807
Views
31
CrossRef citations to date
0
Altmetric
Review

The potential protein-mediated hepatic uptake: discussion on the molecular interactions between albumin and the hepatocyte cell surface and their implications for the in vitro-to-in vivo extrapolations of hepatic clearance of drugs

, & ORCID Icon
Pages 633-658 | Received 10 May 2019, Accepted 03 Jul 2019, Published online: 18 Jul 2019

References

  • Rosenthal SM, White EC. Studies in hepatic function; VI. A. the pharmacological behavior of certain phthalein dyes; B. the value of selected phthalein compounds in the estimation of hepatic function. J Pharmacol Exp Ther. 1924;24(4):265–288.
  • Forker EL, Luxon BA. Albumin-mediated transport of rose bengal by perfused rat liver. Kinetics of the reaction at the cell surface. J Clin Invest. 1983 Nov;72(5):1764–1771. PubMed PMID: 6630525; PubMed Central PMCID: PMCPMC370465.
  • Weisiger RA, Zacks CM, Smith ND, et al. Effect of albumin binding on extraction of sulfobromophthalein by perfused elasmobranch liver: evidence for dissociation-limited uptake. Hepatology. 1984 May-Jun;4(3):492–501. PubMed PMID: 6724517; PubMed Central PMCID: PMC6724517.
  • Brodie BB, Kurz H, Schanker LS. THE IMPORTANCE OF DISSOCIATION CONSTANT AND LIPID-SOLUBILITY IN INFLUENCING THE PASSAGE OF DRUGS INTO THE CEREBROSPINAL FLUID. J Pharmacol Exp Ther. 1960;130(1):20–25.
  • Benet LZ, Kroetz DL, Sheiner LB. Pharmacokinetics: the dynamics of drug absorption, distribution, and elimination. In: Hardman J, Limbird L, editors. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 9th, Vol. 10. New York, USA: McGraw-Hill; 1996, pp. 11–16
  • Trainor GL. The importance of plasma protein binding in drug discovery. Expert Opin Drug Discov. 2007 Jan;2(1):51–64. PubMed PMID: 23496037.
  • Baker KJ, Bradley SE. Binding of sulfobromophthalein (BSP) sodium by plasma albumin. Its role in hepatic BSP extraction. J Clin Invest. 1966 Feb;45(2):281–287. PubMed PMID: 5901512; PubMed Central PMCID: PMC292693.
  • Poulin P, Burczynski FJ, Haddad S. The role of extracellular binding proteins in the cellular uptake of drugs: impact on quantitative in vitro-to-in vivo extrapolations of toxicity and efficacy in physiologically based pharmacokinetic-pharmacodynamic research. J Pharm Sci. 2016 Feb;105(2):497–508. PubMed PMID: 26173749.
  • Bowman CM, Benet LZ. An examination of protein binding and protein-facilitated uptake relating to in vitro-in vivo extrapolation. Eur J Pharm Sci. 2018 Aug 8;123:502–514.
  • Peters T Jr. The albumin molecule: its structure and chemical properties. all about albumin. USA: Academic Press; 1996. p. 24–75.
  • Lönsmann Poulsen H. Interstitial fluid concentrations of albumin and immunoglobulin G in normal men. Scand J Clin Lab Invest. 2009;34(2):119–122.
  • Berson SA, Yalow RS. Distribution and metabolism of I131 labeled proteins in man. Fed Proc. 1957 Jul;16(2 suppl):13–18. PubMed PMID: 13461943.
  • Anand U, Mukherjee S. Binding, unfolding and refolding dynamics of serum albumins. Biochim Biophys Acta. 2013 Dec;1830(12):5394–5404. PubMed PMID: 23707713.
  • Burczynski FJ, Wang GQ, Elmadhoun B, et al. Hepatocyte [3H]-palmitate uptake: effect of albumin surface charge modification. Can J Physiol Pharmacol. 2001 Oct;79(10):868–875. PubMed PMID: 11697746.
  • Burczynski FJ, Wang GQ, Hnatowich M. Effect of binding protein surface charge on palmitate uptake by hepatocyte suspensions. Br J Pharmacol. 1997 Apr;120(7):1215–1220. PubMed PMID: 9105695; PubMed Central PMCID: PMC1564593.
