441
Views
15
CrossRef citations to date
0
Altmetric
Review

Role of piperine in CNS diseases: pharmacodynamics, pharmacokinetics and drug interactions

ORCID Icon & ORCID Icon
Pages 849-867 | Received 16 Aug 2019, Accepted 23 Sep 2019, Published online: 08 Oct 2019

References

  • Nisha P, Singhal RS, Pandit AB. The degradation kinetics of flavor in black pepper (Piper nigrum L.). J Food Eng. 2009;92(1):44–49.
  • Meghwal M, Goswami T. Piper nigrum and piperine: an update. Phytother Res. 2013;27(8):1121–1130.
  • Sivakumar V, Sivakumar S. Effect of an indigenous herbal compound preparation ‘Trikatu’ on the lipid profiles of atherogenic diet and standard diet fed Rattus norvegicus. Phytother Res. 2004;18(12):976–981.
  • Zheng H, Dong Z. Modern research and application of traditional Chinese medicine. Beijing: Xueyuan Press; 1998.
  • Pei YQ. A review of pharmacology and clinical use of piperine and its derivatives. Epilepsia. 1983;24(2):177–182.
  • Zachariah TJ, Safeer AL, Jayarajan K, et al. Correlation of metabolites in the leaf and berries of selected black pepper varieties. Sci Hortic. 2010;123(3):418–422.
  • Dawid C, Henze A, Frank O, et al. Structural and sensory characterization of key pungent and tingling compounds from black pepper (Piper nigrum L.). J Agric Food Chem. 2012;60(11):2884–2895.
  • McNamara FN, Randall A, Gunthorpe MJ. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol. 2005;144(6):781–790.
  • Quijia CR, Chorilli M. Characteristics, biological properties and analytical methods of piperine: a review. Crit Rev Anal Chem. 2019;1–16.
  • Hashimoto K, Yaoi T, Koshiba H, et al. Photochemical isomerization of piperine, a pungent constituent in pepper. Food Sci Technol Int. 1996;2(1):24–29.
  • O’Neil MJ, Smith A, Heckelman PE. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. Whitehouse Station, NJ: RSC Publishing; 2013.
  • Khajuria A, Zutshi U, Bedi KL. Permeability characteristics of piperine on oral absorption-an active alkaloid from peppers and a bioavailability enhancer. Indian J Exp Biol. 1998;36(1):46–50.
  • Peng X, Yang T, Liu G, et al. Piperine ameliorated lupus nephritis by targeting AMPK-mediated activation of NLRP3 inflammasome. Int Immunopharmacol. 2018;65:448–457.
  • Verma N, Bal S, Gupta R, et al. Antioxidative effects of piperine against cadmium-Induced oxidative stress in cultured human peripheral blood lymphocytes. J Diet Suppl. 2018;1–12.
  • Kumar A, Sasmal D, Sharma N. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions. Environ Toxicol Pharmacol. 2015;39(2):504–514.
  • Kim DY, Kim EJ, Jang WG. Piperine induces osteoblast differentiation through AMPK-dependent runx2 expression. Biochem Biophys Res Commun. 2018;495(1):1497–1502.
  • Zeng Y, Yang Y. Piperine depresses the migration progression via downregulating the Akt/mTOR/MMP‑9 signaling pathway in DU145 cells. Mol Med Rep. 2018;17(5):6363–6370.
  • Han S, Liu H, Yang L, et al. Piperine enhanced mitomycin-C therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB. Biomed Pharmacother. 2017;96:1403–1410.
  • Thiengsusuk A, Muhamad P, Chaijaroenkul W, et al. Antimalarial activity of piperine. J Trop Med. 2018;2018:9486905.
  • Khan IA, Mirza ZM, Kumar A, et al. Piperine, a phytochemical potentiator of ciprofloxacin against staphylococcus aureus. Antimicrob Agents Chemother. 2006;50(2):810–812.
  • Mirza ZM, Kumar A, Kalia NP, et al. Piperine as an inhibitor of the MdeA efflux pump of staphylococcus aureus. J Med Microbiol. 2011;60(10):1472–1478.
