015 Mar;96(3):183–195.10.1007/s00223-014-9915-y
  • Evans EF, Proctor JD, Fratkin MJ, et al. Blood flow in muscle groups and drug absorption. Clin Pharmacol Ther. 1975 Jan;17(1):44–47. 10.1002/cpt197517144
  • Rodger MA, King L Drawing up and administering intramuscular injections: a review of the literature. J Adv Nurs. 2000 Mar;31(3):574–582. 10.1046/j.1365-2648.2000.01312.x
  • Diggle L. The WHO technique for intramuscular thigh vaccination in infants and toddlers had fewer adverse reactions than 2 other techniques. Evid Based Nurs. 2006 Jan;9(1):9.
  • Ogston-Tuck S Intramuscular injection technique: an evidence-based approach. Nurs Stand. 2014 Sep;29(4):52–59. 10.7748/ns.29.4.52.e9183
  • McCartan AJS, Curran DW, Mrsny RJ Evaluating parameters affecting drug fate at the intramuscular injection site. J Control Release. 2021 Aug 10;336:322–335.10.1016/j.jconrel.2021.06.023
  • Kearns C, Houghton C, Dickinson E, et al. What variables should inform needle length choice for deltoid intramuscular injection? A systematic review. BMJ Open. 2023;13(1):e063530. doi: 10.1136/bmjopen-2022-063530
  • Mishra P, Stringer M. Sciatic nerve injury from intramuscular injection: a persistent and global problem. Int J Clin Pract. 2010;64(11):1573–1579. doi: 10.1111/j.1742-1241.2009.02177.x
  • Larkin TA, Ashcroft E, Hickey BA, et al. Influence of gender, BMI and body shape on theoretical injection outcome at the ventrogluteal and dorsogluteal sites. J Clin Nursing. 2018;27(1–2):e242–e250.
  • Behrens R, Patel V. Avoiding shoulder injury from intramuscular vaccines. The Lancet. 2021;397(10273):471. doi: 10.1016/S0140-6736(21)00192-6
  • Correll CU, Kim E, Sliwa JK, et al. Pharmacokinetic characteristics of long-acting injectable antipsychotics for schizophrenia: an overview. CNS Drugs. 2021;35(1):39–59. doi: 10.1007/s40263-020-00779-5
  • Li W, Tang J, Lee D, et al.. Clinical translation of long-acting drug delivery formulations. Nat Rev Mater. 2022;7(5):406–420. doi: 10.1038/s41578-021-00405-w
  • Walling DP, Hassman HA, Anta L, et al. The Steady-State Comparative Bioavailability of Intramuscular Risperidone ISM and Oral Risperidone: An Open-Label, One-Sequence Study. Drug Des Devel Ther. 2021;15:4371–4382. 10.2147/DDDT.S332026
  • Joiner JB, King JL, Shrivastava R, et al. Effects of Injection Volume and Route of Administration on Dolutegravir In Situ Forming Implant Pharmacokinetics. Pharmaceutics. 2022 Mar 11;14(3). 615 10.3390/pharmaceutics14030615
  • Ma Y, Cong Z, Gao P, et al. Nanosuspensions technology as a master key for nature products drug delivery and in vivo fate. Eur J Pharm Sci. 2023:106425. 185 10.1016/j.ejps.2023.106425
  • Pandya A, Vora L, Umeyor C, et al. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Del Rev. 2023:115003.
