1,101
Views
47
CrossRef citations to date
0
Altmetric
Review

Metabolism of the failing heart and the impact of SGLT2 inhibitors

, , &
Pages 275-285 | Received 28 Dec 2018, Accepted 26 Feb 2019, Published online: 11 Mar 2019

References

  • Kolwicz SJ, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113:603–616.
  • Wende AR, Brahma MK, McGinnis GR, et al. Metabolic origins of heart failure. JACC Basic to Transl Sci. 2017;2:297–310.
  • Ponikowski P, Voors A, Anker S, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). developed with the special contribution. Eur Hear J. 2016;37:2129–2200.
  • Noordali H, Loudon BL, Frenneaux MP, et al. Cardiac metabolism — a promising therapeutic target for heart failure. Pharmacol Ther.[Internet]. 2018;182:95–114.
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. [Internet]. 2015;373:2117–2128. Available from. http://www.nejm.org/doi/10.1056/NEJMoa1504720
  • Neal B, Perkovic V, Mahaffey KW, et al. Canvas. N Engl J Med. Internet]. 2017;377:644–657.
  • Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in Type 2 diabetes. N Engl J Med. Internet]. 2018;NEJMoa1812389.
  • Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40:1267–1274.
  • Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond atp production. Circ Res. 2013;113:709–724.
  • Van Der Vusse GJ, Van Bilsen M, Glatz JFC. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. 2000;45:279–293.
  • Depre C, Vanoverschelde JLJ, Taegtmeyer H. Glucose for the heart. Circulation. 1999;99:578–588.
  • Chatham JC. Lactate - the forgotten fuel! J Physiol. 2002;542:333.
  • Lloyd S, Brocks C, Chatham JC. Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart. Am J Physiol Circ Physiol. 2015;285:H163–H172.
  • Labarthe F, Petrof BJ, Bouchard B, et al. Profiling substrate fluxes in the isolated working mouse heart using 13 C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons. Am J Physiol Circ Physiol. 2004;286:H1461–H1470.
  • Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. AJP Hear Circ Physiol. Internet]. 2013;304:H1060–H1076.
  • Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? a unifying hypothesis. Diabetes Care. 2016;39:1115–1122.
  • Janardhan A, Chen J, Crawford PA. Altered systemic ketone body metabolism in advanced heart failure. Texas Hear Inst J. Internet]. 2011;38:533–538. Available from http://www.ncbi.nlm.nih.gov/pubmed/22163128%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3231554
  • Russell RR, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest. 1991;87:384–390.
  • Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol. Internet]. 2018;15:457–470.
  • Stanley W, Recchia F, Lopaschuk G. Myocardial substrate metabolism in the normal and failing heart. Review Physiol Rev. 2005;85:1093–1129.
  • Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fat Acids. 2004;70:309–319.
  • Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: A thrifty substrate hypothesis. Diabetes Care. 2016;39:1108–1114.
  • Lopaschuk GD, Verma S. Empagliflozin’s fuel hypothesis: not so soon. Cell Metab. Internet]. 2016;24:200–202.
  • Kolwicz SJ, Olson D, Marney L, et al. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res. 2012;111:728–738.
  • Maack C, Lehrke M, Backs J, et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the translational research committee of the heart failure association–European society of cardiology. Eur Heart J. Internet]. 2018;31:1–15.
  • Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet.Internet]. 1963;281:785–789.
  • Pierpont GL, Jones B, Traverse JH, et al. Regulation of myocardial blood flow by oxygen consumption is maintained in the failing heart during exercise. Circ Res. 2012;84:401–408.
  • Mansoor AM, Murakami Y, From AHL, et al. Myocardial oxygenation during high work states in hearts with postinfarction remodeling. Circulation. 2012;99:942–948.
  • Zhou Y-T, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci. Internet]. 2000;97:1784–1789.
  • Johnson BF, Nesto RW, Pfeifer MA, et al. Cardiac abnormalities in diabetic patients with neuropathy. Diabetes Care. 2004;27:448–454.
  • Swan JW, Anker SD, Walton C, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol.Internet]. 1997;30:527–532.
  • Shen W, Asai K, Uechi M, et al. Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine. Circulation. 1999;100:2113–2118.
  • Rc S, Df H, Ra A. Human myocardial ATP content and in vivo contractile function. Mol Cell Biochem. 1998;180:171–177.
  • Ingwall JS, Weiss RG. Is the failing heart energy starved? on using chemical energy to support cardiac function. Circ Res. 2004;95:135–145.
  • Bittls JA, Ingwall J. Reaction rates of creatine kinase and atp synthesis in the isolated rat heart. J Biol Chem. 1985;260:3512–3517.
  • Aubert G, Martin OJ, Horton JL, et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133:698–705.
  • ME Y HT,PM. Adaptation and aladaptation of the heart in diabetes: part I: general concepts. Circulation. 2002;105:1727–1733.
  • Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146:5341–5349.
  • Abdurrachim D, Nabben M, Hoerr V, et al. Diabetic db/db mice do not develop heart failure upon pressure overload: A longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations. Cardiovasc Res. 2017;113:1148–1160.
  • Garcia-Ropero A, Badimon JJ, Santos-Gallego CG. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opin Drug Metab Toxicol. Internet]. 2018;14(12):1287–1302.
  • Rahmoune H, Thompson PW, Ward JM, et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes. 2005;54:3427–3434.
  • DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. Internet]. 2017;13:11–26.
