1,436
Views
25
CrossRef citations to date
0
Altmetric
Review

Pediatric physiology in relation to the pharmacokinetics of monoclonal antibodies

&
Pages 585-599 | Received 24 Jan 2018, Accepted 25 May 2018, Published online: 04 Jun 2018

References

  • Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–1167.
  • Koren G. Therapeutic drug monitoring principles in the neonate. Clin Chem. 1997;43(1):222–227.
  • Wagner C, Zhao P, Pan Y, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacometrics Syst Pharmacol. 2015;4(4):226–230.
  • Maharaj AR, Edginton AN. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst Pharmacol. 2014;3(11):1–13.
  • Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45(10):1013–1034.
  • Hornik CP, Wu H, Edginton AN, et al. Development of a pediatric physiologically based pharmacokinetic model of clindamycin using opportunistic pharmacokinetic data. Clin Pharmacokinet. 2017;56(11):1343–1353.
  • Emoto C, Fukuda T, Johnson TN, et al. Development of a pediatric physiologically based pharmacokinetic model for sirolimus: applying principles of growth and maturation in neonates and infants. CPT Pharmacometrics Syst Pharmacol. 2015;4(2):e17.
  • Duan P, Fisher JW, Wang J. Applications of physiologically based pharmacokinetic (PBPK) models for pediatric populations. In: Mahmood I, Burckart G, editors. Fundamentals of pediatric drug dosing. Cham: Springer International Publishing; 2016. p. 109–125.
  • Rioux N, Waters NJ. Physiologically based pharmacokinetic modeling in pediatric oncology drug development. Drug Metab Dispos. 2016;44(7):934–943.
  • Delaney SR, Malik PRV, Stefan C, et al. Predicting escitalopram exposure to breastfeeding infants: integrating analytical and in silico techniques. Clin Pharmacokinet. 2018 April 12. epub ahead of print.
  • Edginton AN, Theil FP, Schmitt W, et al. Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin Drug Metab Toxicol. 2008;4(9):1143–1152.
  • Edlund H, Melin J, Parra-Guillen ZP, et al. Pharmacokinetics and pharmacokinetic-pharmacodynamic relationships of monoclonal antibodies in children. Clin Pharmacokinet. 2015;54(1):35–80.
  • Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–558.
  • Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT: Pharmacometrics Syst Pharmacol. 2017;6(9):576–588.
  • Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34(5):687–709.
  • Zhang Y, Wei X, Bajaj G, et al. Challenges and considerations for development of therapeutic proteins in pediatric patients. J Clin Pharmacol. 2015;55(Suppl 3):S103–S15.
  • Xu Z, Davis HM, Zhou H. Rational development and utilization of antibody-based therapeutic proteins in pediatrics. Pharmacol Ther. 2013;137(2):225–247.
  • Shi R, Derendorf H. Pediatric dosing and body size in biotherapeutics. Pharmaceutics. 2010;2(4):389.
  • Yanni S. Disposition and interaction of biotherapeutics in pediatric populations. Curr Drug Metab. 2012;13(7):882–900.
  • Mahmood I. Pharmacokinetic considerations in designing pediatric studies of proteins, antibodies, and plasma-derived products. Am J Ther. 2016;23(4):e1043–e56.
  • Lerner G, Kale AS, Warady BA, et al. Pharmacokinetics of darbepoetin alfa in pediatric patients with chronic kidney disease. Pediatr Nephrol. 2002;17(11):933–937.
  • Villar A, Aronis S, Morfini M, et al. Pharmacokinetics of activated recombinant coagulation factor VII (NovoSeven) in children vs. adults with haemophilia. A. Haemophilia. 2004;10(4):352–359.
  • Blanchette VS, Shapiro AD, Liesner RJ, et al. Plasma and albumin-free recombinant factor VIII: pharmacokinetics, efficacy and safety in previously treated pediatric patients. J Thromb Haeomst. 2008;6(8):1319–1326.
  • Monahan PE, Liesner R, Sullivan ST, et al. Safety and efficacy of investigator-prescribed BeneFIX prophylaxis in children less than 6 years of age with severe haemophilia B. Haemophilia. 2010;16(3):460–468.
  • Bjorkman S, Shapiro AD, Berntorp E. Pharmacokinetics of recombinant factor IX in relation to age of the patient: implications for dosing in prophylaxis. Haemophilia. 2001;7(2):133–139.