  • Zlotnikov ID, Malashkeevich SM, Belogurova NG, et al. Thermoreversible gels based on chitosan copolymers as “intelligent” drug delivery system with prolonged action for intramuscular injection. Pharmaceutics. 2023;15(5):1478. doi: 10.3390/pharmaceutics15051478
  • Shi Y, Lu A, Wang X, et al. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharm Sin B. 2021 Aug;11(8):2396–2415.10.1016/j.apsb.2021.05.002
  • Qin M, Ye G, Xin J, et al. Comparison of in vivo behaviors of intramuscularly long-acting celecoxib nanosuspensions with different particle sizes for the postoperative pain treatment. Int J Pharm. 2023 Apr 5;636:122793. 10.1016/j.ijpharm.2023.122793
  • Li S, Wang Z, Yu J, et al. Intramuscularly injected long-acting testosterone-cholesterol prodrug suspension with three different particle sizes: extended in vitro release and enhanced in vivo safety. Drug Deliv Transl Res. 2024 Apr;14(4):1093–1105. 10.1007/s13346-023-01460-2
  • Rossier B, Jordan O, Allemann E, et al. Nanocrystals and nanosuspensions: an exploration from classic formulations to advanced drug delivery systems. Drug Deliv Transl Res. 2024 Mar 7. 10.1007/s13346-024-01559-0
  • Moutinho S Researchers and regulators plan for a future without lab animals. Nat Med. 2023 Sep;29(9):2151–2154.10.1038/s41591-023-02362-z.
  • ICH: S6(R1): Preclinical safety evaluation of biotechnology - derived pharmaceuticals - Step 5. European Medicines Agency; 2011.
  • EMA regulatory science to 2025: strategic reflection. European Medicines Agency; 2020.
  • • Official European documentation detailing the changing European guidelines, and how these were to be implemented in over the five year period of 2020 - 2025
  • EMA regulatory science to 2025: Mid-point achievements to end 2022. European Medicines Agency; 2023.
  • Purslow PP The structure and functional significance of variations in the connective tissue within muscle. Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):947–966. 10.1016/S1095-6433(02)00141-1
  • Daugherty AL, Mrsny RJ Local tissue distribution and cellular fate of vascular endothelial growth factor (VEGF) following intramuscular injection. J Drug Target. 2010 Jan;18(1):27–35. 10.3109/10611860903134317
  • Korthuis RJ. Anatomy of Skeletal Muscle and Its Vascular Supply. 2011. In: Skeletal Muscle Circulation [Internet]. San Rafael (CA): Morgan & Claypool Life Sciences.
  • Probst M, Kühn JP, Scheuch E, et al. Simultaneous magnetic resonance imaging and pharmacokinetic analysis of intramuscular depots. J Control Release. 2016 Apr;227:1–12.10.1016/j.jconrel.2016.02.029
  • Kalicharan RW, Oussoren C, Schot P, et al. The contribution of the in-vivo fate of an oil depot to drug absorption. Int J Pharm. 2017 Aug 7;528(1–2):595–601. 10.1016/j.ijpharm.2017.06.055
  • Groseclose MR, Castellino S. Intramuscular and subcutaneous drug depot characterization of a long-acting cabotegravir nanoformulation by MALDI IMS. Int J Mass Spectrom. 2019 Mar;437:92–98..
  • Piehl-Aulin K, Laurent C, Engström-Laurent A, et al. Hyaluronan in human skeletal muscle of lower extremity: concentration, distribution, and effect of exercise. J Appl Physiol 1985. 1991;71(6):2493.
  • Fraser JRE, Laurent TC, Laurent UBG. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242(1):27–33. doi: 10.1046/j.1365-2796.1997.00170.x
  • Loukas M, Shoja MM, Thurston T, et al. Anatomy and biomechanics of the vertebral aponeurosis part of the posterior layer of the thoracolumbar fascia. Surg Radiol Anat. 2008 Mar;30(2):125–129.10.1007/s00276-007-0291-4
  • Gordon MK, Hahn RA Collagens. Cell Tissue Res. 2010 Jan;339(1):247–257.10.1007/s00441-009-0844-4
  • Sloop CH, Dory L, Roheim PS Interstitial fluid lipoproteins. J Lipid Res. 1987 Mar;28(3):225–237. 10.1016/S0022-2275(20)38701-0
  • Fogh-Andersen N, Altura BM, Altura BT, et al. Composition of interstitial fluid. Clin Chem. 1995 Oct;41(10):1522–1525. 10.1093/clinchem/41.10.1522
  • Reed RK, Rubin K Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res. 2010 Jul;87(2):211–217. 10.1093/cvr/cvq143
  • Waterhouse BR, Farmery AD. The organization and composition of body fluids. Anaesth Intensive Care Med. 2012 Dec;13(12):603–608.
