304
Views
14
CrossRef citations to date
0
Altmetric
Review

An update on polyphenol disposition via coupled metabolic pathways

, , , , , , , , , & show all
Pages 151-165 | Received 11 Nov 2017, Accepted 13 Dec 2018, Published online: 24 Dec 2018

References

  • Landeka I, Jurčević DM, Guberović I, et al. Polyphenols from wine lees as a novel functional bioactive compound in the protection against oxidative stress and hyperlipidaemia. Food Technol Biotechnol. 2017;55(1):109–116. [PubMed ID: 28559739].
  • Miranda AM, Steluti J, Fisberg RM, et al. Association between coffee consumption and its polyphenols with cardiovascular risk factors: a population-based study. Nutrients. 2017;9(3):276. [PubMed ID: 28335422].
  • Rothenberg DON, Zhou C, Zhang L. A review on the weight-loss effects of oxidized tea polyphenols. Molecules. 2018;23(5):1176. [PubMed ID: 29758009].
  • Pérez-Jiménez J, Saura-Calixto F. Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: intake in four European countries. Food Res Int. 2015;74:315–323. [PubMed ID: 28411997].
  • Mattera R, Benvenuto M, Giganti MG, et al. Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes. Nutrients. 2017;9(5):523. [PubMed ID: 28531112].
  • Shingai Y, Fujimoto A, Nakamura M, et al. Structure and function of the oxidation products of polyphenols and identification of potent lipoxygenase inhibitors from Fe-catalyzed oxidation of resveratrol. J Agric Food Chemistry. 2011;59(15):8180–8186. [PubMed ID: 21726087].
  • Moga MA, Dimienescu OG, Arvatescu CA, et al. The role of natural polyphenols in the prevention and treatment of cervical cancer-an overview. Molecules. 2016;21(8):1055. [PubMed ID: 27548122].
  • Goszcz K, Duthie GG, Stewart D, et al. Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br J Pharmacol. 2017;174(11):1209–1225. [PubMed ID: 28071785].
  • Nabavi SF, Dean OM, Turner A, et al. Oxidative stress and post-stroke depression: possible therapeutic role of polyphenols? Curr Med Chem. 2015;22(3):343–351. [PubMed ID: 25386821].
  • Stravodimos GA, Chetter BA, Kyriakis E, et al. Phytogenic polyphenols as glycogen phosphorylase inhibitors: the potential of triterpenes and flavonoids for glycaemic control in type 2 diabetes. Curr Med Chem. 2017;24(4):384–403. [PubMed ID: 27855623].
  • Schneider E, Clark DS. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron. 2013;39(1):1–13. [PubMed ID: 22809523].
  • Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Biotechnol. 2013;45(6):1121–1132. [PubMed ID: 23500526].
  • Suiko M, Kurogi K, Hashiguchi T, et al. Updated perspectives on the cytosolic sulfotransferases (SULTs) and SULT-mediated sulfation. Biosci Biotechnol Biochem. 2017;81(1):63–72. [PubMed ID: 27649811].
  • Scheggia D, Sannino S, Scattoni ML, et al. COMT as a drug target for cognitive functions and dysfunctions. CNS Neurol Disord Drug Targets. 2012;11(3):209–221. [PubMed ID: 22483296].
  • Zhang X, Dong D, Wang H, et al. Stable knockdown of efflux transporters leads to reduced glucuronidation in UGT1A1-overexpressing HeLa cells: the evidence for glucuronidation-transport interplay. Mol Pharm. 2015;12(4):1268–1278. [PubMed ID: 25741749].
  • Bircsak KM, Aleksunes LM. Interaction of isoflavones with the BCRP/ABCG2 drug transporter. Curr Drug Metab. 2015;16(2):124–140. [PubMed ID: 26179608].
  • Zhang W, Han Y, Lim SL, et al. Dietary regulation of P-gp function and expression. Expert Opin Drug Metab Toxicol. 2009;5(7):789–801. [PubMed ID: 19545213].
  • Liu Z, Hu M. Natural polyphenol disposition via coupled metabolic pathways. Expert Opin Drug Metab Toxicol. 2007;3(3):389–406. [PubMed ID: 17539746].
  • Tojima H, Kakizaki S, Yamazaki Y, et al. Ligand dependent hepatic gene expression profiles of nuclear receptors CAR and PXR. Toxicol Lett. 2012;212(3):288–297. [PubMed ID: 22698814].
  • Duda-Chodak A, Tarko T, Satora P, et al. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015;54(3):325–341. [PubMed ID: 25672526].