  • Zucker SD, Goessling W, Gollan JL. Kinetics of bilirubin transfer between serum albumin and membrane vesicles. J Biol Chem. 1995;270(3):1074–1081.
  • Tsao SC, Sugiyama Y, Sawada Y, et al. Kinetic analysis of albumin-mediated uptake of warfarin by perfused rat liver [journal article]. J Pharmacokinet Biopharm. 1988 April 01;16(2):165–181. .
  • Ichikawa M, Tsao SC, Lin T-H, et al. ‘Albumin-mediated transport phenomenon’ observed for ligands with high membrane permeability. J Hepatol. 1992;16(1–2):38–49.
  • Mao J, Tay S, Khojasteh CS, et al. Evaluation of time dependent inhibition assays for marketed oncology drugs: comparison of human hepatocytes and liver microsomes in the presence and absence of human plasma. Pharm Res. 2016 May;33(5):1204–1219. 10.1007/s11095-016-1865-9. PubMed PMID: 26869174.
  • Kratochwil NA, Meille C, Fowler S, et al. Metabolic profiling of human long-term liver models and hepatic clearance predictions from in vitro data using nonlinear mixed-effects modeling. Aaps J. 2017 Mar;19(2):534–550. 10.1208/s12248-016-0019-7. PubMed PMID: 28050713.
  • Da-Silva F, Boulenc X, Vermet H, et al. Improving prediction of metabolic clearance using quantitative extrapolation of results obtained from human hepatic micropatterned cocultures model and by considering the impact of albumin binding. J Pharm Sci. 2018 Mar; 7. PubMed PMID: 29524447. DOI:10.1016/j.xphs.2018.03.001
  • Bounakta S, Bteich M, Mantha M, et al. Predictions of bisphenol A hepatic clearance in the isolated perfused rat liver (IPRL): impact of albumin binding and of co-administration with naproxen. Xenobiotica. 2018 Feb;48(2):135–147. PubMed PMID: 28277163.
  • Shimura K, Murayama N, Tanaka S, et al. Suitable albumin concentrations for enhanced drug oxidation activities mediated by human liver microsomal cytochrome P450 2C9 and other forms predicted with unbound fractions and partition/distribution coefficients of model substrates. Xenobiotica. 2018 May 29;1–18. PubMed PMID: 29808734. DOI: 10.1080/00498254.2018.1482576
  • Peng Y, Zhang X, Zhu Y, et al. Atypical kinetics and albumin effect of glucuronidation of 5-n-Butyl-4-{4-[2-(1H-tetrazole-5- yl)-1H-pyrrol-1-yl]phenylmethyl}-2,4-dihydro-2-(2,6- dichlorophenyl)-3H-1,2,4-triazol-3-one, a novel nonpeptide angiotensin type 1 receptor antagonist, in liver microsomes and udp-Glucuronosyl-transferase. Molecules. 2018 Mar 19;23(3):688. PubMed PMID: 29562678.
  • Thao LQ, Lee C, Kim B, et al. Doxorubicin and paclitaxel co-bound lactosylated albumin nanoparticles having targetability to hepatocellular carcinoma. Colloids Surf B Biointerfaces. 2017 Apr 1;152:183–191. PubMed PMID: 28110040.
  • Obuobi S, Wang Y, Khara JS, et al. Antimicrobial and anti-biofilm activities of surface engineered polycationic albumin nanoparticles with reduced hemolytic activity. Macromol Biosci. 2018 Aug 1;e1800196. PubMed PMID: 30066983. DOI:10.1002/mabi.201800196
  • Bhushan B, Khanadeev V, Khlebtsov B, et al. Impact of albumin based approaches in nanomedicine: imaging, targeting and drug delivery. Adv Colloid Interface Sci. 2017 Aug;246:13–39. PubMed PMID: 28716187.
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012 Jan 30;157(2):168–182. PubMed PMID: 21839127.
  • Singh P, Singh H, Castro-Aceituno V, et al. Bovine serum albumin as a nanocarrier for the efficient delivery of ginsenoside compound K: preparation, physicochemical characterizations and in vitro biological studies. RSC Adv. 2017;7(25):15397–15407.
