415
Views
46
CrossRef citations to date
0
Altmetric
Review

Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs

ORCID Icon &
Pages 499-515 | Received 23 Nov 2018, Accepted 16 May 2019, Published online: 29 May 2019

References

  • Chakraborty S, Shukla D, Mishra B, et al. Lipid – an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73(1):1–15.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–196.
  • Porter CJ, Charman WN. In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev. 2001;50:S127–S147.
  • Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–287.
  • Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–637.
  • Brogård M, Troedsson E, Thuresson K, et al. A new standardized lipolysis approach for characterization of emulsions and dispersions. J Colloid Interface Sci. 2007;308(2):500–507.
  • Cheng Y, Xu Z, Ma M, et al. Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci. 2008;97(1):123–143.
  • Cai Z, Wang Y, Zhu L-J, et al. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr Drug Metab. 2010;11(2):197–207.
  • Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25(1):103–128.
  • Banerjee S, Pillai J. Lipid nanoparticle formulations for enhanced anti-tuberculosis therapy. In: Alina Maria Holban, Alexandru Mihai Grumezescu, William Andrew, (Eds). Nanoarchitectonics for smart delivery and drug targeting Amsterdam. Elsevier; 2016. p. 285–313.
  • Muller R Arzneistofftrager aus festen lipidteilchen (Feste Lipidnanospharen (SLN)). Eur Patent EP 0605497 B1. 1996.
  • Westesen K, Bunjes H, Koch M. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release. 1997;48(2–3):223–236.
  • Chen C, Fan T, Jin Y, et al. Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle–double emulsion method via the combined use of different solid lipids. Nanomedicine. 2013;8(7):1085–1100.
  • Müller RH, Mäder K, Lippacher A, et al., 2000. Fest-flüssige (halbfeste) Lipidpartikel und Verfahren zur Herstellung hochkonzentrierter Lipidpartikeldispersionen. PCT application PCT/EP00/04565.
  • Muchow M, Maincent P, Müller RH. Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev Ind Pharm. 2008;34(12):1394–1405.
  • Banerjee S, Roy S, Nath Bhaumik K, et al. Comparative study of oral lipid nanoparticle formulations (LNFs) for chemical stabilization of antitubercular drugs: physicochemical and cellular evaluation. Artif Cells Nanomed Biotechnol. 2018;46(sup1):540–558.
  • Tarr BD, Yalkowsky SH. Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size. Pharm Res. 1989;6(1):40–43.
  • Klassieren SM. Mechanische Verfahrenstechnik 1. Berlin, Heidelberg: Springer; 1995. p. 276–350.
  • Carey MC, Small DM, Bliss CM. Lipid digestion and absorption. Annu Rev Physiol. 1983;45(1):651–677.
  • Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125(1):91–97.
  • Charman WN, Porter CJ, Mithani S, et al. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–282.
  • Charman WN. Lipids, lipophilic drugs, and oral drug delivery – some emerging concepts. J Pharm Sci. 2000;89(8):967–978.
  • Porter CJ, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev. 2001;50(1–2):61–80.
  • Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. Aaps Pharmscitech. 2011;12(1):62–76.
  • Hörter D, Dressman J. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46(1–3):75–87.
  • Winstanley P, Orme M. The effects of food on drug bioavailability. Br J Clin Pharmacol. 1989;28(6):621–628.
  • Crounse RG. Human pharmacology of griseofulvin: the effect of fat intake on gastrointestinal absorption. J Invest Dermatol. 1961;37(6):529-533.
  • Feinle C, Rades T, Otto B, et al. Fat digestion modulates gastrointestinal sensations induced by gastric distention and duodenal lipid in humans. Gastroenterology. 2001;120(5):1100–1107.
  • Ladas S, Isaacs P, Murphy G, et al. Comparison of the effects of medium and long chain triglyceride containing liquid meals on gall bladder and small intestinal function in normal man. Gut. 1984;25(4):405–411.
  • Dahan A, Hoffman A. The effect of different lipid based formulations on the oral absorption of lipophilic drugs: the ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur J Pharm Biopharm. 2007;67(1):96–105.
  • Wagner D, Spahn-Langguth H, Hanafy A, et al. Intestinal drug efflux: formulation and food effects. Adv Drug Deliv Rev. 2001;50:S13–S31.
  • Schmid-Schönbein GW. The second valve system in lymphatics. Lymphat Res Biol. 2003;1(1):25–31.
  • Roger E, Lagarce F, Garcion E, et al. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release. 2009;140(2):174–181.