  • Kovarik JM, Gridelli BG, Martin S, et al. Basiliximab in pediatric liver transplantation: a pharmacokinetic-derived dosing algorithm. Pediatr Transplant. 2002;6(3):224–230.
  • Offner G, Broyer M, Niaudet P, et al. A multicenter, open-label, pharmacokinetic/pharmacodynamic safety, and tolerability study of basiliximab (Simulect) in pediatric de novo renal transplant recipients. Transplantation. 2002;74(7):961–966.
  • Nagai T, Gotoh Y, Watarai Y, et al. Pharmacokinetics and pharmacodynamics of basiliximab in Japanese pediatric renal transplant patients. Int J Clin Pharmacol Ther. 2010;48(3):214–223.
  • Kovarik JM, Offner G, Broyer M, et al. A rational dosing algorithm for basiliximab (Simulect) in pediatric renal transplantation based on pharmacokinetic-dynamic evaluations. Transplantation. 2002;74(7):966–971.
  • Han K, Peyret T, Quartino A, et al. Bevacizumab dosing strategy in paediatric cancer patients based on population pharmacokinetic analysis with external validation. Br J Clin Pharmacol. 2016;81(1):148–160.
  • Gojo J, Sauermann R, Knaack U, et al. Pharmacokinetics of bevacizumab in three patients under the age of 3 years with CNS malignancies. Drugs in R&D. 2017;17(3):469-474.
  • Glade Bender JL, Adamson PC, Reid JM, et al. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2008;26(3):399–405.
  • Trippett TM, Herzog C, Whitlock JA, et al. Phase I and pharmacokinetic study of cetuximab and irinotecan in children with refractory solid tumors: a study of the pediatric oncology experimental therapeutic investigators’ consortium. J Clin Oncol. 2009;27(30):5102–5108.
  • Pescovitz MD, Knechtle S, Alexander SR, et al. Safety and pharmacokinetics of daclizumab in pediatric renal transplant recipients. Pediatr Transplant. 2008;12(4):447–455.
  • Desai AV, Fox E, Smith LM, et al. Pharmacokinetics of the chimeric anti-GD2 antibody, ch14.18, in children with high-risk neuroblastoma. Cancer Chemother Pharmacol. 2014;74(5):1047–1055.
  • Gilman AL, Ozkaynak MF, Matthay KK, et al. Phase I study of ch14.18 with granulocyte-macrophage colony-stimulating factor and interleukin-2 in children with neuroblastoma after autologous bone marrow transplantation or stem-cell rescue: a report from the Children’s Oncology Group. J Clin Oncol. 2009;27(1):85–91.
  • Greenbaum LA, Fila M, Ardissino G, et al. Eculizumab is a safe and effective treatment in pediatric patients with atypical hemolytic uremic syndrome. Kidney Int. 2016;89(3):701–711.
  • Buckwalter M, Dowell JA, Korth-Bradley J, et al. Pharmacokinetics of gemtuzumab ozogamicin as a single-agent treatment of pediatric patients with refractory or relapsed acute myeloid leukemia. J Clin Pharmacol. 2004;44(8):873–880.
  • Xu Z, Mould D, Hu C, et al. Population pharmacokinetic analysis of infliximab in pediatrics using integrated data from six clinical trials. Clin Pharmacol Drug Dev. 2012;4:203.
  • Burns JC, Best BM, Mejias A, et al. Infliximab treatment of intravenous immunoglobulin–resistant Kawasaki disease. J Pediatr. 2008;153(6):833–838.e6.
  • Candon S, Mosca A, Ruemmele F, et al. Clinical and biological consequences of immunization to infliximab in pediatric Crohn’s disease. Clin Immunol. 2006;118(1):11–19.
  • Abarca K, Jung E, Fernandez P, et al. Safety, tolerability, pharmacokinetics, and immunogenicity of motavizumab, a humanized, enhanced-potency monoclonal antibody for the prevention of respiratory syncytial virus infection in at-risk children. Pediatr Infect Dis J. 2009;28(4):267–272.
  • Fernández P, Trenholme A, Abarca K, et al. A phase 2, randomized, double-blind safety and pharmacokinetic assessment of respiratory syncytial virus (RSV) prophylaxis with motavizumab and palivizumab administered in the same season. BMC Pediatr. 2010;10(1):38.
  • Lagos R, DeVincenzo JP, Muñoz A, et al. Safety and antiviral activity of motavizumab, a respiratory syncytial virus (RSV)-specific humanized monoclonal antibody, when administered to RSV-infected children. Pediatr Infect Dis J. 2009;28(9):835–837.