  • Wiig H, Swartz MA Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012 Jul;92(3):1005–1060. 10.1152/physrev.00037.2011
  • Turkina MV, Ghafouri N, Gerdle B, et al. Evaluation of dynamic changes in interstitial fluid proteome following microdialysis probe insertion trauma in trapezius muscle of healthy women. Sci Rep. 2017 03;7:43512. 1 10.1038/srep43512
  • Roumelioti ME, Glew RH, Khitan ZJ, et al. Fluid balance concepts in medicine: Principles and practice. World J Nephrol. 2018 Jan;7(1):1–28. 10.5527/wjn.v7.i1.1
  • Kumar V, Karon BS. Comparison of measured and calculated bicarbonate values. Clin Chem. 2008;54(9):1586–1587. doi: 10.1373/clinchem.2008.107441
  • Markhus CE, Wiig H Isolation of interstitial fluid from skeletal muscle and subcutis in mice using a wick method. Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H2085–90. 10.1152/ajpheart.00379.2004
  • Wang Z, Luan J, Seth A, et al.. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat Biomed Eng. 2021;5(1):64–76. doi: 10.1038/s41551-020-00672-y
  • Samant PP, Prausnitz MR. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc Natl Acad Sci USA. 2018;115(18):4583–4588.
  • Zhivkova ZD. Studies on drug-human serum albumin binding: the current state of the matter. Curr Pharm Des. 2015;21(14):1817–30.
  • Kragh-Hansen U. Human Serum Albumin: A Multifunctional Protein. In: Otagiri M, Chuang VTG, editors. Albumin in Medicine: Pathological and Clinical Applications. Singapore: Springer Singapore; 2016. p. 1–24.
  • Lännergren J, Bruton JD, Westerblad H. Vacuole formation in fatigued skeletal muscle fibres from frog and mouse: effects of extracellular lactate. J Physiol. 2000 Aug 01;526 Pt 3:597–611.
  • Oyane A, Kim HM, Furuya T, et al. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A. 2003 May 01;65(2):188–95.
  • Marques M, Loebenberg R, Almukainzi M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolut Technol. 2011 AUG 2011;18(3):15–28.
  • Simon A, de Almeida Borges VR, Cabral LM, et al. Development and validation of a discriminative dissolution test for betamethasone sodium phosphate and betamethasone dipropionate intramuscular injectable suspension. AAPS PharmSciTech. 2013 Mar;14(1):425–434.10.1208/s12249-012-9920-2
  • Kinnunen HM, Sharma V, Contreras-Rojas LR, et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J Control Release. 2015 Sep;214:94–102.10.1016/j.jconrel.2015.07.016
  • Fountain WA, Naruse M, Claiborne A, et al. Low-dose aspirin and COX inhibition in human skeletal muscle. J Appl Physiol (1985). 202012 01;129(6):1477–1482.
  • McCartan A, Mackay J, Curran D, et al. Modelling intramuscular drug fate in vitro with tissue-relevant biomimetic hydrogels. Int J Pharm X. 2022 Dec;4:100125.
  • Li S, Wang R, Zhang M, et al. Proteomic analysis of non-small cell lung cancer tissue interstitial fluids. World J Surg Oncol. 2013 Aug 5;11:173. 1 10.1186/1477-7819-11-173
  • Marunaka Y Roles of interstitial fluid pH in diabetes mellitus: Glycolysis and mitochondrial function. World J Diabetes. 2015 Feb;6(1):125–135. 10.4239/wjd.v6.i1.125
  • Reid MB, Shoji T, Moody MR, et al. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J Appl Physiol (1985). 1992Nov;73(5):1805–9.
