525
Views
34
CrossRef citations to date
0
Altmetric
Review

Multidrug efflux pumps and their role in antibiotic and antiseptic resistance: a pharmacodynamic perspective

, , , , , & show all
Pages 301-309 | Received 30 Jul 2016, Accepted 18 Oct 2016, Published online: 02 Nov 2016

References

  • Antimicrobial Resistance: Global Report on Surveillance 2014. WHO. 2014. Available from: http://www.who.int/drugresistance/documents/surveillancereport/en/
  • Blot S, Depuydt P, Vandewoude K, et al. Measuring the impact of multidrug resistance in nosocomial infection. Curr Opin Infect Dis. 2007;20:391–396.
  • Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents. 2007;29:630–636.
  • Chopra I, Schofield C, Everett M, et al. Treatment of health- care-associated infections caused by Gram-negative bacteria: a consensus statement. Lancet Infect Dis. 2008;8:133–139.
  • Rice LB. The clinical consequences of antimicrobial resistance. Curr Opin Microbiol. 2009;12:476–481.
  • Gandhi TN, DePestel DD, Collins CD, et al. Managing antimicrobial resistance in intensive care units. Crit Care Med. 2010;38(Suppl 8):S315–23.
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis. 2009;48:1–12.
  • Rice LB. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol. 2010;31(Suppl 1):S7–S10.
  • Nikaido H, Pagès J-M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev. 2012;36:340–363.
  • Li ZH, Plesiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Micro Rev. 2015;28:337–418.
  • Tumah HN. Bacterial biocide resistance. J Chemother. 2009;21:5–15.
  • Hegstad K, Langsrud S, Lunestad BT, et al. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobiol resistance and thus threaten our health ? Microb Drug Resist. 2010;16:91–104.
  • Delmar JA, Su -C-C, Yu EW. Bacterial multidrug efflux transporters. Annu Rev Biophys. 2014;43:93–117.
  • Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.
  • Venter H, Mowla R, Ohene-Agyei T, et al. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol. 2015;6:377.
  • Davin-Regli A, Masi M, Bialek S, et al. Antimicrobial resistance and drug efflux pumps in Enterobacter and Klebsiella. In: Li X-Z, Elkins CA, Zgurskaya HI, editors. Efflux-mediated drug resistance in bacteria: Mechanisms, regulation and clinical implications. Berlin: Springer; 2016.
  • Davin-Regli A, Bolla JM, James CE, et al. Membrane permeability and regulation of drug ‘influx and efflux’ in enterobacterial pathogens. Curr Drug Targets. 2008;9:750–759.
  • Pagès JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 2008;6:893–903.
  • Bolla JM, Alibert-Franco S, Handzlik J, et al. Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett. 2011;585:1682–1690.
  • Ruggerone P, Murakami S, Pos KM, et al. RND efflux pumps: structural information translated into function and inhibition mechanisms. Curr Top Med Chem. 2013;13:3079–3100.
  • Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol. 2015;6:660.
  • Opperman TJ, Nguyen ST. Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol. 2015;6:421.
  • Jones D. News and analysis: the antibacterial lead discovery challenge. Nat Rev Drug Discov. 2010;9:751–752.
  • Yamaguchi A, Nakashima R, Sakurai K. Structural basis of RND-type multidrug exporters. Front Microbiol. 2015;6:327.
  • Poole K, Krebes K, McNally C, et al. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol. 1993;175:7363–7372.
  • Ma D, Cook DN, Alberti M, et al. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol. 1995;16:45–55.
  • Du D, Voss J, Wang Z, et al. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump. Biol Chem. 2015;396:1073–1082.
  • Blair JMA, Piddock LJV. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol. 2009;12:512–519.
  • Ogawa W, Onishi M, Ni R, et al. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene. 2012;498:177–182.
  • Nowak J, Seifert H, Higgins PG. Prevalence of eight resistance-nodulation-division efflux pump genes in epidemiologically characterized Acinetobacter baumannii of worldwide origin. J Med Microbiol. 2015;64:630–635.
  • Tsukagoshi N, Aono R. Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrABTolC solvent-extruding pump. J Bacteriol. 2000;182:4803–4810.
  • Lomovskaya O, Zgurskaya HI, Totrov M, et al. Waltzing transporters and ‘the dance macabre’ between humans and bacteria. Nat Rev Drug Discov. 2007;6:56–65.
  • Piddock LJ. Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol. 2006;4:629–636.
  • Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 2005;56:20–51.
  • Elkins CA, Nikaido H. 3D structure of AcrB: the archetypal multidrug efflux transporter of Escherichia coli likely captures substrates from periplasm. Drug Resist Update. 2003;6:9–13.