  • Feltes TF, Sondheimer HM, Tulloh RMR, et al. A randomized controlled trial of motavizumab versus palivizumab for the prophylaxis of serious respiratory syncytial virus disease in children with hemodynamically significant congenital heart disease. Pediatr Res. 2011;70:186.
  • O’Brien KL, Chandran A, Weatherholtz R, et al. Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomised double-blind placebo-controlled trial. Lancet Infect Dis. 2015;15(12):1398–1408.
  • Weisman LE, Thackray HM, Steinhorn RH, et al. A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics. 2011;128(2):271–279.
  • Kokai-Kun JF, Mould D, Weisman LE, et al. Predicted and measured pagibaximab serum levels in high-risk neonates. Pediatr Res. 2010;68:683.
  • Subramanian KN, Weisman LE, Rhodes T, et al. Safety, tolerance and pharmacokinetics of a humanized monoclonal antibody to respiratory syncytial virus in premature infants and infants with bronchopulmonary dysplasia. MEDI-493 Study Group. Pediatr Infect Dis J. 1998;17(2):110–115.
  • Saez-Llorens X, Moreno MT, Ramilo O, et al. Safety and pharmacokinetics of palivizumab therapy in children hospitalized with respiratory syncytial virus infection. Pediatr Infect Dis J. 2004;23(8):707–712.
  • Saez-Llorens X, Castano E, Null D, et al. Safety and pharmacokinetics of an intramuscular humanized monoclonal antibody to respiratory syncytial virus in premature infants and infants with bronchopulmonary dysplasia. The MEDI-493 Study Group. Pediatr Infect Dis J. 1998;17(9):787–791.
  • Robbie GJ, Makari D, Harris B, et al. Randomized, double-blind study of the pharmacokinetics and safety of palivizumab liquid formulation compared with lyophilized formulation. Infect Dis Ther. 2014;3(2):203–214.
  • Pranzatelli MR, Tate ED, Verhulst SJ, et al. Pediatric dosing of rituximab revisited: serum concentrations in opsoclonus-myoclonus syndrome. J Pediatr Hematol Oncol. 2010;32(5):e167–72.
  • Meissner HC, Groothuis JR, Rodriguez WJ, et al. Safety and pharmacokinetics of an intramuscular monoclonal antibody (SB 209763) against respiratory syncytial virus (RSV) in infants and young children at risk for severe RSV disease. Antimicrob Agents Chemother. 1999;43(5):1183–1188.
  • Dostalek M, Gardner I, Gurbaxani BM, et al. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet. 2013;52(2):83–124.
  • Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9(1):15–32.
  • Malik P, Phipps C, Edginton A, et al. Pharmacokinetic Considerations for Antibody-Drug Conjugates against Cancer. Pharm Res. 2017;34(12):2579–2595.
  • Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–2668.
  • Tabrizi MA, Tseng C-ML, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1):81–88.
  • Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–532.
  • Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14.
  • Pyzik M, Rath T, Lencer WI, et al. FcRn: the architect behind the immune and non-immune functions of IgG and albumin. J Immunol. 2015;194(10):4595–4603.
  • Shah DK, Betts AM. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 2012;39(1):67–86.
  • Tzaban S, Massol RH, Yen E, et al. The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J Cell Biol. 2009;185(4):673–684.
  • Report of the Second Task Force on Blood Pressure Control in Children–1987. Task Force on Blood Pressure Control in Children. National Heart, Lung, and Blood Institute, Bethesda, Maryland. Pediatrics. 1987;79(1):1–25.
  • Fleming S, Thompson M, Stevens R, et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years: a systematic review of observational studies. Lancet. 2011;377(9770):1011–1018.
  • Linderkamp O, Versmold HT, Riegel KP, et al. Estimation and prediction of blood volume in infants and children. Eur J Pediatr. 1977;125(4):227–234.
  • Jopling J, Henry E, Wiedmeier SE, et al. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics. 2009;123(2):e333–7.
  • Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28(2):169–181.
  • Domachowske JB, Khan A, Esser MT, et al. A single dose monoclonal antibody (mAb) immunoprophylaxis strategy to prevent RSV disease in all infants: results of the first in infant study with MEDI8897. Open Forum Infect Dis. 2017;4(suppl_1):S37.
  • Zhao L, Roskos L, Griffin P, et al. Population pharmacokinetics analysis of motavizumab in children at risk for respiratory syncytial virus infection. Pediatr Res. 2010;68(S1):447.