  • Ma Z, Yuan Y, Zhang X, et al. Piperine attenuates pathological cardiac fibrosis via PPAR-γ/AKT pathways. EBioMedicine. 2017;18:179–187.
  • Hlavackova L, Urbanova A, Ulicna O, et al. Piperine, active substance of black pepper, alleviates hypertension induced by NO synthase inhibition. Bratisl Lek Listy. 2010;111(8):426–431.
  • Diwan V, Poudyal H, Brown L. Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate, high fat-fed rats. Cell Biochem Biophys. 2013;67(2):297–304.
  • BrahmaNaidu P, Nemani H, Meriga B, et al. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats. Chem Biol Interact. 2014;221:42–51.
  • Okumura Y, Narukawa M, Watanabe T. Adiposity suppression effect in mice due to black pepper and its main pungent component, piperine. Biosci Biotechnol Biochem. 2010;74(8):1545–1549.
  • Liu C, Wu YF. Efficacy of 308nm excimer laser plus piperine in the treatment of vitiligo. J Dermatol Venereol. 2016;38(4):235–238.
  • Shafiee A, Hoormand M, Shahidi-Dadras M, et al. The effect of topical piperine combined with narrowband UVB on vitiligo treatment: a clinical trial study. Phytother Res. 2018;32(9):1812–1817.
  • Mishra A, Punia JK, Bladen C, et al. Anticonvulsant mechanisms of piperine, a piperidine alkaloid. Channels (Austin, Tex). 2015;9(5):317–323.
  • Li S, Wang C, Wang M, et al. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci. 2007;80(15):1373–1381.
  • Khalili-Fomeshi M, Azizi MG, Esmaeili MR, et al. Piperine restores streptozotocin-induced cognitive impairments: insights into oxidative balance in cerebrospinal fluid and hippocampus. Behav Brain Res. 2018;337:131–138.
  • Fu M, Sun ZH, Zuo HC. Neuroprotective effect of piperine on primarily cultured hippocampal neurons. Biol Pharm Bull. 2010;33(4):598–603.
  • Hsieh TY, Chang Y, Wang SJ. Piperine-mediated suppression of voltage-dependent Ca2+ influx and glutamate release in rat hippocampal nerve terminals involves 5HT 1A receptors and G protein βγ activation. Food Funct. 2019;10(5):2720–2728.
  • Correia A, Cruz A, Aquino A, et al. Neuroprotective effects of piperine, an alkaloid from the piper genus, on the Parkinson’s disease model in rats. J Neurol Ther. 2015;1(1):1–8.
  • Yang W, Chen YH, Liu H, et al. Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease mouse model. Int J Mol Med. 2015;36(5):1369–1376.
  • Hospital P. Initial experience of treating epilepsy by piperine. Acad J Peking Univ. 1974;04:214–222.
  • Ren T, Wang Q, Li C, et al. Efficient brain uptake of piperine and its pharmacokinetics characterization after oral administration. Xenobiotica. 2018;48(12):1249–1257.
  • Ren T, Hu M, Cheng Y, et al. Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control. Eur J Pharm Sci. 2019;137:104988.
  • Elnaggar YS, Etman SM, Abdelmonsif DA, et al. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104(10):3544–3556.
  • Priprem A, Chonpathompikunlert P, Sutthiparinyanont S, et al. Antidepressant and cognitive activities of intranasal piperine-encapsulated liposomes. Adv Biosci Biotechnol. 2011;2(02):108.
  • Etman SM, Elnaggar YSR, Abdelmonsif DA, et al. Oral brain-targeted microemulsion for enhanced piperine delivery in Alzheimer’s disease therapy: in vitro appraisal, in vivo activity, and nanotoxicity. AAPS PharmSciTech. 2018;19(8):3698–3711.
  • Bhardwaj RK, Glaeser H, Becquemont L, et al. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;302(2):645–650.
  • Han Y, Chin Tan TM, Lim LY. In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression. Toxicol Appl Pharmacol. 2008;230(3):283–289.