  • Li C, Fleisher D, Li L, et al. Regional‐dependent intestinal absorption and meal composition effects on systemic availability of LY303366, a lipopeptide antifungal agent, in dogs. J Pharm Sci. 2001;90(1):47–57.
  • Martinez M, Amidon G, Clarke L, et al. Applying the biopharmaceutics classification system to veterinary pharmaceutical products: part ii. Physiological considerations. Adv Drug Deliv Rev. 2002;54(6):825–850.
  • Sanjula B, Shah FM, Javed A, et al. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J Drug Target. 2009;17(3):249–256.
  • Khoo S-M, Shackleford DM, Porter CJ, et al. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm Res. 2003;20(9):1460–1465.
  • Gershkovich P, Hoffman A. Effect of a high-fat meal on absorption and disposition of lipophilic compounds: the importance of degree of association with triglyceride-rich lipoproteins. Eur J Pharm Sci. 2007;32(1):24–32.
  • Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60(6):702–716.
  • Ljusberg-Wahren H, Nielsen FS, Brogård M, et al. Enzymatic characterization of lipid-based drug delivery systems. Int J Pharm. 2005;298(2):328–332.
  • Porter CJ, Pouton CW, Cuine JF, et al. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–691.
  • Borgström B. Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes. Gastroenterology. 1980;78(5):954–962.
  • Bernbäck S, Bläckberg L, Hernell O. Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochim Biophys Acta (BBA)-Lipids Lipid Metab. 1989;1001(3):286–293.
  • Embleton JK, Pouton CW. Structure and function of gastro-intestinal lipases. Adv Drug Deliv Rev. 1997;25(1):15–32.
  • Kozlov M, Helfrich W. Effects of a cosurfactant on the stretching and bending elasticities of a surfactant monolayer. Langmuir. 1992;8(11):2792–2797.
  • Ollivon M, Eidelman O, Blumenthal R, et al. Micelle-vesicle transition of egg phosphatidylcholine and octylglucoside. Biochemistry. 1988;27(5):1695–1703.
  • Paternostre MT, Roux M, Rigaud JL. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry. 1988;27(8):2668–2677.
  • Borel P, Pasquier B, Armand M, et al. Processing of vitamin A and E in the human gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2001;280(1):G95–G103.
  • Fatouros DG, Bergenstahl B, Mullertz A. Morphological observations on a lipid-based drug delivery system during in vitro digestion. Eur J Pharm Sci. 2007;31(2):85–94.
  • Hernell O, Staggers JE, Carey MC. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry. 1990;29(8):2041–2056.
  • Kossena GA, Charman WN, Wilson CG, et al. Low dose lipid formulations: effects on gastric emptying and biliary secretion. Pharm Res. 2007;24(11):2084–2096.
  • Kossena GA, Boyd BJ, Porter CJ, et al. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water‐soluble drugs. J Pharm Sci. 2003;92(3):634–648.
  • Stremmel W. Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J Clin Invest. 1988;82(6):2001–2010.
  • Charman WN, Porter CJ. Lipophilic prodrugs designed for intestinal lymphatic transport. Adv Drug Deliv Rev. 1996;19(2):149–169.
  • Harrison EH. Mechanisms of digestion and absorption of dietary vitamin A. Annu Rev Nutr. 2005;25:87–103.
  • Ichihashi T, Kinoshita H, Takagishi Y, et al. Effect of oily vehicles on absorption of mepitiostane by the lymphatic system in rats. J Pharm Pharmacol. 1992;44(7):560–564.
  • Myers R, Stella V. Factors affecting the lymphatic transport of penclomedine (NSC-338720), a lipophilic cytotoxic drug: comparison to DDT and hexachlorobenzene. Int J Pharm. 1992;80(1–3):51–62.
  • Bummer PM. Physical chemical considerations of lipid-based oral drug delivery – solid lipid nanoparticles. Crit Rev Ther Drug. 2004;21:1–19.
  • Charman W, Stella V. Estimating the maximal potential for intestinal lymphatic transport of lipophilic drug molecules. Int J Pharm. 1986;34(1–2):175–178.
  • Thomson A, Keelan M, Garg M, et al. Intestinal aspects of lipid absorption: in review. Can J Physiol Pharmacol. 1989;67(3):179–191.
  • Banerjee S, Roy S, Bhaumik KN, et al. Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis. J Drug Targeting. 2019. DOI:10.1080/1061186X.2019.1613409
  • Hu L, Jia H, Luo Z, et al. Improvement of digoxin oral absorption in rabbits by incorporation into solid lipid nanoparticles. Die Pharmazie- Int J Pharm Sci. 2010;65(2):110–113.
  • Varshosaz J, Tabbakhian M, Mohammadi MY. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J Liposome Res. 2010;20(4):286–296.