  • McCartan A. Modelling critical parameters of the intramuscular injection site. The University of Bath.2022.
  • Henderson MA, Gillon S, Al-Haddad M. Organization and composition of body fluids. Anaesth Intensive Care Med. 2018 Oct;19(10):568–574.
  • Torres-Terán I, Venczel M, Klein S Prediction of subcutaneous drug absorption-do we have reliable data to design a simulated interstitial fluid? Int J Pharm. 2021;610:121257. 10.1016/j.ijpharm.2021.121257
  • Korte I, Brenner KP, Pollmann KP. A comparison of two buffering systems for lens organ culture. Ophthalmic Res. 1982;14(4):265–268. doi: 10.1159/000265201
  • Shyam R, Reddy LVK, Palaniappan A. Fabrication and characterization techniques of in vitro 3D tissue models. Int J Mol Sci. 2023;24(3):1912. doi: 10.3390/ijms24031912
  • Pamies D, Hartung T. 21st Century Cell Culture for 21st Century Toxicology. Chem Res Toxicol. 2017 Jan 17;30(1):43–52.
  • Choi JW, Bae S-H, Kim IY, et al. Testing in vitro toxicity of nanoparticles in 3D cell culture with various extracellular matrix scaffold. bioRxiv. 2021:2021.03. 18.436024.
  • Juarez-Moreno K, Chávez-García D, Hirata G, et al. Monolayer (2D) or spheroids (3D) cell cultures for nanotoxicological studies? Comparison of cytotoxicity and cell internalization of nanoparticles. Toxicol In Vitro. 2022;85:105461.10.1016/j.tiv.2022.105461
  • Rubashkin MG, Ou G, Weaver VM. Deconstructing signaling in three dimensions. Biochemistry. 2014;53(13):2078–2090. doi: 10.1021/bi401710d
  • Antoni D, Burckel H, Josset E, et al. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci. 2015;16(3):5517–5527. doi: 10.3390/ijms16035517
  • Duval K, Grover H, Han L-H, et al.. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 2017;32(4):266–277. doi: 10.1152/physiol.00036.2016
  • Lelièvre SA, Kwok T, Chittiboyina S Architecture in 3D cell culture: An essential feature for in vitro toxicology. Toxicol In Vitro. 2017;45:287–295.10.1016/j.tiv.2017.03.012
  • Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22(5):456–472. doi: 10.1177/1087057117696795
  • Borah A, Kumar DS. Overcoming the barriers of two-dimensional cell culture systems with three-dimensional cell culture systems: techniques, drug discovery, and biomedical applications. Biomedical Product and Materials Evaluation: Elsevier; 2022. p. 179–229.
  • Dhaliwal A. 3D cell culture: A review. Mater Methods. 2012;2:162.
  • Mastrullo V, Cathery W, Velliou E, et al. Angiogenesis in tissue engineering: as nature intended? Front Bioeng Biotechnol. 2020;8:188. 10.3389/fbioe.2020.00188
  • Filippi M, Yasa O, Giachino J, et al. Perfusable Biohybrid Designs for Bioprinted Skeletal Muscle Tissue. Adv Healthc Mater. 2023 Jul;12(18):e2300151. 10.1002/adhm.202300151
  • Ostrovidov S, Ramalingam M, Bae H, et al. Latest developments in engineered skeletal muscle tissues for drug discovery and development. Expert Opin Drug Discov. 20232023/01 /02;18(1):47–63..
  • Hosseinkhani H. 3‐D culture systems for cell culture technology. J Cell Res. 2018;1:1–4.
  • Huch M, Knoblich JA, Lutolf MP, et al. The hope and the hype of organoid research. Development. 2017;144(6):938–941. doi: 10.1242/dev.150201
  • Velasco V, Shariati SA, Esfandyarpour R. Microtechnology-based methods for organoid models. Microsyst Nanoeng. 2020;6(1):76. doi: 10.1038/s41378-020-00185-3
  • Sun M, Liu A, Yang X, et al. 3D cell culture—can it be as popular as 2d cell culture? Adv Nanobiomed Res. 2021;1(5):2000066.