  • Lee SH, Kim HY, Back SY, et al. Piperine-mediated drug interactions and formulation strategy for piperine: recent advances and future perspectives. Expert Opin Drug Metab Toxicol. 2018;14(1):43–57.
  • Han HK. The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs. Expert Opin Drug Metab Toxicol. 2011;7(6):721–729.
  • Prakash UN, Srinivasan K. Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats. Br J Nutr. 2010;104(1):31–39.
  • Takaki M, Jin JG, Lu YF, et al. Effects of piperine on the motility of the isolated guinea-pig ileum: comparison with capsaicin. Eur J Pharmacol. 1990;186(1):71–77.
  • Platel K, Srinivasan K. Studies on the influence of dietary spices on food transit time in experimental rats. Nutr Res. 2001;21(9):1309–1314.
  • Mehmood MH, Gilani AH. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. J Med Food. 2010;13(5):1086–1096.
  • Ren T, Xiao M, Yang M, et al. Reduced systemic and brain exposure with inhibited liver metabolism of carbamazepine after its long-term combination treatment with piperine for epilepsy control in rats. Aaps J. 2019;21(5):90.
  • Makhov P, Golovine K, Canter D, et al. Co‐administration of piperine and docetaxel results in improved anti‐tumor efficacy via inhibition of CYP3A4 activity. Prostate. 2012;72(6):661–667.
  • Rezaee MM, Kazemi S, Kazemi MT, et al. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism. DARU J Pharm Sci. 2014;22(1):1–7.
  • Liang YZ, Chen HM, Su ZQ, et al. White pepper and piperine have different effects on pharmacokinetics of puerarin in rats. Evid Based Complement Alternat Med. 2014;2014.
  • Athukuri BL, Neerati P. Enhanced oral bioavailability of domperidone with piperine in male wistar rats: involvement of CYP3A1 and P-gp inhibition. J Pharm Pharm Sci. 2017;20:28–37.
  • Bedada SK, Boga PK, Kotakonda HK. Study on influence of piperine treatment on the pharmacokinetics of diclofenac in healthy volunteers. Xenobiotica. 2016;471–6.
  • Bedada SK, Boga PK. Effect of piperine on CYP2E1 enzyme activity of chlorzoxazone in healthy volunteers. Xenobiotica. 2017;47(12):1035–1041.
  • Zeng X, Cai D, Zeng Q, et al. Selective reduction in the expression of UGTs and SULTs, a novel mechanism by which piperine enhances the bioavailability of curcumin in rat. Biopharm Drug Dispos. 2017;38(1):3–19.
  • Jin MJ, Han HK. Effect of piperine, a major component of black pepper, on the intestinal absorption of fexofenadine and its implication on food-drug interaction. J Food Sci. 2010;75(3):H93–6.
  • Kasibhatta R, Naidu MU. Influence of piperine on the pharmacokinetics of nevirapine under fasting conditions: a randomised, crossover, placebo-controlled study. Drugs R D. 2007;8(6):383–391.
  • Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed. 2013;3(4):253–266.
  • Velpandian T, Jasuja R, Bhardwaj RK, et al. Piperine in food: interference in the pharmacokinetics of phenytoin. Eur J Drug Metab Pharmacokinet. 2001;26(4):241–247.
  • Pattanaik S, Hota D, Prabhakar S, et al. Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients. Phytother Res. 2009;23(9):1281–1286.
  • Johnson JJ, Nihal M, Siddiqui IA, et al. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res. 2011;55(8):1169–1176.
  • Bukhari IA, Pivac N, Alhumayyd MS, et al. The analgesic and anticonvulsant effects of piperine in mice. J Physiol Pharmacol. 2013;64(6):789–794.
  • Mao K, Lei D, Zhang H, et al. Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy. Exp Ther Med. 2017;13(2):695–700.
  • Li S, Wang C, Li W, et al. Antidepressant-like effects of piperine and its derivative, antiepilepsirine. J Asian Nat Prod Res. 2007;9(3–5):421–430.
  • Lee SA, Hong SS, Han XH, et al. Piperine from the fruits of piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem Pharm Bull. 2005;53(7):832–835.