  • Manach C, Williamson G, Morand C, et al. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1Suppl):230s–242s. [PubMed ID: 15640486].
  • Talavera S, Felgines C, Texier O, et al. Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J Nutr. 2003;133(12):4178–4182. [PubMed ID: 14652368].
  • Corona G, Tzounis X, Assunta Dessi M, et al. The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res. 2006;40(6):647–658. [PubMed ID: 16753843].
  • Qian L-H, Li N-G, Tang Y-P, et al. Synthesis and bio-activity evaluation of scutellarein as a potent agent for the therapy of ischemic cerebrovascular disease. Int J Mol Sci. 2011;12(11):8208–8216. [PubMed ID: 22174659].
  • Kure A, Nakagawa K, Kondo M, et al. Metabolic fate of luteolin in rats: its relationship to anti-inflammatory effect. J Agric Food Chem. 2016;64(21):4246–4254. [PubMed ID: 27170112].
  • Wu B, Basu S, Meng S, et al. Regioselective sulfation and glucuronidation of phenolics: insights into the structural basis of conjugation. Curr Drug Metab. 2011;12(9):900–916. [PubMed ID: 21933112].
  • Wu B, Xu B, Hu M. Regioselective glucuronidation of flavonols by six human UGT1A isoforms. Pharm Res. 2011;28(8):1905–1918. [PubMed ID: 21472492].
  • Wang M, Yang G, He Y, et al. Establishment and use of new MDCK II cells overexpressing both UGT1A1 and MRP2 to characterize flavonoid metabolism via the glucuronidation pathway. Mol Nutr Food Res. 2016;60(9):1967–1983. [PubMed ID: 26833852].
  • Lu X, Jiang K, Han L, et al. Sulfonation of curcuminoids: characterization and contribution of individual SULT enzymes. Mol Nutr Food Res. 2015;59(4):634–645. [PubMed ID: 25676631].
  • Wang T, Cook I, Leyh TS. Isozyme specific allosteric regulation of human sulfotransferase 1A1. Biochemistry. 2016;55(29):4036–4046. [PubMed ID: 27356022].
  • Nakano H, Ogura K, Takahashi E, et al. Regioselective monosulfation and disulfation of the phytoestrogens daidzein and genistein by human liver sulfotransferases. Drug Metab Pharmacokinet. 2004;19(3):216–226. [PubMed ID: 15499189].
  • Chen Z, Zheng S, Li L, et al. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab. 2014;15(1):48–61. [PubMed ID: 24588554].
  • Cao Y, Chen ZJ, Jiang HD, et al. Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin. J Phys Chem A. 2014;118(2):470–481. [PubMed ID: 24354565].
  • Wang L, Chen Q, Zhu L, et al. Metabolic disposition of luteolin is mediated by the interplay of UDP-glucuronosyltransferases and catechol-O-methyltransferases in rats. Drug Metab Dispos. 2017;45(3):306–315. [PubMed ID: 28031430].
  • Weinert CH, Wiese S, Rawel HM, et al. Methylation of catechins and procyanidins by rat and human catechol-O-methyltransferase: metabolite profiling and molecular modeling studies. Drug Metab Dispos. 2012;40(2):353–359. [PubMed ID: 22071171].
  • Kimura Y, Ito H, Ohnishi R, et al. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem Toxicol. 2010;48(1):429–435. [PubMed ID: 19883715].
  • Kalapos-Kovacs B, Magda B, Jani M, et al. Multiple ABC transporters efflux baicalin. Phytother Res. 2015;29(12):1987–1990. [PubMed ID: 26400418].
  • Zheng L, Zhu L, Zhao M, et al. In vivo exposure of kaempferol is driven by phase II metabolic enzymes and efflux transporters. Aaps J. 2016;18(5):1289–1299. [PubMed ID: 27393480].
  • Jiang H, Yu J, Zheng H, et al. Breast cancer resistance protein and multidrug resistance protein 2 regulate the disposition of acacetin glucuronides. Pharm Res. 2017;34(7):1402–1415. [PubMed ID: 28421306].
  • Ge S, Wei Y, Yin T, et al. Transport-glucuronidation classification system and pbpk modeling: new approach to predict the impact of transporters on disposition of glucuronides. Mol Pharm. 2017;14(9):2884–2898. [PubMed ID: 28221813].
  • Brand W, Oosterhuis B, Krajcsi P, et al. Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculovirus-infected Sf9 cells. Biopharm Drug Dispos. 2011;32(9):530–535. [PubMed ID: 22083890].