  • Tebon PJ, Wang B, Markowitz AL, et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat Commun. 20232023/06 /06;14(1):3168.
  • Tang J, Shi J, Liu J. Editorial: Advances in 3D cell culture for drug screening and toxicology evaluation. Front Bioeng Biotechnol. 2023;11:1266506.
  • Napaporn J, Thomas M, Svetic KA, et al. Assessment of the myotoxicity of pharmaceutical buffers using an in vitro muscle model: effect of pH, capacity, tonicity, and buffer type [article]. Pharm Dev Technol. 2000;5(1):123–130. doi: 10.1081/PDT-100100527
  • Dan-Jumbo SO. Development and validation of an in vitro porcine skeletal muscle model. 2023.
  • Ricard-Blum S The collagen family. Cold Spring Harb Perspect Biol. 2011 Jan;3(1):a004978. 10.1101/cshperspect.a004978
  • Ricklefs M, Korossis S, Haverich A, et al. Polymeric scaffolds for bioartificial cardiovascular prostheses. Scaffolds in Tissue Engineering-Materials, Technologies and Clinical Applications; IntechOpen: London, UK. 2017:267–291.
  • Gilbert-Honick J, Iyer SR, Somers SM, et al. Engineering functional and histological regeneration of vascularized skeletal muscle. Biomaterials. 2018 May;164:70–79.10.1016/j.biomaterials.2018.02.006
  • Shi M, Dong R, Hu J, et al. Conductive self-healing biodegradable hydrogel based on hyaluronic acid-grafted-polyaniline as cell recruitment niches and cell delivery carrier for myogenic differentiation and skeletal muscle regeneration. Chem Eng J. 2023;457:141110.
  • Narayanan N, Lengemann P, Kim KH, et al. Harnessing nerve-muscle cell interactions for biomaterials-based skeletal muscle regeneration. J Biomed Mater Res A. 2021 Mar;109(3):289–299.
  • Liu D, Nikoo M, Boran G, et al. Collagen and gelatin. Annu Rev Food Sci Technol. 2015;6(1):527–557. doi: 10.1146/annurev-food-031414-111800
  • Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78(1):929–958. doi: 10.1146/annurev.biochem.77.032207.120833
  • Li P, Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids. 2018;50(1):29–38. doi: 10.1007/s00726-017-2490-6
  • Handbook of Food Proteins. Phillips G, Williams P, editors. 2011. English. (Woodhead Publishing in Food Science Technology and Nutrition; 222).
  • Zhang Z, Li G, Shi B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J Soc Leath Tech Ch. 2006;90(1):23.
  • Djagny VB, Wang Z, Xu S. Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit Rev Food Sci Nutr. 2001 Sep;41(6):481–92.
  • Andrade ÂL, Ferreira JMF, Domingues RZ. Zeta potential measurement in bioactive collagen. Mater Res. 2004;7(4):631–634.
  • Armstrong SE, Bell DR Relationship between lymph and tissue hyaluronan in skin and skeletal muscle. Am J Physiol Heart Circ Physiol. 2002 Dec;283(6):H2485–94. 10.1152/ajpheart.00385.2002
  • Chong BF, Blank LM, McLaughlin R, et al. Microbial hyaluronic acid production. Appl Microbiol Biotechnol. 2005 Jan;66(4):341–351.10.1007/s00253-004-1774-4
  • Bayer IS Hyaluronic Acid and Controlled Release: A Review. Molecules. 2020 Jun 6;25(11). 2649 10.3390/molecules25112649
  • Juncan AM, Moisă DG, Santini A, et al. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules. 2021 Jul 22;26(15). 4429 10.3390/molecules26154429
  • Wassenaar JW, Boss GR, Christman KL Decellularized skeletal muscle as an in vitro model for studying drug-extracellular matrix interactions. Biomaterials. 2015 Sep;64:108–114.10.1016/j.biomaterials.2015.06.033.
  • Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(4):910–919.
  • Thati S, McCallum M, Xu Y, et al.. Novel Applications of an In Vitro Injection Model System to Study Bioperformance: Case Studies with Different Drug Modalities. J Pharm Innov. 2020;15(2):268–280. doi: 10.1007/s12247-020-09437-1
  • Rawat A, Stipper E, Shah VP, et al. Validation of USP apparatus 4 method for microsphere in vitro release testing using Risperdal (R) Consta (R). Int J Pharm. 2011 Nov;420(2):198–205.
  • Park K, Otte A, Sharifi F, et al. Potential roles of the glass transition temperature of PLGA microparticles in drug release kinetics. Mol Pharm. 2020;18(1):18–32.
  • Yoo J, Won Y-Y. Phenomenology of the initial burst release of drugs from PLGA microparticles. ACS Biomater Sci Eng. 2020;6(11):6053–6062.
  • Ward SR, Davis J, Kaufman KR, et al.. Relationship between muscle stress and intramuscular pressure during dynamic muscle contractions. Muscle and Nerve. 2007;36(3):313–319. doi: 10.1002/mus.20828
  • Kurbel S, Kurbel B, Belovari T, et al. Model of interstitial pressure as a result of cyclical changes in the capillary wall fluid transport. Med Hypotheses. 2001 Aug;57(2):161–166.10.1054/mehy.2001.1288
  • Michel CC, Woodcock TE, Curry FRE. Understanding and extending the Starling principle. Acta Anaesthesiol Scand. 2020;64(8):1032–1037. doi: 10.1111/aas.13603
  • Wilkinson J, Ajulo D, Tamburrini V, et al. Lipid based intramuscular long-acting injectables: Current state of the art. Eur J Pharm Sci. 2022 Nov 1;178:106253. 10.1016/j.ejps.2022.106253
  • Skwierczynski RD, Gray V, De Mutha J. Overview of the Activities of the USP Expert Panel on New Advancements in Product Performance Testing. Dissolut Technol. 2022;29(3):122–127.
  • Siepmann J, Siepmann F Sink conditions do not guarantee the absence of saturation effects. Int J Pharm. 2020;577:119009. 10.1016/j.ijpharm.2019.119009
  • Pavani P, Kumar K, Rani A, et al. The influence of sodium phosphate buffer on the stability of various proteins: Insights into protein-buffer interactions. J Mol Liq. 2021;331:115753.
  • Sonntag E, Kolář J, Djukaj S, et al. Accelerated reactive dissolution model of drug release from long-acting injectable formulations. Eur J Pharm Biopharma. 2023.
  • Chen Y-A, Ou S-M, Lin C-C. Influence of dialysis membranes on clinical outcomes: from history to innovation. Membranes (Basel). 2022;12(2):152. doi: 10.3390/membranes12020152
  • Cascone S Modeling and comparison of release profiles: Effect of the dissolution method. Eur J Pharm Sci. 2017;106:352–361. 10.1016/j.ejps.2017.06.021
  • Burke MD, Koetting MC. Development of a Clinically Relevant Dissolution Approach to Simulate Physiological Forces with a USP 2 Apparatus: “Peristaltic Dissolution”. J Pharm Innov. 20202020/08 /22;16(4):699–714.
  • Wolf K, Te Lindert M, Krause M, et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol. 2013 Jun 24;201(7):1069–1084. 10.1083/jcb.201210152
  • Haas GJ, Dunn AJ, Marcinczyk M, et al. Biomimetic sponges for regeneration of skeletal muscle following trauma. J Biomed Mater Res A. 2019 Jan;107(1):92–103.10.1002/jbm.a.36535
  • Fischer KM, Scott TE, Browe DP, et al. Hydrogels for Skeletal Muscle Regeneration. Regen Eng Trans Med. 2020:1–9.