  • Berezhkovskiy LM. The corrected traditional equations for calculation of hepatic clearance that account for the difference in drug ionization in extracellular and intracellular tissue water and the corresponding corrected PBPK equation. PubMed Central PMCID: PMC21355107 J Pharm Sci. 2011;1003:1167–1183.
  • Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999 Nov;27(11):1350–1359. PubMed PMID: 10534321; PubMed Central PMCID: PMC10534321.
  • Poulin P, Kenny JR, Hop CE, et al. In vitro-in vivo extrapolation of clearance: modeling hepatic metabolic clearance of highly bound drugs and comparative assessment with existing calculation methods. J Pharm Sci. 2012 Feb;101(2):838–851. PubMed PMID: 22009717.
  • Miyauchi S, Masuda M, Kim SJ, et al. The phenomenon of albumin-mediated hepatic uptake of organic anion transport polypeptide substrates: prediction of the in vivo uptake clearance from the in vitro uptake by isolated hepatocytes using a facilitated-dissociation model. Drug Metab Dispos. 2018 Mar;46(3):259–267. PubMed PMID: 29298773.
  • Poulin P, Hop CE, Ho Q, et al. Comparative assessment of In vitro-in vivo extrapolation methods used for predicting hepatic metabolic clearance of drugs. J Pharm Sci. 2012 Nov;101(11):4308–4326. PubMed PMID: 22890957.
  • Poulin P, Haddad S. Extrapolation of the hepatic clearance of drugs in the absence of albumin in vitro to that in the presence of albumin in vivo: comparative assessement of 2 extrapolation models based on the albumin-mediated hepatic uptake theory and limitations and mechanistic insights. J Pharm Sci. 2018 Mar 20. PubMed PMID: 29567347. DOI:10.1016/j.xphs.2018.03.012
  • Kim SJ, Lee KR, Miyauchi S, et al. Extrapolation of in vivo hepatic clearance from in vitro uptake clearance by suspended human hepatocytes (ivive) for anionic drugs with high binding to human albumin: improvement of IVIVE by Considering the “albumin-mediated” hepatic uptake mechanism based on the facilitated-dissociation model. Drug Metab Dispos. 2018 Nov 30. PubMed PMID: 30504137. DOI:10.1124/dmd.118.083733.
  • Riccardi KA, Tess DA, Lin J, et al. A novel unified approach to predict human hepatic clearance for both enzyme- and transporter-mediated mechanisms using suspended human hepatocytes. Drug Metab Dispos. 2019 Feb 20. PubMed PMID: 30787098. DOI:10.1124/dmd.118.085639.
  • Ghuman J, Zunszain PA, Petitpas I, et al. Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol. 2005 Oct 14;353(1):38–52. PubMed PMID: 16169013.
  • Chen J, Hage DS. Quantitative analysis of allosteric drug-protein binding by biointeraction chromatography. Nat Biotechnol. 2004 Nov;22(11):1445–1448. PubMed PMID: 15502818.
  • Krause S, Ulrich N, Goss KU. Desorption kinetics of organic chemicals from albumin. Arch Toxicol. 2018 Mar;92(3):1065-1074.. 10.1007/s00204-017-2117-4. PubMed PMID: 29147723.
  • Fanali G, Di Masi A, Trezza V, et al. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012 Jun;33(3):209–290. PubMed PMID: 22230555.
  • Ascenzi P, Fasano M. Allostery in a monomeric protein: the case of human serum albumin. Biophys Chem. 2010 May;148(1–3):16–22. PubMed PMID: 20346571.
  • Lehman-McKeeman. Absorption, Distribution, and Excretion of toxicants. In: Klaassen C, editor. Casarett and Doull’s toxicology: the basic science of poisons. 8th ed. New York:United States: McGraw-Hill Education; 2013. p. 151–180.
  • Chakrabarti SK. Cooperativity of warfarin binding with human serum albumin induced by free fatty acid anion. Biochem Pharmacol. 1978;27(5):739–743.
  • Fasano M, Curry S, Terreno E, et al. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005 Dec;57(12):787–796. PubMed PMID: 16393781.