  • Weisman LE, Thackray HM, Garcia-Prats JA, et al. Phase 1/2 double-blind, placebo-controlled, dose escalation, safety, and pharmacokinetic study of pagibaximab (BSYX-A110), an antistaphylococcal monoclonal antibody for the prevention of staphylococcal bloodstream infections, in very-low-birth-weight neonates. Antimicrob Agents Chemother. 2009;53(7):2879–2886.
  • Robbie GJ, Zhao L, Mondick J, et al. Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children. Antimicrob Agents Chemother. 2012;56(9):4927–4936.
  • Lopez EL, Contrini MM, Glatstein E, et al. Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against Shiga-like toxin 2 in healthy adults and in pediatric patients infected with Shiga-like toxin-producing Escherichia coli. Antimicrob Agents Chemother. 2010;54(1):239–243.
  • Heymann MA, Iwamoto HS, Rudolph AM. Factors affecting changes in the neonatal systemic circulation. Annu Rev Physiol. 1981;43:371–383.
  • Mollison PL, Veall N, Cutbush M. Red cell and plasma volume in newborn infants. Arch Dis Child. 1950;25(123):242–253.
  • Steele MW. Plasma volume changes in the neonate. Am J Dis Child. 1962;103:10–18.
  • Jegier W, Maclaurin J, Blankenship W, et al. Comparative study of blood volume estimation in the newborn infant using I-131 labeled human serum albumin (IHSA) and T-1824. Scand J Clin Lab Invest. 1964;16:125–132.
  • Cassady G. Plasma volume studies in low birth weight infants. Pediatrics. 1966;38(6):1020–1027.
  • Parving HH, Klebe JG, Ingomar CJ. Simultaneous determination of plasma volume and transcapillary escape rate with 131 I-labelled albumin and T-1824 in the newborn. Acta Paediatr. 1973;62(3):248–252.
  • Ingomar CJ, Klebe JG, Baekgaard P. The transcapillary escape rate of T-1824 in healthy newborn infants–the influence of placental transfusion. Acta Paediatr. 1973;62(6):617–620.
  • Ingomar CJ, Klebe JG. The transcapillary escape rate of T-1824 in newborn infants of diabetic mothers and newborn infants with respiratory distress or birth asphyxia. Acta Paediatr. 1974;63(4):565–570.
  • Linderkamp O, Mader T, Butenandt O, et al. Plasma volume estimation in severely ill infants and children using a simplified Evans blue method. Eur J Pediatr. 1977;125(2):135–141.
  • Tassani P, Schad H, Schreiber C, et al. Extravasation of albumin after cardiopulmonary bypass in newborns. J Cardiothorac Vasc Anesth. 2007;21(2):174–178.
  • Parving HH, Gyntelberg F. Transcapillary escape rate of albumin and plasma volume in essential hypertension. Circ Res. 1973;32(5):643–652.
  • Rossing N, Parving HH, Lassen NA. Albumin transcapillary escape rate as an approach to microvascular physiology in health and disease. In: Bianchi R, Mariani G, McFarlane AS, editors. Plasma protein turnover. London: Palgrave Macmillan UK; 1976. p. 357–370.
  • Wasserman K, Mayerson HS. Dynamics of lymph and plasma protein exchange. Cardiology. 1952;21(4–5):296–307.
  • Malik PRV, Hamadeh A, Phipps C, et al. Population PBPK modelling of trastuzumab: a framework for quantifying and predicting inter-individual variability. J Pharmacokinet Pharmacodyn. 2017;44(3):277–290.
  • Nagy JA, Benjamin L, Zeng H, et al. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11(2):109–119.
  • Levick JR. Chapter 9 - Circulation of fluid between plasma, interstitium and lymph. An introduction to cardiovascular physiology. London, England: Butterworth-Heinemann; 1991. p. 142–170.
  • Reed RK, Aukland K. Transcapillary fluid balance in immature rats–interstitial fluid pressure, serum and interstitial protein concentration, and colloid osmotic pressure. Microvasc Res. 1977;14(1):37–43.
  • Turner AJ, Brown RD, Carlström M, et al. Mechanisms of neonatal increase in glomerular filtration rate. Am J Physiol Regul Integr Comp Physiol. 2008;295(3):R916–R921.
  • Spitzer A, Edelmann CM Jr. Maturational changes in pressure gradients for glomerular filtration. Am J Physiol. 1971;221(5):1431–1435.