  • Wei Y, Wu B, Jiang W, et al. Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing HeLa cells. Mol Pharm. 2013;10(5):1736–1750. [PubMed ID: 23402418].
  • Dai P, Zhu L, Luo F, et al. Triple recycling processes impact systemic and local bioavailability of orally administered flavonoids. Aaps J. 2015;17(3):723–736. [PubMed ID: 25762448].
  • Liu S, Zheng H, Sun R, et al. Disposition of Flavonoids for Personal Intake. Current Pharmacol Rep. 2017;3(4):196–212.
  • Xia B, Zhou Q, Zheng Z, et al. A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut. Mol Pharm. 2012;9(11):3246–3258. [PubMed ID: 23033922].
  • Kamiloglu S, Capanoglu E, Grootaert C, et al. Anthocyanin absorption and metabolism by human intestinal Caco-2 cells–a review. Int J Mol Sci. 2015;16(9):21555–21574. [PubMed ID: 26370977].
  • Woodward GM, Needs PW, Kay CD. Anthocyanin-derived phenolic acids form glucuronides following simulated gastrointestinal digestion and microsomal glucuronidation. Mol Nutr Food Res. 2011;55(3):378–386. [PubMed ID: 21370450].
  • Szotakova B, Bartikova H, Hlavacova J, et al. Inhibitory effect of anthocyanidins on hepatic glutathione S-transferase, UDP-glucuronosyltransferase and carbonyl reductase activities in rat and human. Xenobiotica. 2013;43(8):679–685. [PubMed ID: 23320385].
  • Actis-Goretta L, Leveques A, Giuffrida F, et al. Elucidation of (-)-epicatechin metabolites after ingestion of chocolate by healthy humans. Free Radic Biol Med. 2012;53(4):787–795. [PubMed ID: 22664313].
  • Vaidyanathan JB, Walle T. Transport and metabolism of the tea flavonoid (-)-epicatechin by the human intestinal cell line Caco-2. Pharm Res. 2001;18(10):1420–1425. [PubMed ID: 11697467].
  • Gonzalez-Sarrias A, Miguel V, Merino G, et al. The gut microbiota ellagic acid-derived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP). J Agric Food Chem. 2013;61(18):4352–4359. [PubMed ID: 23586460].
  • Gonzalez-Sarrias A, Gimenez-Bastida JA, Nunez-Sanchez MA, et al. Phase-II metabolism limits the antiproliferative activity of urolithins in human colon cancer cells. Eur J Nutr. 2014;53(3):853–864. [PubMed ID: 24077694].
  • Nait CM, Al AAJ. Quercetin and naringenin transport across human intestinal Caco-2 cells. J Pharm Pharmacol. 2009;61(11):1473–1483. [PubMed ID: 19903372].
  • Czank C, Cassidy A, Zhang Q, et al. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. Am J Clin Nutr. 2013;97(5):995–1003. [PubMed ID: 23604435].
  • Meng S, Wu B, Singh R, et al. SULT1A3-mediated regiospecific 7-O-sulfation of flavonoids in caco-2 cells can be explained by the relevant molecular docking studies. Mol Pharm. 2012;9(4):862–873. [PubMed ID: 22352375].
  • Brand W, Boersma MG, Bik H, et al. Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metab Dispos. 2010;38(4):617–625. [PubMed ID: 20056724].
  • Xu H, Kulkarni KH, Singh R, et al. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol Pharm. 2009;6(6):1703–1715. [PubMed ID: 19736994].
  • Sun H, Wang X, Zhou X, et al. Multidrug resistance-associated protein 4 (MRP4/ABCC4) controls efflux transport of hesperetin sulfates in sulfotransferase 1A3-overexpressing human embryonic kidney 293 cells. Drug Metab Dispos. 2015;43(10):1430–1440. [PubMed ID: 26239185].
  • Brand W, Pa VDW, Rein MJ, et al. Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metab Drug Metab Dispos. 2008;36(9):1794–1802. [PubMed ID: 18515333].
  • Chen J, Lin H, Hu M. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother Pharmacol. 2005;55(2):159–169. [PubMed ID: 15455178].
  • Alvarez AI, Vallejo F, Barrera B, et al. Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab Dispos. 2011;39(11):2008–2012. [PubMed ID: 21828252].
  • Zhu W, Xu H, Wang SW, et al. Breast cancer resistance protein (BCRP) and sulfotransferases contribute significantly to the disposition of genistein in mouse intestine. Aaps J. 2010;12(4):525–536. [PubMed ID: 20582579].