  • Purslow PP The Structure and Role of Intramuscular Connective Tissue in Muscle Function. Front Physiol. 2020;11:495. 10.3389/fphys.2020.00495
  • Naomi R, Ridzuan PM, Bahari H. Current Insights into Collagen Type I. Polymers (Basel). 2021 Aug 9;13(16). 2642 10.3390/polym13162642
  • Karpakka J, Virtanen P, Väänänen K, et al. Collagen synthesis in rat skeletal muscle during immobilization and remobilization. J Appl Physiol (1985). 1991Apr;70(4):1775–80.
  • Wiig H, Reed RK, Tenstad O Interstitial fluid pressure, composition of interstitium, and interstitial exclusion of albumin in hypothyroid rats. Am J Physiol Heart Circ Physiol. 2000 May;278(5):H1627–39. 10.1152/ajpheart.2000.278.5.H1627
  • Byrne MP, Smith TJ, Montgomery VA, et al. Purification, potency, and efficacy of the botulinum neurotoxin type A binding domain from Pichia pastoris as a recombinant vaccine candidate. Infect Immun. 1998 Oct;66(10):4817–4822. 10.1128/IAI.66.10.4817-4822.1998
  • Beyer S, Xie L, Schmidt M, et al. Optimizing novel implant formulations for the prolonged release of biopharmaceuticals using in vitro and in vivo imaging techniques. J Control Release. 2016 Aug 10;235:352–364.10.1016/j.jconrel.2016.06.013
  • Goyon A, Excoffier M, Janin-Bussat MC, et al. Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Oct 15;1065-1066:119–128.10.1016/j.jchromb.2017.09.033
  • Safarpour Y, Jabbari B. Botulinum Toxin Treatment of Movement Disorders. Curr Treat Options Neurol. 2018 Feb 24;20(2):4.10.1007/s11940-018-0488-3
  • Veronese FM, Pasut G PEGylation, successful approach to drug delivery. Drug Discov Today. 2005 Nov 1;10(21):1451–1458.10.1016/S1359-6446(05)03575-0
  • Vogel AM, Lennon DR, Broadbent R, et al. Palivizumab prophylaxis of respiratory syncytial virus infection in high-risk infants. J Paediatr Child Health. 2002 Dec;38(6):550–554.10.1046/j.1440-1754.2002.00057.x
  • Markowitz CE. Interferon-beta: mechanism of action and dosing issues. Neurology. 2007 Jun 12;68(24 Suppl 4):S8–11.
  • Evidente VG, Pappert EJ. Botulinum toxin therapy for cervical dystonia: the science of dosing. Tremor Other Hyperkinet Mov (N Y). 2014;4:273.
  • Howard JB, Carpenter FH L-asparaginase from Erwinia carotovora. Substrate specificity and enzymatic properties. J Biol Chem. 1972 Feb 25;247(4):1020–1030. 10.1016/S0021-9258(19)45610-X
  • Graham ML Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev. 2003 Sep 26;55(10):1293–1302. 10.1016/S0169-409X(03)00110-8
  • Nicoli S, Santi P, Couvreur P, et al. Design of triptorelin loaded nanospheres for transdermal iontophoretic administration. Int J Pharm. 2001 Feb 19;214(1–2):31–35. 10.1016/S0378-5173(00)00632-3
  • Park K, Skidmore S, Hadar J, et al. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J Control Release. 2019 Jun 28;304:125–134.10.1016/j.jconrel.2019.05.003
  • Nishiuchi Y, Inui T, Nishio H, et al. Chemical synthesis of the precursor molecule of the Aequorea green fluorescent protein, subsequent folding, and development of fluorescence. Proc Natl Acad Sci USA. 1998 Nov 10;95(23):13549–54.