  • Brace RA, Christian JL. Transcapillary Starling pressures in the fetus, newborn, adult, and pregnant adult. Am J Physiol Heart Circ Physiol. 1981;240(6):H843–H47.
  • Spitzer A, Schwartz GJ. The kidney during development. Comprehensive physiology. John Wiley & Sons, Inc.; Supplement 25, 475-544, 2011.
  • Rubin MI, Bruck E, Rapoport M, et al. Maturation of renal function in childhood: clearance studies. J Clin Invest. 1949;28(5 Pt 2):1144.
  • Oian P, Maltau JM. Calculated capillary hydrostatic pressure in normal pregnancy and preeclampsia. Am J Obstet Gynecol. 1987;157(1):102–106.
  • Sola A, Gregory GA. Colloid osmotic pressure of normal newborns and premature infants. Crit Care Med. 1981;9(8):568–572.
  • Delivoria-Papadopoulos M, Battaglia FC, Meschia G. A comparison of fetal versus maternal plasma colloidal osmotic pressure in man. Proc Soc Exp Biol Med. 1969;131(1):84–87.
  • Sussmane JB, De Soto M, Torbati D. Plasma colloid osmotic pressure in healthy infants. Crit Care. 2001;5(5):261–264.
  • Wu PYK, Rockwell G, Chan L, et al. Colloid osmotic pressure in newborn infants: variations with birth weight, gestational age, total serum solids, and mean arterial pressure. Pediatrics. 1981;68(6):814–819.
  • Baum JD, Eisenberg C, Franklin JRFA, et al. Studies on colloid osmotic pressure in the fetus and newborn infant. Neonatology. 1971;18(3–4):311–320.
  • Bhat R, Javed S, Malalis L, et al. Critical care problems in neonates–colloid osmotic pressure in healthy and sick neonates. Crit Care Med. 1981;9(8):563–567.
  • Hay DA, Evan AP. Maturation of the glomerular visceral epithelium and capillary endothelium in the puppy kidney. Anat Rec. 1979;193(1):1–21.
  • Touwslager RN, Houben AJ, Tan FE, et al. Growth and endothelial function in the first 2 years of life. J Pediatr. 2015;166(3):666–71.e1.
  • Touwslager RN, Gerver WJ, Tan FE, et al. Influence of growth during infancy on endothelium-dependent vasodilatation at the age of 6 months. Hypertension. 2012;60(5):1294–1300.
  • Charpie JR, Schreur KD, Papadopoulos SM, et al. Endothelium dependency of contractile activity differs in infant and adult vertebral arteries. J Clin Invest. 1994;93(3):1339–1343.
  • Schaefer B, Bartosova M, Macher-Goeppinger S, et al. Quantitative histomorphometry of the healthy peritoneum. Sci Rep. 2016;6:21344.
  • Celander O, Marild K. Regional circulation and capillary filtration in relation to capillary exchange in the foot and calf of the newborn infant. Acta Paediatr. 1962;51(3):385–400.
  • Perera P, Kurban AK, Ryan TJ. The development of the cutaneous microvascular system in the newborn. Br J Dermatol. 1970;82:86–91.
  • Top AP, Van Dijk M, Van Velzen JE, et al. Functional capillary density decreases after the first week of life in term neonates. Neonatology. 2011;99(1):73–77.
  • D’Souza R, Raghuraman RP, Nathan P, et al. Low birth weight infants do not have capillary rarefaction at birth: implications for early life influence on microcirculation. Hypertension. 2011;58(5):847–851.
  • Antonios TFT, Raghuraman RP, D’Souza R, et al. Capillary remodeling in infants born to hypertensive pregnancy: pilot study. Am J Hypertens. 2012;25(8):848–853.
  • Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP. 2002;32(3):1–277.
  • Tang L, Persky AM, Hochhaus G, et al. Pharmacokinetic aspects of biotechnology products. J Pharm Sci. 2004;93(9):2184–2204.
  • Correia IR. Stability of IgG isotypes in serum. mAbs. 2010;2(3):221–232.
  • Xu S. Internalization, trafficking, intracellular processing and actions of antibody-drug conjugates. Pharma Res. 2015;32(11):3577–3583.
  • Deissler HL, Lang GK, Lang GE. Internalization of bevacizumab by retinal endothelial cells and its intracellular fate: evidence for an involvement of the neonatal Fc receptor. Exp Eye Res. 2016;143(SupplementC):49–59.
  • Ritchie M, Tchistiakova L, Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. mAbs. 2013;5(1):13–21.