  • An G, Morris ME. The sulfated conjugate of biochanin A is a substrate of breast cancer resistant protein (ABCG2). Biopharm Drug Dispos. 2011;32(8):446–457. [PubMed ID: 21910126].
  • Yu J, Zhu L, Zheng H, et al. Sulfotransferases and breast cancer resistance protein determine the disposition of calycosin in vitro and in vivo. Mol Pharm. 2017;14(9):2917–2929. [PubMed ID: 28445053].
  • Zhang L, Li C, Lin G, et al. Hepatic metabolism and disposition of baicalein via the coupling of conjugation enzymes and transporters-in vitro and in vivo evidences. Aaps J. 2011;13(3):378–389. [PubMed ID: 21607811].
  • Tang L, Li Y, Chen W-Y, et al. Breast cancer resistance protein-mediated efflux of luteolin glucuronides in hela cells overexpressing UDP-glucuronosyltransferase 1A9. Pharm Res. 2014;31(4):847–860. [PubMed ID: 24092055].
  • Zeng X, Shi J, Zhao M, et al. Regioselective glucuronidation of diosmetin and chrysoeriol by the interplay of glucuronidation and transport in UGT1A9-overexpressing hela cells. PLoS One. 2016;11(11):e0166239. [PubMed ID: 27832172].
  • Dai P, Luo F, Wang Y, et al. Species- and gender-dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes. Biopharm Drug Dispos. 2015;36(9):622–635. [PubMed ID: 26317684].
  • Zhang Q, Zhu L, Gong X, et al. Sulfonation disposition of acacetin: in vitro and in vivo. J Agric Food Chemistry. 2017;65(24):4921–4931. [PubMed ID: 28540728].
  • van de Wetering K, Burkon A, Feddema W, et al. Intestinal breast cancer resistance protein (BCRP)/Bcrp1 and multidrug resistance protein 3 (MRP3)/Mrp3 are involved in the pharmacokinetics of resveratrol. Mol Pharmacol. 2009;75(4):876–885. [PubMed ID: 19114588].
  • Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev. 2010;62(13):1238–1249. [PubMed ID: 20727377].
  • Chen Y, Nie D. Pregnane X receptor and its potential role in drug resistance in cancer treatment. Recent Pat Anticancer Drug Discov. 2009;4(1):19–27. [PubMed ID: 19149685].
  • Tebbens JD, Azar M, Friedmann E, et al. Mathematical models in the description of pregnane X receptor (PXR)-regulated cytochrome P450 enzyme induction. Int J Mol Sci. 2018;19(6):1785. [PubMed ID: 29914136].
  • Verreault M, Kaeding J, Caron P, et al. Regulation of endobiotics glucuronidation by ligand-activated transcription factors: physiological function and therapeutic potential. Drug Metab Rev. 2010;42(1):110–122. [PubMed ID: 19831728].
  • Alnouti Y, Klaassen CD. Regulation of sulfotransferase enzymes by prototypical microsomal enzyme inducers in mice. J Pharmacol Exp Ther. 2008;324(2):612–621. [PubMed ID: 17993606].
  • Chen Y, Tang Y, Guo C, et al. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol. 2012;83(8):1112–1126. [PubMed ID: 22326308].
  • Baes M, Gulick T, Choi HS, et al. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol. 1994;14(3):1544–1552. [PubMed ID: 8114692].
  • Hakkola J, Bernasconi C, Coecke S, et al. Cytochrome P450 induction and xeno-sensing receptors pregnane X receptor, constitutive androstane receptor, aryl hydrocarbon receptor and peroxisome proliferator-activated receptor alpha at the crossroads of toxicokinetics and toxicodynamics. Basic Clin Pharmacol Toxicol. 2018;123(suppl 5):42-50.
  • Omiecinski CJ, Vanden Heuvel JP, Perdew GH, et al. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci. 2011;120(Suppl1):S49–75. [PubMed ID: 21059794].
  • Runge-Morris M, Kocarek TA, Falany CN. Regulation of the cytosolic sulfotransferases by nuclear receptors. Drug Metab Rev. 2013;45(1):15–33. [PubMed ID: 23330539].
  • Rakhshandehroo M, Knoch B, Müller M, et al. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. 2010;2010:612089. [PubMed ID: 20936127].
  • Makia NL, Goldstein JA. CYP2C8 is a novel target of peroxisome proliferator-activated receptor α in human liver. Mol Pharmacol. 2016;89(1):154–164. [PubMed ID: 26467040].