  • Zhang S, Liu X, Ma W. Effects of piperine and deoxyschizandrin on synchronized Ca 2+ oscillations in cultured hippocampal neuronal cells. Eur Biophys J. 2013;42(9):673–682.
  • Verma AK, Khan E, Mishra SK, et al. Piperine modulates protein mediated toxicity in fragile x-associated tremor/ataxia syndrome through interacting xxpanded CGG repeat (r(CGG)exp) RNA. ACS Chem Neurosci. 2019.
  • Mao QQ, Huang Z, Ip SP, et al. Protective effects of piperine against corticosterone-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol. 2012;32(4):531–537.
  • Guo J, Cui Y, Liu Q, et al. Piperine ameliorates SCA17 neuropathology by reducing ER stress. Mol Neurodegener. 2018;13(1):4.
  • Yun YS, Noda S, Takahashi S, et al. Piperine-like alkamides from piper nigrum induce BDNF promoter and promote neurite outgrowth in Neuro-2a cells. J Nat Med. 2018;72(1):238–245.
  • Martenson ME, Arguelles JH, Baumann TK. Enhancement of rat trigeminal ganglion neuron responses to piperine in a low-pH environment and block by capsazepine. Brain Res. 1997;761(1):71–76.
  • Alvarez-Berdugo D, Jiménez M, Clavé P, et al. Pharmacodynamics of TRPV1 agonists in a bioassay using human PC-3 cells. Sci World J. 2014;2014:184526.
  • Ursu D, Knopp K, Beattie RE, et al. Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity. Eur J Pharmacol. 2010;641(2):114–122.
  • Sudjarwo SA, Eraiko K, Sudjarwo GW, et al. Protective effects of piperine on lead acetate induced-nephrotoxicity in rats. Iran J Basic Med Sci. 2017;20(11):1227–1231.
  • Vaibhav K, Shrivastava P, Javed H, et al. Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-kappaB in middle cerebral artery occlusion rat model. Mol Cell Biochem. 2012;367(1–2):73–84.
  • Hua S, Wang B, Chen R, et al. Neuroprotective effect of dichloromethane extraction from piper nigrum L. and piper longum L. on permanent focal cerebral ischemia injury in rats. J Stroke Cerebrovasc Dis. 2019;28(3):751–760.
  • Zou Y, Gong P, Zhao W, et al. Quantitative iTRAQ-based proteomic analysis of piperine protected cerebral ischemia/reperfusion injury in rat brain. Neurochem Int. 2019;124:51–61.
  • Mori A, Kabuto H, Pei YQ. Effects of piperine on convulsions and on brain serotonin and catecholamine levels in E1 mice. Neurochem Res. 1985;10(9):1269–1275.
  • Da Cruz GM, Felipe CF, Scorza FA, et al. Piperine decreases pilocarpine-induced convulsions by GABAergic mechanisms. Pharmacol Biochem Behav. 2013;104:144–153.
  • Chen CY, Li W, Qu KP, et al. Piperine exerts anti-seizure effects via the TRPV1 receptor in mice. Eur J Pharmacol. 2013;714(1–3):288–294.
  • D’Hooge R, Pei YQ, Raes A, et al. Anticonvulsant activity of piperine on seizures induced by excitatory amino acid receptor agonists. Arzneimittelforschung. 1996;46(6):557–560.
  • Mao QQ, Huang Z, Zhong XM, et al. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behav Brain Res. 2014;261:140–145.
  • Mao QQ, Huang Z, Zhong XM, et al. Piperine reverses chronic unpredictable mild stress-induced behavioral and biochemical alterations in rats. Cell Mol Neurobiol. 2014;34(3):403–408.
  • Mao QQ, Xian YF, Ip SP, et al. Involvement of serotonergic system in the antidepressant-like effect of piperine. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(4):1144–1147.
  • Mao QQ, Huang Z, Ip SP, et al. Role of 5-HT(1A) and 5-HT(1B) receptors in the antidepressant-like effect of piperine in the forced swim test. Neurosci Lett. 2011;504(2):181–184.
  • Wattanathorn J, Chonpathompikunlert P, Muchimapura S, et al. Piperine, the potential functional food for mood and cognitive disorders. Food Chem Toxicol. 2008;46(9):3106–3110.