  • Shih LB, Lu HHZ, Xuan H, et al. Internalization and intracellular processing of an anti B-cell lymphoma monoclonal antibody, ll2. Int J Cancer. 1994;56(4):538–545.
  • Okeley NM, Miyamoto JB, Zhang X, et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res. 2010;16(3):888–897.
  • Erickson HK, Park PU, Widdison WC, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006;66(8):4426–4433.
  • Gessner JE, Heiken H, Tamm A, et al. The IgG Fc receptor family. Ann Hematol. 1998;76(6):231–248.
  • Ferl GZ, Theil F-P, Wong H. Physiologically based pharmacokinetic models of small molecules and therapeutic antibodies: a mini-review on fundamental concepts and applications. Biopharm Drug Dispos. 2016;37(2):75–92.
  • Glassman PM, Balthasar JP. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. J Pharmacokinet Pharmacodyn. 2016;43(4):427–446.
  • Abuqayyas L, Zhang X, Balthasar JP. Application of knockout mouse models to investigate the influence of FcgammaR on the pharmacokinetics and anti-platelet effects of MWReg30, a monoclonal anti-GPIIb antibody. Int J Pharm. 2013;444(1–2):185–192.
  • Abuqayyas L, Balthasar JP. Application of knockout mouse models to investigate the influence of FcgammaR on the tissue distribution and elimination of 8C2, a murine IgG1 monoclonal antibody. Int J Pharm. 2012;439(1–2):8–16.
  • Leabman MK, Meng YG, Kelley RF, et al. Effects of altered FcgammaR binding on antibody pharmacokinetics in cynomolgus monkeys. mAbs. 2013;5(6):896–903.
  • Fjaertoft G, Hakansson L, Foucard T, et al. CD64 (Fcgamma receptor I) cell surface expression on maturing neutrophils from preterm and term newborn infants. Acta Paediatr. 2005;94(3):295–302.
  • Maeda M, Van Schie RC, Yuksel B, et al. Differential expression of Fc receptors for IgG by monocytes and granulocytes from neonates and adults. Clin Exp Immunol. 1996;103(2):343–347.
  • Smith JB, Campbell DE, Ludomirsky A, et al. Expression of the complement receptors CR1 and CR3 and the type III Fc gamma receptor on neutrophils from newborn infants and from fetuses with Rh disease. Pediatr Res. 1990;28(2):120–126.
  • Takahashi N, Nishida H, Kuratsuji T. Fc gamma RI and Fc gamma RIII on polymorphonuclear leucocytes in cord blood. Arch Dis Child Fetal Neonatal Ed. 1994;70(1):F31–F5.
  • Nowak J, Szymczynski G. T and B lymphocytes in the ontogenetic development of man. Arch Immunol Ther Exp (Warsz). 1979;27(1–2):159–163.
  • Agostini C, Colombatti M, Sanzari M, et al. B lymphocytes in newborns. Arch Immunol Ther Exp (Warsz). 1981;29(1):79–84.
  • Jessup CF, Ridings J, Ho A, et al. The Fc receptor for IgG (Fc gamma RII; CD32) on human neonatal B lymphocytes. Hum Immunol. 2001;62(7):679–685.
  • Hallberg T, Hallberg A. Lymphocyte markers in newborn infants. Acta Pathol Microbiol Scand C. 1976;84c(6):477–484.
  • Martins JP, Kennedy PJ, Santos HA, et al. A comprehensive review of the neonatal Fc receptor and its application in drug delivery. Pharmacol Ther. 2016;161:22–39.
  • McCarthy KM, Yoong Y, Simister NE. Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J Cell Sci. 2000;113(Pt7):1277–1285.
  • Kobayashi N, Suzuki Y, Tsuge T, et al. FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. Am J Physiol Renal Physiol. 2002;282(2):F358–F65.
  • Ramalingam TS, Detmer SA, Martin WL, et al. IgG transcytosis and recycling by FcRn expressed in MDCK cells reveals ligand-induced redistribution. EMBO J. 2002;21(4):590–601.
  • Ghetie V, Hubbard JG, Kim J-K, et al. Abnormally short serum half-lives of IgG in β2-microglobulin-deficient mice. Eur J Immunol. 1996;26(3):690–696.
  • Israel EJ, Wilsker DF, Hayes KC, et al. Increased clearance of IgG in mice that lack β2-microglobulin: possible protective role of FcRn. Immunology. 1996;89(4):573–578.