  • Baroni S, Mattu M, Vannini A, et al. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. Eur J Biochem. 2001;268(23):6214–6220.
  • Ascenzi P, Di Masi A, De Sanctis G, et al. Ibuprofen modulates allosterically NO dissociation from ferrous nitrosylated human serum heme-albumin by binding to three sites. Biochem Biophys Res Commun. 2009 Sep 11;387(1):83–86. PubMed PMID: 19559669.
  • Weisiger RA, Fitz JG, Scharschmidt BF. Hepatic oleate uptake. Electrochemical driving forces in intact rat liver. J Clin Invest. 1989 Feb;83(2):411–420. PubMed PMID: 2913047; PubMed Central PMCID: PMC303696.
  • Elmadhoun BM, Wang GQ, Kirshenbaum LA, et al. Palmitate uptake by neonatal rat myocytes and hepatocytes. Eur J Biochem. 2001;268(11):3145–3153.
  • Horie T, Mizuma T, Kasai S, et al. Conformational change in plasma albumin due to interaction with isolated rat hepatocyte. Am J Physiol Gastrointest Liver Physiol. 1988;254(4):G465–G470.
  • Drubin DG, Nelson WJ. Origins of Cell Polarity. Cell. 1996;84(3):335–344.
  • Hauser H, Guyer W, Pascher I, et al. Polar group conformation of phosphatidylcholine. Effect of solvent and aggregation. Biochemistry. 1980;19(2):366–373.
  • Lee AG. Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta - Biomembr. 2003;1612(1):1–40.
  • Lee AG. How lipids and proteins interact in a membrane: a molecular approach. Mol Biosyst. 2005 Sep;1(3):203–212. PubMed PMID: 16880984.
  • Scherer PG, Seelig J. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry. 1989;28(19):7720–7728.
  • Wang F, Yang Z, Zhou Y, et al. Influence of metal ions on phosphatidylcholine–bovine serum albumin model membrane, an FTIR study. J Mol Struct. 2006;794(1–3):1–11.
  • Thakur R, Das A, Chakraborty A. The fate of anticancer drug, ellipticine in DPPC and DMPC liposomes upon interaction with HSA: a photophysical approach. J Photochem Photobiol B. 2014 Jan 05;130:122–131.
  • Fischer FC, Abele C, Droge STJ, et al. Cellular uptake kinetics of neutral and charged chemicals in in vitro assays measured by fluorescence microscopy. Chem Res Toxicol. 2018 Jun 25. PubMed PMID: 29939727. DOI:10.1021/acs.chemrestox.8b00019
  • Fukuchi Y, Toshimoto K, Mori T, et al. Analysis of nonlinear pharmacokinetics of a highly albumin-bound compound: contribution of albumin-mediated hepatic uptake mechanism. J Pharm Sci. 2017 Sep;106(9):2704–2714. PubMed PMID: 28465151.
  • Baik J, Huang Y Transporter-induced protein binding shift (TIPBS) hypothesis and modeling. 20th North American ISSX Meeting 2015;Orlando, Florida, USA.
  • Bowman CM, Okochi H, Benet LZ. The presence of a transporter-induced protein binding shift: a new explanation for protein-facilitated uptake and improvement for in vitro-in vivo extrapolation. Drug Metab Dispos. 2019 Jan 23. PubMed PMID: 30674616. DOI:10.1124/dmd.118.085779
  • Kimoto E, Mathialagan S, Tylaska L, et al. Organic anion transporter 2-mediated hepatic uptake contributes to the clearance of high-permeability-low-molecular-weight acid and zwitterion drugs: evaluation using 25 drugs. J Pharmacol Exp Ther. 2018 Nov;367(2):322–334. PubMed PMID: 30135178.
  • Ghitescu L, Fixman A. Surface charge distribution on the endothelial cell of liver sinusoids. J Cell Biol. 1984 Aug;99(2):639–647. . PubMed PMID: 6430915; PubMed Central PMCID: PMCPMC2113250. eng.
  • Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015 Jan;95(1):83–123. PubMed PMID: 25540139; PubMed Central PMCID: PMCPMC4281586.
  • Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012 Mar;165(5):1260–1287. . PubMed PMID: 22013971; PubMed Central PMCID: PMCPMC3372714.
  • Larsen MT, Kuhlmann M, Hvam ML, et al. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016;4:3. PubMed PMID: 26925240; PubMed Central PMCID: PMCPMC4769556.
  • Sand KM, Bern M, Nilsen J, et al. Unraveling the Interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front Immunol. 2014;5:682. PubMed PMID: 25674083; PubMed Central PMCID: PMCPMC4306297.
  • Meijer DKF, van der Sluijs P. Covalent and noncovalent protein binding of drugs: implications for hepatic clearance, storage, and cell-specific drug delivery. Pharm Res. 1989 Feb 06;(2):105–118. PubMed PMID: 2668913. Doi:10.1023/a:1015961424122
  • Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta. 2013 Dec;1830(12):5526–5534. . PubMed PMID: 23639804.
  • Humphries W, Payne CK. Imaging lysosomal enzyme activity in live cells using self-quenched substrates. Anal Biochem. 2012 May 15;424(2):178–183. . PubMed PMID: 22387398; PubMed Central PMCID: PMC3327787.
  • Sockolosky JT, Szoka FC. The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv Drug Deliv Rev. 2015 Aug 30;91:109–124.
  • Gibson M. Aiding Candidate Drug Selection: introduction and Objectives. In: Gibson M, editor. Pharmaceutical preformulation and formulation: a practical guide from candidate drug selection to commercial dosage form. DRUGS AND THE PHARMACEUTICAL SCIENCES. Vol. 199. Second ed. New York: USA: Informa Healthcare; 2009. p. 11–16.
  • Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995 Mar;12(3):413–420. PubMed PMID: 7617530.
  • Wu C-Y, Benet LZ. Predicting drug disposition via application of bcs: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.
  • Camenisch G, Umehara K. Predicting human hepatic clearance from in vitro drug metabolism and transport data: a scientific and pharmaceutical perspective for assessing drug-drug interactions. Biopharm Drug Dispos. 2012 May;33(4):179–194. . PubMed PMID: 22407504.
  • Camenisch GP. Drug disposition classification systems in discovery and development: a comparative review of the BDDCS, ECCS and ECCCS concepts. Pharm Res. 2016 Nov;33(11):2583–2593. 10.1007/s11095-016-2001-6. PubMed PMID: 27439505.
  • Varma MV, Steyn SJ, Allerton C, et al. Predicting clearance mechanism in drug discovery: extended clearance classification system (ECCS). Pharm Res. 2015 Dec;32(12):3785–3802. 10.1007/s11095-015-1749-4. PubMed PMID: 26155985.
  • Baker M, Parton T. Kinetic determinants of hepatic clearance: plasma protein binding and hepatic uptake. Xenobiotica. 2007 Oct-Nov;37(10–11):1110–1134. PubMed PMID: 17968739.
  • Poulin P. Prediction of total hepatic clearance by combining metabolism, transport, and permeability data in the in vitro-in vivo extrapolation methods: emphasis on an apparent fraction unbound in liver for drugs. J Pharm Sci. 2013 Jul;102(7):2085–2095. PubMed PMID: 23613473.
  • Elsadek B, Kratz F. Impact of albumin on drug delivery-new applications on the horizon. J Control Release. 2012 Jan 10;157(1):4–28. PubMed PMID: 21959118.
  • Kratz F. A clinical update of using albumin as a drug vehicle – a commentary. J Control Release. 2014 Sep 28;190:331–336.
  • Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J Control Release. 2012 Jul 20;161(2):429–445. PubMed PMID: 22155554.
  • Krause S, Goss KU. The impact of desorption kinetics from albumin on hepatic extraction efficiency and hepatic clearance: a model study. Arch Toxicol. 2018 May 23. 10.1007/s00204-018-2224-x. PubMed PMID: 29796692.
  • Zhang Y, Lee P, Liang S, et al. Structural basis of non-steroidal anti-inflammatory drug diclofenac binding to human serum albumin. Chem Biol Drug Des. 2015 Nov;86(5):1178–1184. PubMed PMID: 25958880.