  • Pal A, Nayak S, Sahu PK, et al. Piperine protects epilepsy associated depression: a study on role of monoamines. Eur Rev Med Pharmacol Sci. 2011;15(11):1288–1295.
  • Wu SJ, Wang RY, Xue JX, et al. Effect of piperine on 5-HT and synaptophysin expression of rats with irritable bowel syndrome. Acta Pharm Sin. 2013;48(12):1785–1791.
  • Gilhotra N, Dhingra D. Possible involvement of GABAergic and nitriergic systems for antianxiety-like activity of piperine in unstressed and stressed mice. Pharm Rep. 2014;66(5):885–891.
  • Shrivastava P, Vaibhav K, Tabassum R, et al. Anti-apoptotic and anti-inflammatory effect of piperine on 6-OHDA induced Parkinson’s rat model. J Nutr Biochem. 2013;24(4):680–687.
  • Chonpathompikunlert P, Wattanathorn J, Muchimapura S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol. 2010;48(3):798–802.
  • Khalili-Fomeshi M, Azizi MG, Esmaeili MR, et al. Piperine restores streptozotocin-induced cognitive impairments: insights into oxidative balance in cerebrospinal fluid and hippocampus. Behav Brain Res. 2018;337:131–138.
  • Tu Y, Zhong Y, Du H, et al. Anticholinesterases and antioxidant alkamides from piper nigrum fruits. Nat Prod Res. 2016;30(17):1945–1949.
  • Al-Baghdadi OB, Prater NI, Van der Schyf CJ, et al. Inhibition of monoamine oxidase by derivatives of piperine, an alkaloid from the pepper plant piper nigrum, for possible use in Parkinson’s disease. Bioorg Med Chem Lett. 2012;22(23):7183–7188.
  • Wang H, Liu J, Gao G, et al. Protection effect of piperine and piperlonguminine from piper longum L. alkaloids against rotenone-induced neuronal injury. Brain Res. 2016;1639:214–227.
  • Bi Y, Qu P-C, Wang Q-S, et al. Neuroprotective effects of alkaloids from piper longum in a MPTP-induced mouse model of Parkinson’s disease. Pharm Biol. 2015;53(10):1516–1524.
  • Liu J, Chen M, Wang X, et al. Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson’s disease model. Oncotarget. 2016;7(38):60823.
  • Yang L, Fujita T, Jiang CY, et al. TRPV1 agonist piperine but not olvanil enhances glutamatergic spontaneous excitatory transmission in rat spinal substantia gelatinosa neurons. Biochem Biophys Res Commun. 2011;410(4):841–845.
  • Liu L, Simon S. Similarities and differences in the currents activated by capsaicin, piperine, and zingerone in rat trigeminal ganglion cells. J Neurophysiol. 1996;76(3):1858–1869.
  • Rofes L, Arreola V, Martin A, et al. Effect of oral piperine on the swallow response of patients with oropharyngeal dysphagia. J Gastroenterol. 2014;49(12):1517–1523.
  • Bastaki M, Aubanel M, Bauter M, et al. Absence of adverse effects following administration of piperine in the diet of Sprague-Dawley rats for 90 days. Food Chem Toxicol. 2018;120:213–221.
  • Singletary K. Black pepper: overview of health benefits. Nutr Today. 2010;45(1):43–47.
  • Karekar VR, Mujumdar AM, Joshi SS, et al. Assessment of genotoxic effect of piperine using Salmonella typhimurium and somatic and somatic and germ cells of Swiss albino mice. Arzneimittelforschung. 1996;46(10):972–975.
  • Bhat BG, Chandrasekhara N. Lack of adverse influence of black pepper, its oleoresin and piperine in the weanling rat. J Food Saf. 1986;7(4):215–223.
  • Chen X, Ge F, Liu J, et al. Diverged effects of piperine on testicular development: stimulating Leydig cell development but inhibiting spermatogenesis in rats. Front Pharmacol. 2018;9:244.
  • Piyachaturawat P, Glinsukon T, Toskulkao C. Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol Lett. 1983;16(3–4):351–359.