  • Jain AS, Shah SM, Nagarsenker MS, et al. Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro–in vivo advantage. J Biomed Nanotechnol. 2013;9(7):1230–1240.
  • Washington C. Evaluation of non-sink dialysis methods for the measurement of drug release from colloids: effects of drug partition. Int J Pharm. 1989;56(1):71–74.
  • Washington C. Drug release from microdisperse systems: a critical review. Int J Pharm. 1990;58(1):1–12.
  • Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3(5):409–415.
  • Levy M, Benita S. Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model. Int J Pharm. 1990;66:29–37.
  • Larsen A, Holm R, Pedersen ML, et al. Lipid-based formulations for danazol containing a digestible surfactant, Labrafil M2125CS: in vivo bioavailability and dynamic in vitro lipolysis. Pharm Res. 2008;25(12):2769–2777.
  • Larsen AT, Sassene P, Müllertz A. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. Int J Pharm. 2011;417(1–2):245–255.
  • Zangenberg NH, Müllertz A, Kristensen HG, et al. A dynamic in vitro lipolysis model: II: evaluation of the model. Eur J Pharm Sci. 2001;14(3):237–244.
  • Antunes F, Andrade F, Ferreira D, et al. Models to predict intestinal absorption of therapeutic peptides and proteins. Curr Drug Metab. 2013;14(1):4–20.
  • Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005;10(5):335–343.
  • Barthe L, Bessouet M, Woodley J, et al. The improved everted gut sac: a simple method to study intestinal P-glycoprotein. Int J Pharm. 1998;173(1–2):255–258.
  • Ruan L-P, Chen S, Yu B-Y, et al. Prediction of human absorption of natural compounds by the non-everted rat intestinal sac model. Eur J Med Chem. 2006;41(5):605–610.
  • Rizvi SZH, Shah FA, Khan N, et al. Simvastatin-loaded solid lipid nanoparticles for enhanced antihyperlipidemic activity in hyperlipidemia animal model. Int J Pharm. 2019;560:136–143.
  • Souto EB, Doktorovova S, Campos JR, et al. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur J Pharm Sci. 2019;128:27–35.
  • Din F,A, UllahShah K, Rehman Z. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J Drug Delivery Sci Technol. 2019;51:583–590.
  • Patel MH, Mundada VP, Sawant KK. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitrocharacterization, cell line studies and in vivo efficacy in schizophrenia. Drug Dev Ind Pharm. 2019. DOI:10.1080/03639045.2019.1593434
  • El-Say KM, Hosny KM. Optimization of carvedilol solid lipid nanoparticles: an approach to control the release and enhance the oral bioavailability on rabbits. PLoS One. 2018;13(8):e0203405.
  • Shazly GA, Alshehri S, Ibrahim MA, et al. Development of Domperidone Solid Lipid Nanoparticles: in Vitro and In Vivo Characterization. AAPS PharmSciTech. 2018;19(4):1712–1719.
  • Yining X, Zheng Y, Lei W, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces. 2018;10(11):9315–9324.
  • Baek JS, Cho CW. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur J Pharm Biopharm. 2017;117:132–140.
  • Kim JT, Barua S, Kim H, et al. Absorption study of Genistein using solid lipid microparticles and nanoparticles: control of oral bioavailability by particle sizes. Biomol Ther (Seoul). 2017;25(4):452–459.
  • Qureshi OS, Kim HS, Zeb A, et al. Sustained release docetaxel-incorporated lipid nanoparticles with improved pharmacokinetics for oral and parenteral administration. J Microencapsul. 2017 May;34(3):250–261.
  • Gonçalves L, Maestrelli F, Mannelli LDC, et al. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm. 2016;102:41–50.
  • Ramalingam P, Ko YT. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2016;139:52–61.
  • Guada M, Lana H, Gil AG, et al. Cyclosporine A lipid nanoparticles for oral administration: pharmacodynamics and safety evaluation. Eur J Pharm Biopharm. 2016;101:112–118.
  • Liu Y, Salituro GM, Lee KJ, et al. Modulating drug release and enhancing the oral bioavailability of Torcetrapib with solid lipid dispersion formulations. AAPS Pharm Sci Tech. 2015;16(5):1091–1100.
  • Shangguan M, Qi J, Lu Y, et al. Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: implications on the contribution of integral structure. Int J Pharm. 2015. 15. 489(1–2):195–202.
  • Dwivedi P, Khatik R, Khandelwal K, et al. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: an improved oral bioavailability in rats. Int J Pharm. 2014;466(1–2):321–327.