  • Pradel E, Pages J-M. The AcrAB-TolC pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother. 2002;46:2640–2643.
  • Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol. 1996;178:5853–5859.
  • Eaves DJ, Ricci V, Piddock LJV. Expression of acrB, acrF, acrD, marA and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob Agents Chemother. 2004;48:1145–1150.
  • Biot FV, Lopez MM, Poyot T, et al. Interplay between RND efflux pumps in doxycycline-selected strains of Burkholderia thailandensis. Plos One. 2013;8:e84068.
  • Lee A, Mao W, Warren MS, et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol. 2000;182:3142–3150.
  • Tal N, Schuldiner S. A coordinated network of transporters with overlapping specificities provides a robust survival strategy. P Natl Acad Sci USA. 2009;106:9051–9056.
  • Hobbs EC, Yin X, Paul BJ, et al. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. P Natl Acad Sci USA. 2012;109:16696–16701.
  • Du D, Wang Z, James NR, et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature. 2014;509:512–515.
  • Shuster Y, Steiner-Mordoch S, Alon-Cudkowicz N, et al. A transporter interactome is essential for the acquisition of antimicrobial resitance to antibiotics. Plos One. 2016;11:e0152917.
  • Murakami S, Nakashima R, Yamashita E, et al. Crystal structure of bacterial efflux transporter AcrB. Nature. 2002;419:587–593.
  • Murakami S, Nakashima R, Yamashita E, et al. Crystal structures of a multidrug transporter reveal a functionnally rotating mechanism. Nature. 2006;443:173–179.
  • Seeger MA, Schiefner A, Eicher T, et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science. 2006;313:1295–1298.
  • Nakashima R, Sakurai K, Yamasaki S, et al. Structures of the multidrug exporter AcrB reveal a proximal multisite drug binding pocket. Nature. 2011;480:565–569.
  • Sjuts H, Vargiu AV, Kwasny SM, et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. P Natl Acad Sci USA. 2016;113:3509–3514.
  • Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. Sym Ser Soc Appl Microbiol. 2002;92:65S–71S.
  • Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007;128:1037–1050.
  • Masi M, Pagès J–M. Structure, function and regulation of outer membrane proteins involved in drug transport in Enterobacteriaceae: the OmpF/C-TolC case. Open Microbiol J. 2013;7:22–33.
  • Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593–656.
  • Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol. 2000;182:1754–1756.
  • Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol. 2005;187:1923–1929.
  • Baugh S, Piddock LJV. Salmonella efflux pumps. Microbial Efflux Pumps. 2013;163–173.
  • Hodgkinson JT, Gross J, Baker YR, et al. A new pseudomonas quinolone signal (PQS) binding partner: MexG. Chem Sci. 2016;7:2553–2562.
  • Blair JMA, Smith HE, Ricci V, et al. Expression of homologous RND efflux pump genes is dependent upon AcrAB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemother. 2015;70:424–431.
  • Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Ann Rev Cell Developmental Biol. 2005;21:319–346.
  • Galloway WRDJ, Hodgkinson JT, Bowden SD, et al. Quorum sensing in Gram-negative bacteria: small molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev. 2011;111:28–67.
  • Atkinson S, Williams P. Quorum sensing and social networking in the microbial world. J R Soc Interface. 2009;6:959–978.
  • Antunes LCM, Ferreira RBR, Buckner MMC, et al. Quorum sensing in bacterial virulence. Microbiol. 2010;156:2271–2282.
  • Minagawa S, Inami H, Kato T, et al. RND type efflux system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol. 2012;12:70.
  • Pagès J-M, Alibert-Franco S, Mahamoud A, et al. Efflux pumps of gram-negative bacteria, a new target for new molecules. Curr Top Med Chem. 2010;8:1848–1857.
  • Pagès J-M, Amaral L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta. 2009;1794:826–833.
  • Falagas ME, Grammatikos AP, Michalopoulos A. Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther. 2008;6:593–600.
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55:27–55.
  • Ohene‐Agyei T, Mowla R, Rahman T, et al. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. Microbiol Open. 2014;3:885–896.
  • Aparna V, Dineshkumar K, Mohanalakshmi N, et al. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. Plos One. 2014;9:e101840.
  • Takatsuka Y, Chen C, Nikaido H. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. P Natl Acad Sci USA. 2010;107:6559–6565.
  • Vargiu AV, Nikaido H. Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. P Natl Acad Sci USA. 2012;109:20637–20642.
  • Nguyen ST, Kwasny SM, Ding X, et al. Structure–activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors. Bioorg Med Chem. 2015;23:2024–2034.