  • Unchern S, Nagata K, Saito H, et al. Piperine, a pungent alkaloid, is cytotoxic to cultured neurons from the embryonic rat brain. Biol Pharm Bull. 1994;17(3):403–406.
  • Bhat BG, Chandrasekhara N. Studies on the metabolism of piperine: absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology. 1986;40(1):83–92.
  • Suresh D, Srinivasan K. Studies on the in vitro absorption of spice principles-curcumin, capsaicin and piperine in rat intestines. Food Chem Toxicol. 2007;45(8):1437–1442.
  • Shao B, Cui C, Ji H, et al. Enhanced oral bioavailability of piperine by self-emulsifying drug delivery systems: in vitro, in vivo and in situ intestinal permeability studies. Drug Deliv. 2015;22(6):740–747.
  • Lohmann C, Hüwel S, Galla HJ. Predicting blood-brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target. 2002;10(4):263–276.
  • Bajad S, Singla A, Bedi K. Liquid chromatographic method for determination of piperine in rat plasma: application to pharmacokinetics. J Chromatogr B. 2002;776(2):245–249.
  • Suresh D, Srinivasan K. Tissue distribution and elimination of capsaicin, piperine and curcumin following oral intake in rats. Indian J Med Res. 2010;131:682–691.
  • Liu H, Luo R, Chen X, et al. Tissue distribution profiles of three antiparkinsonian alkaloids from piper longum L. in rats determined by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2013;928:78–82.
  • Bhat BG, Chandrasekhara N. Metabolic disposition of piperine in the rat. Toxicology. 1987;44(1):99–106.
  • Bajad S, Coumar M, Khajuria R, et al. Characterization of a new rat urinary metabolite of piperine by LC/NMR/MS studies. Eur J Pharm Sci. 2003;19(5):413–421.
  • Bajad S, Khajuria RK, Suri OP, et al. Characterisation of a new minor urinary metabolite of piperine, an omnipresent food component, by LC-MS/MS. J Sep Sci. 2003;26(9–10):943–946.
  • Zabela V, Hettich T, Schlotterbeck G, et al. GABAA receptor activity modulating piperine analogs: in vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding. J Chromatogr B. 2018;1072:379–389.
  • Wang XM, Peng WX. Pharmacokinetics of piperine capsules in healthy volunters. Central South Pharm. 2010;8(7);513–516..
  • Li C, Wang Q, Ren T, et al. Non-linear pharmacokinetics of piperine and its herb-drug interactions with docetaxel in Sprague-Dawley rats. J Pharm Biomed Anal. 2016;128:286–293.
  • Sumit Roy AG, Chopra H, Maurya AK, et al. Pharmacokinetic study of piperine in mice plasma after orally and intravenous administration. Int J Drug Delivery. 2012:4:107–112.
  • Promod KS, Gurdarshan S. Pharmacokinetic study of piperine in Wistar rats after oral and intravenous administration. Int J Drug Deliv. 2014;6(1):82.
  • Roy S, Gupta A, Chopra H, et al. Pharmacokinetic study of piperine in mice plasma after orally and intravenous administration. Int J Drug Deliv. 2012;4(1):107.
  • Liu J, Bi Y, Luo R, et al. Simultaneous UFLC–ESI–MS/MS determination of piperine and piperlonguminine in rat plasma after oral administration of alkaloids from piper longum L.: application to pharmacokinetic studies in rats. J Chromatogr B. 2011;879(27):2885–2890.
  • Zhong F, Gu J. Pharmacokinetics of piperine from piperlongum in rats. Pharmacol Clin Chin Mater Med. 2010;26(2):34–36.
  • Yusuf M, Khan M, Khan RA, et al. Preparation, characterization, in vivo and biochemical evaluation of brain targeted piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target. 2012;21(3):300–311.
  • Veerareddy P, Vobalaboina V. Pharmacokinetics and tissue distribution of piperine lipid nanospheres. Pharmazie. 2008;63(5):352–355.