  • Singh A, Ahmad I, Akhter S, et al. Nanocarrier based formulation of Thymoquinone improves oral delivery: stability assessment, in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2013;102:822–832.
  • Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm. 2013;441(1–2):202–212.
  • Singh H, Bhandari R, Kaur IP. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH. Int J Pharm. 2013;446(1–2):106–111.
  • Venishetty VK, Chede R, Komuravelli R, et al. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids Surf B Biointerfaces. 2012;95:1–9.
  • Zhang Z, Gao F, Bu H, et al. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine. 2012;8(5):740–747.
  • Chalikwar SS, Belgamwar VS, Talele VR, et al. Formulation and evaluation of Nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids Surf B Biointerfaces. 2012;97:109–116.
  • Xie S, Zhu L, Dong Z, et al. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids. Colloids Surf B Biointerfaces. 2011;83(2):382–387.
  • Liu Y, Wang P, Sun C, et al. Bioadhesion and enhanced bioavailability by wheat germ agglutinin-grafted lipid nanoparticles for oral delivery of poorly water-soluble drug bufalin. Int J Pharm. 2011;419(1–2):260–265.
  • Pandita D, Ahuja A, Lather V, et al. Development of lipid-based nanoparticles for enhancing the oral bioavailability of paclitaxel. Aaps Pharmscitech. 2011;12(2):712–722.
  • Silva A, González-Mira E, García M, et al. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces. 2011;86(1):158–165.
  • Tsai M-J, Huang Y-B, Wu P-C, et al. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci. 2011;100(2):547–557.
  • Kakkar V, Singh S, Singla D, et al. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2011;55(3):495–503.
  • Aji Alex MR, Chacko AJ, Jose S, et al. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42:11–18.
  • Hu L, Xing Q, Meng J, et al. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. Aaps Pharmscitech. 2010;11(2):582–587.
  • Varshosaz J, Minayian M, Moazen E. Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J Liposome Res. 2010;20(2):115–123.
  • Xie S, Pan B, Wang M, et al. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomedicine. 2010;5(5):693–701.
  • Zhang Z, Bu H, Gao Z, et al. The characteristics and mechanism of simvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int J Pharm. 2010;394(1–2):147–153.
  • Zhang Z, Lv H, Zhou J. Novel solid lipid nanoparticles as carriers for oral administration of insulin. Die Pharmazie- Int J Pharm Sci. 2009;64(9):574–578.
  • Li H, Zhao X, Ma Y, et al. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009;133(3):238–244.
  • Hanafy A, Spahn-Langguth H, Vergnault G, et al. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev. 2007;59(6):419–426.
  • Suresh G, Manjunath K, Venkateswarlu V, et al. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. Aaps Pharmscitech. 2007;8(1):E162–E170.
  • Müller R, Runge S, Ravelli V, et al. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int J Pharm. 2006;317(1):82–89.
  • Luo Y, Chen D, Ren L, et al. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release. 2006;114(1):53–59.
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release. 2005;107(2):215–228.
  • Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol. 2004;56(12):1527–1535.
  • Teng Z, Yu M, Ding Y, et al. Preparation and characterization of nimodipine-loaded nanostructured lipid systems for enhanced solubility and bioavailability. Int J Nanomedicine. 2019;14:119–133.
  • Khan AA, Mudassir J, Akhtar S, et al. Freeze-dried lopinavir-loaded nanostructured lipid carriers for enhanced cellular uptake and bioavailability: statistical optimization, in vitro and in vivo evaluations. Pharmaceutics. 2019;11:97.
  • Harshita, Barkat MA, Rizwanullah M, et al. Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS Pharm Sci Tech. 2019;20:87.
  • Elmowafy M, Shalaby K, Badran MM, et al. Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation. Int J Pharm. 2018 Oct 25;550(1–2):359–371.
  • Li J, Yang M, Xu W. Development of novel rosuvastatin nanostructured lipid carriers for oral delivery in an animal model. Drug Des Devel Ther. 2018;12:2241–2248.
  • Wei Q, Yang Q, Wang Q, et al. Formulation, characterization, and pharmacokinetic studies of 6-gingerol-loaded nanostructured lipid carriers. AAPS Pharm Sci Tech. 2018;19:3661.
  • Dudhipala N, Janga KY, Gorre T. Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol. 2018;46(sup 2):616–625.
  • Tian C, Asghar S, Wu Y, et al. N-acetylL-cysteine functionalized nanostructured lipid carrier for improving oral bioavailability of curcumin: preparation, invitro and in-vivo evaluations. Drug Deliv. 2017;24(1):1605–1616.