  • Rogge MC, Charenkavanich S, DiBiase M, et al. Impaired bioavailability of interferon beta-1a when administered intramuscularly by needle-free injection. Drug Deliv. 1998;5(4):275–280. doi: 10.3109/10717549809065758
  • Probst M, Schmidt M, Weitschies W, et al. In vitro simulation of distribution processes following intramuscular injection. CDBME. 2016;2(1):383–386.
  • Calderan L, Carton F, Andreana I, et al. An ex vivo experimental system to track fluorescent nanoparticles inside skeletal muscle. Eur J Histochem. 2023 Jan 2;67(1).10.4081/ejh.2023.3596
  • Kanazawa Y, Nagano M, Koinuma S, et al. Effects of aging on basement membrane-related gene expression of the skeletal muscle in rats. Biomed Res. 2021;42(3):115–119. doi: 10.2220/biomedres.42.115
  • Hill RL, Wilmot JG, Belluscio BA, et al. Comparison of drug delivery with autoinjector versus manual prefilled syringe and between three different autoinjector devices administered in pig thigh. Medical Devices: Evidence and Research. 2016:257–266..
  • Turner PJ, Muraro A, Roberts G Pharmacokinetics of adrenaline autoinjectors. Clin Exp Allergy. 2022 Jan;52(1):18–28.10.1111/cea.14055
  • Dreborg S, Kim H The pharmacokinetics of epinephrine/adrenaline autoinjectors. Allergy Asthma Clin Immunol. 2021 Mar 8;17(1):25.10.1186/s13223-021-00511-y
  • Whyte A, Parker C. A review of the efficacy and tolerability of antipsychotic long-acting injections. Prog Neurol Psychiatry. 2016 Jul-Aug;20(4):22–28.
  • Khanolkar A, White S, Margerison E. A Novel Method to Optimize Drug Delivery for Parenteral Products Involving New Therapies and Unmet Needs. Pharm Res. 2023:1–13.
  • Bettonte S, Berton M, Battegay M, et al. Development of a physiologically‐based pharmacokinetic model to simulate the pharmacokinetics of intramuscular antiretroviral drugs. CPT: Pharmacometrics & Systems Pharmacology. 2024..
  • Di J, Hou P, Corpstein CD, et al. Multiphysics modeling and simulation of local transport and absorption kinetics of intramuscularly injected lipid nanoparticles. J Control Release. 2023;359:234–243.10.1016/j.jconrel.2023.05.048
  • Atoyebi S, Bunglawala F, Cottura N, et al. Physiologically‐based pharmacokinetic modelling of long‐acting injectable cabotegravir and rilpivirine in pregnancy. Br J Clin Pharmacol. 2024. 10.1111/bcp.16006
  • Siemons M, Schroyen B, Darville N, et al. Role of modeling and simulation in preclinical and clinical long-acting injectable drug development. Aaps J. 2023;25(6):99. doi: 10.1208/s12248-023-00864-9
  • Saldanha L, Langel Ü, Vale N. In silico studies to support vaccine development. Pharmaceutics. 2023;15(2):654.
  • Dubbelboer IR, Sjögren E Physiological based pharmacokinetic and biopharmaceutics modelling of subcutaneously administered compounds–An overview of in silico models. Int J Pharm. 2022;621:121808. 10.1016/j.ijpharm.2022.121808
  • Micallef J, Arutiunian A, Dubrowski A. The development of an intramuscular injection simulation for nursing students. Cureus. 2020;12(12). doi: 10.7759/cureus.12366
  • Micallef J, Lin AC, Arutiunian A, et al. Design of an Intramuscular Injection Simulator: Accommodating Cultural Differences. Cureus. 2021;13(10).10.7759/cureus.18980
  • Tantacharoenrat C, Precharattana M. An Electronic-based Simulator for Intramuscular Injection in Newborns. Int J Nurs Educ. 2023;15(2):1–6.
  • Mc Crudden MTC, Larraneta E, Clark A, et al. Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J Control Release. 2018 Dec 28;292:119–129.10.1016/j.jconrel.2018.11.002