  • Abdul-Ghani MA, DeFronzo RA, Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes. 2013;62:3324–3328.
  • Zaccardi F, Webb DR, Htike ZZ, et al. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab.Internet]. 2016;18:783–794. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27059700
  • Gerstein HC, Miller ME, Genuth S, et al.; ACCORD Study Group HG. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364:818–828.
  • Cherney DZI, Perkins BA, Soleymanlou N, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:1–8.
  • Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17:1180–1193.
  • Kimura G. Diuretic action of sodium-glucose cotransporter 2 inhibitors and its importance in the management of heart failure. Circ J. Internet]. 2016;80:2277–2281. Available from: https://www.jstage.jst.go.jp/article/circj/80/11/80_CJ-16-0780/_article
  • Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients.[Erratum appears in J Clin Invest. 2014 Apr 1;124(4):1868]. J Clin Invest. 2014;124:499–508.
  • Fitchett D, Butler J, Van De Borne P, et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOMEVRtrial. Eur Heart J. 2018;39:363–370.
  • Santos-Gallego CG, Ibanez JAR, Antonio RS, et al. Empagliflozin induces a myocardial metabolic shift from glucose consumption to ketone metabolism that mitigates adverse cardiac remodeling and improves myocardial contractility. J Am Coll Cardiol. Internet]. 2018;71:A674. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0735109718312154
  • SantosGallego C, Requena-Ibanez J, Antonio RS, et al. Infusion of the ketone body β-hydroxybutyrate improves left ventricular systolic function in an animal model of heart failure with reduced ejection fraction. AHA Abstract. 2018;138.
  • Verma S, Wagg CS, Uddin GM, et al. Empagliflozin increases cardiac energy production in diabetes. JACC Basic to Transl Sci. 2018;3:575–587.
  • Abdurrachim D, Teo XQ, Woo CC, et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a hyperpolarized 13C magnetic resonance spectroscopy study. Diabetes Obes Metab. 2019;21:357–365.
  • Cahill GF Jr, Veech RL. Ketoacids? Good Medicine? Trans Am Clin Climatol Assoc. 2003;114:149–161.
  • Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–1196.
  • Inagaki N, Goda M, Yokota S, et al. Safety and efficacy of canagliflozin in Japanese patients with type 2 diabetes mellitus: post hoc subgroup analyses according to body mass index in a 52-week open-label study. Expert Opin Pharmacother.Internet]. 2015;16:1577–1591. Available from: http://www.tandfonline.com/doi/full/10.1517/14656566.2015.1055250
  • Schugar RC, Moll AR, André d’Avignon D, et al. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. 2014;3:754–769.
  • Best TH, Franz DN, Gilbert DL, et al. Cardiac complications in pediatric patients on the ketogenic diet. Neurology. 2000;54(12):2328-2330.
  • Packer M. Activationand inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure. Circulation. 2017;136:1548–1559.
  • Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+exchanger, lowering of cytosolic Na+and vasodilation. Diabetologia. 2018;61:722–726.
  • Baartscheer A, Schumacher CA, Rci W, et al. Empagliflozin decreases myocardial cytoplasmic Na+through inhibition of the cardiac Na+/H+exchanger in rats and rabbits. Diabetologia. 2017;60:568–573.
  • Prasad V, Lorenz J, Miller M, et al. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress. J Mol Cell Cardiol. 2013;65:33–42.
  • Baartscheer A, Hardziyenka M, Schumacher CA, et al. Chronic inhibition of the Na +/H +- exchanger causes regression of hypertrophy, heart failure, and ionic and electrophysiological remodelling. Br J Pharmacol. 2008;154:1266–1275.
  • Tomaselli GF, Marbán E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res. 1999;42:270–283.
  • Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;2108–2117.
  • Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes Metab. 2018;20:1361–1366.
  • Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. Internet]. 2017;104:298–310.
  • Kang S, Verma S, Teng G, et al. Direct effect of empagliflozin on extracellular matrix remodeling in human cardiac fibroblasts: novel translational clues to EMPA-REG OUTCOME. Abstract Can J Cardiol. 2017;33:S169.
  • Patel VB, Shah S, Verma S, et al. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017;22:889–902.
  • Garvey WT, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018;85:32–37.
  • Konstantinou-Tegou A, Kaloyianni M, Bourikas D, et al. The effect of leptin on Na+-H+ antiport of obese and normal subjects erythrocytes. Mol Cell Endocrinol. 2001;183:11–18.
  • Teta D, Bevington A, Brown J, et al. Acidosis downregulates leptin production from cultured adipocytes through a glucose transport-dependent post-transcriptional mechanism. J Am Soc Nephrol. 2003;14:2248–2254.
  • Mancini SJ, Boyd D, Katwan OJ, et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by amp-activated protein kinase-dependent and -independent mechanisms. Sci Rep. 2018 Mar 27;8(1):5276.
  • Xu L, Nagata N, Nagashimada M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine.Internet]. 2017;20:137–149.
  • Hawley SA, Ford RJ, Smith BK, et al. The Na +/glucose cotransporter inhibitor canagli fl ozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65:2784–2794.
  • Ye Y, Jia X, Bajaj M, et al. Dapagliflozin attenuates Na(+)/H(+) exchanger-1 in cardiofibroblasts via AMPK activation. Cardiovasc Drugs Ther. 2018;32:553–558.
  • Halliday BP, Wassall R, Lota AS, et al. Articles withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet. [Internet]. 2018;6736:1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.