  • Wang H, Zou H, Zhang Y. Multi-site binding of fenoprofen to human serum albumin studied by a combined technique of microdialysis with high performance liquid chromatography. Biomed Chromatogr. 1998 Jan-Feb;12(1):4–7. PubMed PMID: 9470966; PubMed Central PMCID: PMC9470966.
  • Ascenzi P, Bocedi A, Notari S, et al. Heme impairs allosterically drug binding to human serum albumin Sudlow’s site I. Biochem Biophys Res Commun. 2005 Aug 26;334(2):481–486. PubMed PMID: 16004963.
  • Chuang VTG, Otagiri M. How do fatty acids cause allosteric binding of drugs to human serum albumin? Pharm Res. 2002;19(10):1458–1464.
  • Trynda-Lemiesz L, Wiglusz K. Interactions of human serum albumin with meloxicam: characterization of binding site. J Pharm Biomed Anal. 2010 Jun 5;52(2):300–304. . PubMed PMID: 20089378.
  • Chloride FDAPROTOPAM. (pralidoxime chloride) for Injection USA2010. [cited 2019 Jan 28]. Available from https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/014134s022lbl.pdf
  • research Cfdea. Application number: 021071: FDA;1999. [cited 2019 Jan 28]. Available from https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/21071_Avandia_pharmr_P1.pdf
  • Fujiwara S-i AT. Steric and allosteric effects of fatty acids on the binding of warfarin to human serum albumin revealed by molecular dynamics and free energy calculations. Chem Pharm Bull (Tokyo). 2011;59(7):860–867.
  • Bou-Abdallah F, Sprague SE, Smith BM, et al. Binding thermodynamics of diclofenac and naproxen with human and bovine serum albumins: a calorimetric and spectroscopic study. J Chem Thermodyn. 2016;103:299–309.
  • Reist M, Carrupt PA, Francotte E, et al. Chiral inversion and hydrolysis of thalidomide: mechanisms and catalysis by bases and serum albumin, and chiral stability of teratogenic metabolites. Chem Res Toxicol. 1998 Dec;11(12):1521–1528. PubMed PMID: 9860497.
  • Fournier T, Medjoubi-N N, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta Bioenerg. 2000;1482(1–2):157–171.
  • Huang Z, Ung T. Effect of alpha-1-acid glycoprotein binding on pharmacokinetics and pharmacodynamics. Curr Drug Metab. 2013 Feb;14(2):226–238. PubMed PMID: 23092311; PubMed Central PMCID: PMC 23092311.
  • Bilello JA, Bilello PA, Stellrecht K, et al. Human serum alpha 1 acid glycoprotein reduces uptake, intracellular concentration, and antiviral activity of A-80987, an inhibitor of the human immunodeficiency virus type 1 protease. Antimicrob Agents Chemother. 1996 Jun;40(6):1491–1497. PubMed PMID: 8726025.
  • Poulin P, Bteich M, Haddad S. Supplemental analysis of the prediction of hepatic clearance of binary mixtures of bisphenol A and naproxen determined in an isolated perfused rat liver model to promote the understanding of potential albumin-facilitated hepatic uptake mechanism. J Pharm Sci. 2017 Nov;106(11):3207–3214. PubMed PMID: 28823401.
  • Bujacz A, Zielinski K, Sekula B. Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen. Proteins. 2014 Sep;82(9):2199–2208. PubMed PMID: 24753230.
  • Riede J, Umehara KI, Schweigler P, et al. Examining P-gp efflux kinetics guided by the BDDCS – rational selection of in vitro assay designs and mathematical models. Eur J Pharm Sci. 2019 Apr 30;132:132–141. PubMed PMID: 30857914.
  • Rowland A, Gaganis P, Elliot DJ, et al. Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro-in vivo extrapolation. J Pharmacol Exp Ther. 2007 Apr;321(1):137–147. PubMed PMID: 17237258.
  • Rowland A, Elliot DJ, Knights KM, et al. The “albumin effect” and in vitro-in vivo extrapolation: sequestration of long-chain unsaturated fatty acids enhances phenytoin hydroxylation by human liver microsomal and recombinant cytochrome P450 2C9. Drug Metab Dispos. 2008 May;36(5):870–877. PubMed PMID: 18256202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.