  • Barbier O, Villeneuve L, Bocher V, et al. The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene. J Biol Chem. 2003;278(16):13975–13983. [PubMed ID: 12582161].
  • Consortium THMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. [PubMed ID: 22699609].
  • Etxeberria U, Arias N, Boqué N, et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem. 2015;26(6):651–660. [PubMed ID: 25762527].
  • Marín L, Miguélez EM, Villar CJ, et al. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015;2015:905215. [PubMed ID: 25802870].
  • Chen Y, Li Q, Zhao T, et al. Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora. Food Chem. 2017;237:887–894. [PubMed ID: 28764082].
  • Faria A, Fernandes I, Norberto S, et al. Interplay between anthocyanins and gut microbiota. J Agric Food Chem. 2014;62(29):6898–6902. [PubMed ID: 24915058].
  • Hanske L, Engst W, Loh G, et al. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Br j nutr. 2013;109(8):1433–1441. [PubMed ID: 22906731].
  • Urpi-Sarda M, Monagas M, Khan N, et al. Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2009;1216(43):7258–7267. [PubMed ID: 19671472].
  • Mulek M, Fekete A, Wiest J, et al. Profiling a gut microbiota-generated catechin metabolite’s fate in human blood cells using a metabolomic approach. J Pharm Biomed Anal. 2015;114:71–81. [PubMed ID: 26025814].
  • Takagaki A, Nanjo F. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora. J Agric Food Chem. 2010;58(2):1313–1321. [PubMed ID: 20043675].
  • Cardona F, Andres-Lacueva C, Tulipani S, et al. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013;24(8):1415–1422. [PubMed ID: 23849454].
  • Seeram NP, Henning SM, Zhang Y, et al. Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. J Nutr. 2006;136(10):2481–2485. [PubMed ID: 16988113].
  • Espin JC, Gonzalez-Barrio R, Cerda B, et al. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J Agric Food Chem. 2007;55(25):10476–10485. [PubMed ID: 17990850].
  • Selma MV, Beltran D, Luna MC, et al. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin A from ellagic acid. Front Microbiol. 2017;8:1521. [PubMed ID: 28824607].
  • Zhang Z, Peng X, Li S, et al. Isolation and identification of quercetin degrading bacteria from human fecal microbes. PLoS One. 2014;9(3):e90531. [PubMed ID: 24594786].
  • Unno T, Hisada T, Takahashi S. Hesperetin modifies the composition of fecal microbiota and increases cecal levels of short-chain fatty acids in rats. J Agric Food Chemisrty. 2015;63(36):7952–7957. [PubMed ID: 26306898].
  • Orrego-Lagaron N, Martinez-Huelamo M, Vallverdu-Queralt A, et al. High gastrointestinal permeability and local metabolism of naringenin: influence of antibiotic treatment on absorption and metabolism. Br j nutr. 2015;114(2):169–180. [PubMed ID: 26083965].
  • Rafii F. The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites. 2015;5(1):56–73. [PubMed ID: 25594250].
  • Kwon JE, Lim J, Kim I, et al. Isolation and identification of new bacterial stains producing equol from Pueraria lobata extract fermentation. PLoS One. 2018;13(2):e0192490. [PubMed ID: 29447179].
  • Zhang J, Zhou F, Wu X, et al. Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells. Br J Pharmacol. 2012;165(1):120–134. [PubMed ID: 21615726].
  • Quan E, Wang H, Dong D, et al. Characterization of chrysin glucuronidation in UGT1A1-overexpressing HeLa cells: elucidating the transporters responsible for efflux of glucuronide. Drug Metab Dispos. 2015;43(4):433–443. [PubMed ID: 25595598].
  • Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. 2016;7(3):216–234. [PubMed ID: 26963713].
  • Braune A, Gütschow M, Engst W, et al. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl Environ Microbiol. 2001;67(12):5558–5567. [PubMed ID: 11722907].
  • Boersma MG, van der Woude H, Bogaards J, et al. Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronosyl transferases. Chem Res Toxicol. 2002;15(5):662–670. [PubMed ID: 12018987].
  • Ung D, Nagar S. Variable sulfation of dietary polyphenols by recombinant human sulfotransferase (SULT) 1A1 genetic variants and SULT1E1. Drug Metab Dispos. 2007;35(5):740–746. [PubMed ID: 17293380].
  • Wang SW, Chen Y, Joseph T, et al. Variable isoflavone content of red clover products affects intestinal disposition of biochanin A, formononetin, genistein, and daidzein. J AlternComplementary Med. 2008;14(3):287–297. [PubMed ID: 18370585].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.