  • Ko S-Y, Pegu A, Rudicell RS, et al. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature. 2014;514:642.
  • Zalevsky J, Chamberlain AK, Horton HM, et al. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol. 2010;28:157.
  • Ng CM, Fielder PJ, Jin J, et al. Mechanism-based competitive binding model to investigate the effect of neonatal Fc receptor binding affinity on the pharmacokinetics of humanized anti-VEGF monoclonal IgG1 antibody in cynomolgus monkey. AAPS J. 2016;18(4):948–959.
  • Yang D, Giragossian C, Castellano S, et al. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn. mAbs. 2017;9(7):1105–1117.
  • Challa DK, Velmurugan R, Ober RJ, et al. FcRn: from molecular interactions to regulation of IgG pharmacokinetics and functions. Cur Top Microbiol Immunol. 2014;382:249–272.
  • Sand KMK, Bern M, Nilsen J, et al. Unraveling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front Immunol. 2014;5:682.
  • Tian Z, Sutton BJ, Zhang X. Distribution of rat neonatal Fc receptor in the principal organs of neonatal and pubertal rats. J Recept Signal Transduct Res. 2014;34(2):137–142.
  • Cianga C, Cianga P, Plamadeala P, et al. Nonclassical major histocompatibility complex I-like Fc neonatal receptor (FcRn) expression in neonatal human tissues. Hum Immunol. 2011;72(12):1176–1187.
  • Borvak J, Richardson J, Medesan C, et al. Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol. 1998;10(9):1289–1298.
  • Montoyo HP, Vaccaro C, Hafner M, et al. Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci U S A. 2009;106(8):2788–2793.
  • Mankarious S, Lee M, Fischer S, et al. The half-lives of IgG subclasses and specific antibodies in patients with primary immunodeficiency who are receiving intravenously administered immunoglobulin. J Lab Clin Med. 1988;112(5):634–640.
  • Oxelius V-A. IgG subclass levels in infancy and childhood. Acta Paeiatr. 1979;68(1):23–27.
  • Schur PH, Rosen F, Norman ME. Immunoglobulin subclasses in normal children. Pediatr Res. 1979;13(3):181–183.
  • Aksu G, Genel F, Koturoglu G, et al. Serum immunoglobulin (IgG, IgM, IgA) and IgG subclass concentrations in healthy children: a study using nephelometric technique. Turk J Pediatr. 2006;48(1):19–24.
  • Wallace DK, Kraker RT, Freedman SF, et al. Assessment of lower doses of intravitreous bevacizumab for retinopathy of prematurity: A phase 1 dosing study. JAMA Ophthalmol. 2017;135(6):654–656.
  • Stahl A, Krohne TU, Eter N, et al. Comparing alternative ranibizumab dosages for safety and efficacy in retinopathy of prematurity: A randomized clinical trial. JAMA Pediatr. 2018;172:278.
  • Zhao L, Ji P, Li Z, et al. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J Clin Pharmacol. 2013;53(3):314–325.
  • Ortega H, Yancey S, Cozens S. Pharmacokinetics and absolute bioavailability of mepolizumab following administration at subcutaneous and intramuscular sites. Clin Pharmacol Drug Dev. 2014;3(1):57–62.
  • Richter WF, Jacobsen B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab Dispos. 2014;42(11):1881–1889.
  • Kota J, Machavaram KK, McLennan DN, et al. Lymphatic absorption of subcutaneously administered proteins: influence of different injection sites on the absorption of darbepoetin alfa using a sheep model. Drug Metab Dispos. 2007;35(12):2211–2217.
  • Wang EQ, Plotka A, Salageanu J, et al. Pharmacokinetics and pharmacodynamics of bococizumab, a monoclonal antibody to PCSK9, after single subcutaneous injection at three sites. Cardiovasc Ther. 2017;35:5.
  • Lunven C, Paehler T, Poitiers F, et al. A randomized study of the relative pharmacokinetics, pharmacodynamics, and safety of alirocumab, a fully human monoclonal antibody to PCSK9, after single subcutaneous administration at three different injection sites in healthy subjects. Cardiovasc Ther. 2014;32(6):297–301.
  • Cai WW, Fiscella M, Chen C, et al. Bioavailability, pharmacokinetics, and safety of belimumab administered subcutaneously in healthy subjects. Clin Pharmacol Drug Dev. 2013;2(4):349–357.
  • Xu Z, Wang Q, Zhuang Y, et al. Subcutaneous bioavailability of golimumab at 3 different injection sites in healthy subjects. J Clin Pharmacol. 2010;50(3):276–284.