  • Otrebska-Machaj E, Chevalier J, Handzlik J, et al. Efflux pump blockers in Gram-negative bacteria: the new generation of hydantoin based modulators to improve antibiotic activity. Front Microbiol. 2016;7:622.
  • Mahamoud A, Chevalier J, Baitiche M, et al. An alkylaminoquinazoline restores antibiotic activity in Gram-negative resistant isolates. Microbiol. 2011;157:566–571.
  • Handzlik J, Szymańska E, Alibert S, et al. Search for new tools to combat Gram-negative resistant bacteria among amine derivatives of 5-arylidenehydantoin. Bioorg Med Chem. 2013;21:135–145.
  • Nakayama K, Kawato H, Watanabe J, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 3: optimization of potency in the pyridopyrimidine series through the application of a pharmacophore model. Bioorg Med Chem Lett. 2004;14:475–479.
  • Natarajan P, Katta S, Andrei I, et al. Positive antibacterial co-action between hop (Humulus lupulus) constituents and selected antibiotics. Phytomed. 2008;15:195–201.
  • Hemaiswarya S, Doble M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomed. 2009;16:997–1005.
  • Lorenzi V, Muselli A, Bernardini AF, et al. Geraniol restores antibiotic activities against multidrug resistant isolates from Gram negative species. Antimicrob Agents Chemother. 2009;53:2209–2211.
  • Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic—a vision for applied use. Biochemical Pharmacology. 2006;71:910–918.
  • Watkins WJ, Landaverry Y, Leger R, et al. The relationship between physicochemical properties; in vitro activity and pharmacokinetic profile of analogues of diamine-containing efflux pump inhibitors. Bioorg Med Chem Lett. 2003;13:4241–4244.
  • Kriengkauykiat J, Porter E, Lomovskaya O, et al. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49:565–570.
  • Yoshida K, Nakayama K, Ohtsuka M, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa;Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001: a potential preclinical candidate. Bioorg Med Chem. 2007;15:7087–7097.
  • Chevalier J, Mahamoud A, Baitiche M, et al. Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strains. Int J Antimicrob Agents. 2010;36:164–168.
  • Mahamoud A, Chevalier J, Alibert-Franco S, et al. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother. 2007;59:1223–1229.
  • Mahamoud A, Chevalier J, Baitiche M, et al. An alkylaminoquinazoline restores antibiotic activity in Gram negative resistant isolates. Microbiol 2011;157:566–571.
  • Bohnert JA, Kern WV. Selective arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother. 2005;49:849–852.
  • Kern WV, Steinke P, Schumacher A, et al. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J Antimicrob Chemother. 2006;57:339–343.
  • Schumacher A, Steinke P, Bohnert JA, et al. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. J Antimicrob Chemother. 2006;57:344–348.
  • Pannek S, Higgings PG, Steinke P, et al. Multidrug efflux inhibition in Acinetobacter baumanii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-beta-naphthylamide. J Antimicrob Chemother. 2006;57:9704.
  • Schumacher A, Trittler R, Bohnert JA, et al. Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother. 2007;59:1261–1264.
  • Hannula M, Hänninen ML. Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campilobacter jejuni and Campilobacter coli. J Med Microbiol. 2008;57:851–855.
  • Handzlik J, Szymanska E, Chevalier J, et al. Amine-alkyl derivatives of hydantoin: new tool to combat resistant bacteria. Eur J Med Chem. 2011;46:5807–5816.
  • Martins M, Dastidar SG, Fanning S, et al. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities. Int J Antimicrob Agents. 2008;31:198–208.
  • Bailey AM, Paulsen IT, Piddock LJ. RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB; which is inhibited by chlorpromazine. Antimicrob Agents Chemother. 2008;52:3604–3611.
  • Rodrigues L, Wagner D, Viveiros M, et al. Thioridazine and chlorpromazine inhibition of ethidium bromide efflux in Mycobacterium avium and Mycobacterium smegmatis. J Antimicrob Chemother. 2008;61:1076–1082.
  • Amaral L, Martins M, Viveiros M, et al. Promising therapy of XDR-TB/MDR-TB with thioridazine an inhibitor of bacterial efflux pumps. Curr Drug Targets. 2008;9:816–819.
  • Viveiros M, Martins M, Couto I, et al. New methods for the identification of efflux mediated MDR bacteria; genetic assessment of regulators and efflux pump constituents; characterization of efflux systems and screening for inhibitors of efflux pumps. Curr Drug Targets. 2008;9:760–778.
  • Aron Z, Opperman TJ. Optimisation of a novel series of pyranopyridine RND efflux pump inhibitors. Curr Opin Microbiol. 2016;33:1–6.
  • Cinquin B, Maigre L, Pinet E, et al. Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level. Sci Rep. 2015;5:17968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.