  • Yin J, Hou Y, Yin Y, et al. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect. Int J Nanomedicine. 2017;12:8671–8680.
  • Yu Q, Hu X, Ma Y, et al. Lipids-based nanostructured lipid carriers (NLCs) for improved oral bioavailability of sirolimus. Drug Deliv. 2016;23(4):1469–1475.
  • Shah NV, Seth AK, Balaraman R, et al. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7(3):423–434.
  • Shangguan M, Qi J, Lu Y, et al. Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: implications on the contribution of integral structure. Int J Pharm. 2015. 15. 489(1–2):195–202.
  • Zhou J, Zhou D. Improvement of oral bioavailability of lovastatin by using nanostructured lipid carriers. Drug Des Devel Ther. 2015;9: 5269–5275. Published 2015 Sep 18.
  • Luan J, Zhang D, Hao L, et al. Preparation, characterization and pharmacokinetics of Amoitone B-loaded long circulating nanostructured lipid carriers. Colloids Surf B Biointerfaces. 2014;114:255–260.
  • Beloqui A, Solinís MÁ, Delgado A, et al. Fate of nanostructured lipid carriers (NLCs) following the oral route: design, pharmacokinetics and biodistribution. J Microencapsul. 2014;31(1):1–8.
  • Patil-Gadhe A, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: part I oral bioavailability improvement. Eur J Pharm Biopharm. 2014;88(1):160–168.
  • Beloqui A, Solinís MÁ, Gascón AR, et al. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J Control Release. 2013;166(2):115–123.
  • Mendes A, Silva A, Catita J, et al. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: improving antifungal activity. Colloids Surf B Biointerfaces. 2013;111:755–763.
  • Jain AS, Shah SM, Nagarsenker MS, et al. Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro-in vivo advantage. J Biomed Nanotechnol. 2013;9:1230–1240.
  • Abdelwahab SI, Sheikh BY, Taha MME, et al. Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int J Nanomedicine. 2013;8:2163.
  • Thatipamula R, Palem C, Gannu R, et al. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru. 2011;19(1):23.
  • Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm. 2011;415(1–2):232–243.
  • Muchow M, Maincent P, Müller R, et al. Production and characterization of testosterone undecanoate-loaded NLC for oral bioavailability enhancement. Drug Dev Ind Pharm. 2011;37(1):8–14.
  • Zhang T, Chen J, Zhang Y, et al. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur J Pharm Sci. 2011;43(3):174–179.
  • Chen -C-C, Tsai T-H, Huang Z-R, et al. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm. 2010;74(3):474–482.
  • Zhuang C-Y, Li N, Wang M, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–185.
  • Banerjee S, Kundu A. Lipid-drug conjugates: a potential nanocarrier system for oral drug delivery applications. DARU J Pharma Sci. 2018;26:65–75.
  • Ding Y, Nielsen KA, Nielsen BP, et al. Lipid-drug-conjugate (LDC) solid lipid nanoparticles (SLN) for the delivery of nicotine to the oral cavity – optimization of nicotine loading efficiency. Eur J Pharm Biopharm. 2018;128:10–17.
  • Ma Y, He H, Xia F, et al. In vivo fate of lipid-silybin conjugate nanoparticles: implications on enhanced oral bioavailability. Nanomedicine. 2017;13(8):2643–2654.
  • Soni K, Mujtaba A, Kohli K. Lipid drug conjugate nanoparticle as a potential nanocarrier for the oral delivery of pemetrexed diacid: formulation design, characterization, ex vivo, and in vivo assessment. Int J Biol Macromol. 2017;103:139–151.
  • Neupane YR, Sabir M, Ahmad N, et al. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology. 2013;24(41):415102.
  • Vadlapudi AD, Vadlapatla RK, Kwatra D, et al. Targeted lipid based drug conjugates: a novel strategy for drug delivery. Int J Pharm. 2012;434(1–2):315–324.
  • Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289.
  • Etheridge ML, Campbell SA, Erdman AG, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14.
  • Hafner A, Lovric J, Lakos GP, et al. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine. 2014;9:1005–1023.
  • Musazzi UM, Marini V, Casiraghi A,P, et al. Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanomaterials? Drug Discov Today. 2017;22(6):870–882.
  • Battaglia L, Ugazio E. Lipid nano- and microparticles: an overview of patent-related research. J Nanomater. 2019:1–22 Article ID 2834941. 10.1155/2019/2834941
  • Cegla U. Long-term therapy over 2 years with ambroxol (Mucosolvan) retard capsules in patients with chronic bronchitis. Results of a double-blind study of 180 patients. Praxis Und Klinik Der Pneumologie. 1988;42(9):715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.