  • Dahlberg AM, Kaminskas LM, Smith A, et al. The lymphatic system plays a major role in the intravenous and subcutaneous pharmacokinetics of trastuzumab in rats. Mol Pharm. 2014;11(2):496–504.
  • Kagan L, Gershkovich P, Mendelman A, et al. The role of the lymphatic system in subcutaneous absorption of macromolecules in the rat model. Eur J Pharm Biopharm. 2007;67(3):759–765.
  • Deng R, Meng YG, Hoyte K, et al. Subcutaneous bioavailability of therapeutic antibodies as a function of FcRn binding affinity in mice. mAbs. 2012;4(1):101–109.
  • Ternant D, Paintaud G, Trachtman H, et al. A possible influence of age on absorption and elimination of adalimumab in focal segmental glomerulosclerosis (FSGS). Eur J Clin Pharmacol. 2016;72(2):253–255.
  • Ku LC, Smith PB. Dosing in neonates: special considerations in physiology and trial design. Pediatr Res. 2015;77:2–9.
  • Rakhmanina NY, Van Den Anker JN. Pharmacological research in pediatrics: from neonates to adolescents. Adv Drug Deliv Rev. 2006;58(1):4–14.
  • Bellini C, Boccardo F, Bonioli E, et al. Lymphodynamics in the fetus and newborn. Lymphology. 2006;39(3):110–117.
  • Sholler GF, Celermajer JM, Whight CM, et al. Echo doppler assessment of cardiac output and its relation to growth in normal infants. Am J Cardiol. 1987;60(13):1112–1116.
  • Johnson SA, Vander Straten MC, Parellada JA, et al. Thoracic duct function in fetal, newborn, and adult sheep. Lymphology. 1996;29(2):50–56.
  • Holman R. The flow and protein content of subcutaneous lymph in dogs of different ages. Am J Physiol. 1937;118(2):354–358.
  • Boston RW, Humphreys PW, Reynolds EOR, et al. Lymph-flow and clearance of liquid from the lungs of the foetal lamb. Lancet. 1965;286(7410):473–474.
  • Kong L, Bhatt AR, Demny AB, et al. Pharmacokinetics of bevacizumab and its effects on serum VEGF and IGF-1 in infants with retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2015;56(2):956–961.
  • Sato T, Wada K, Arahori H, et al. Serum concentrations of bevacizumab (Avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am J Ophthalmol. 2012;153(2):327–33.e1.
  • Wu WC, Shih CP, Lien R, et al. Serum vascular endothelial growth factor after bevacizumab or ranibizumab treatment for retinopathy of prematurity. Retina. 2017;37(4):694–701.
  • Hong YR, Kim YH, Kim SY, et al. Plasma concentrations of vascular endothelial growth factor in retinopathy of prematurity after intravitreal bevacizumab injection. Retina. 2015;35(9):1772–1777.
  • Avery RL, Castellarin AA, Steinle NC, et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab and ranibizumab. Retina. 2017;37(10):1847–1858.
  • Kim H, Fariss RN, Zhang C, et al. Mapping of the neonatal Fc receptor in the rodent eye. Invest Ophthalmol Vis Sci. 2008;49(5):2025–2029.
  • Eigenmann MJ, Karlsen TV, Krippendorff B-F, et al. Interstitial IgG antibody pharmacokinetics assessed by combined in vivo- and physiologically-based pharmacokinetic modelling approaches. J Physiol. 2017;595(24):7311–7330.
  • Jadhav SB, Khaowroongrueng V, Fueth M, et al. Tissue distribution of a therapeutic monoclonal antibody determined by large pore microdialysis. J Pharm Sci. 2017;106(9):2853–2859.
  • Bjorkman S. Limited blood sampling for pharmacokinetic dose tailoring of FVIII in the prophylactic treatment of haemophilia A. Haemophilia. 2010;16(4):597–605.
  • Bjorkman S, Blanchette VS, Fischer K, et al. Comparative pharmacokinetics of plasma- and albumin-free recombinant factor VIII in children and adults: the influence of blood sampling schedule on observed age-related differences and implications for dose tailoring. J Thromb Haemost. 2010;8(4):730–736.
  • Singh AP, Shah DK. Application of a PK-PD modeling and simulation-based strategy for clinical translation of antibody-drug conjugates: a case study with trastuzumab emtansine (T-DM1). AAPS J. 2017;19(4):1054–1070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.