  • Ashour EA, Majumdar S, Alsheteli A, et al. Hot melt extrusion as an approach to improve solubility, permeability and oral absorption of a psychoactive natural product, piperine. J Pharm Pharmacol. 2016;68(8):989–998.
  • Thenmozhi K, Yoo YJ. Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Dev Ind Pharm. 2017;43(9):1501–1509.
  • Ezawa T, Inoue Y, Tunvichien S, et al. Changes in the physicochemical properties of piperine/β-cyclodextrin due to the formation of inclusion complexes. Int J Med Chem. 2016;2016.
  • Dutta S, Bhattacharjee P. Nanoliposomal encapsulates of piperine-rich black pepper extract obtained by enzyme-assisted supercritical carbon dioxide extraction. J Food Eng. 2017;201:49–56.
  • Elnaggar YS, Etman SM, Abdelmonsif DA, et al. Novel piperine-loaded tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine. 2015;10:5459–5473.
  • Anissian D, Ghasemi-Kasman M, Khalili-Fomeshi M, et al. Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy. Int J Biol Macromol. 2018;107:973–983.
  • Singh S, Jamwal S, Kumar P. Neuroprotective potential of quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen Res. 2017;12(7):1137–1144.
  • Li G, Ruan L, Chen R, et al. Synergistic antidepressant-like effect of ferulic acid in combination with piperine: involvement of monoaminergic system. Metab Brain Dis. 2015;30(6):1505–1514.
  • Soga Y, Nishimura F, Ohtsuka Y, et al. CYP2C polymorphisms, phenytoin metabolism and gingival overgrowth in epileptic subjects. Life Sci. 2004;74(7):827–834.
  • Saraogi P, Vohora D, Khanam R, et al. Combination therapy of piperine and phenytoin in maximal electroshock induced seizures in mice: isobolographic and biochemical analysis. Drug Res. 2013;63(06):311–318.
  • Bedada SK, Appani R, Boga PK. Effect of piperine on the metabolism and pharmacokinetics of carbamazepine in healthy volunteers. Drug Res. 2017;67(1):46–51.
  • Ren T, Yang M, Xiao M, et al. Time-dependent inhibition of carbamazepine metabolism by piperine in anti-epileptic treatment. Life Sci. 2019;218:314–323.
  • Moghadamnia AA, Zangoori V, Zargar-Nattaj SS, et al. Effect of breastfeeding piperine on the learning of offspring mice: interaction with caffeine and diazepam. J Exp Pharmacol. 2010;2:111–120.
  • Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol. 2007;595:197–212.
  • Shoba G, Joy D, Joseph T, et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(4):353–356.
  • Rinwa P, Kumar A, Garg S. Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One. 2013;8(4):e61052.
  • Jangra A, Kwatra M, Singh T, et al. Piperine augments the protective effect of curcumin against lipopolysaccharide-induced neurobehavioral and neurochemical deficits in mice. Inflammation. 2016;39(3):1025–1038.
  • Singh S, Kumar P. Neuroprotective potential of curcumin in combination with piperine against 6-hydroxy dopamine induced motor deficit and neurochemical alterations in rats. Inflammopharmacology. 2017;25(1):69–79.
  • Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009;92(1):39–43.
  • Singh S, Jamwal S, Kumar P. Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: possible neurotransmitters modulation mechanism. Neurochem Res. 2015;40(8):1758–1766.
  • Singh S, Kumar P. Neuroprotective activity of curcumin in combination with piperine against quinolinic acid induced neurodegeneration in rats. Pharmacology. 2016;97(3–4):151–160.
  • Dajas F. Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol. 2012;143(2):383–396.
  • Rinwa P, Kumar A. Quercetin along with piperine prevents cognitive dysfunction, oxidative stress and neuro-inflammation associated with mouse model of chronic unpredictable stress. Arch Pharm Res. 2017;40(10):1166–1175.
  • Singh S, Kumar P. Piperine in combination with quercetin halt 6-OHDA induced neurodegeneration in experimental rats: biochemical and neurochemical evidences. Neurosci Res. 2018;133:38–47.
  • Huang W, Chen Z, Wang Q, et al. Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system. Metab Brain Dis. 2013;28(4):585–595.
  • Panossian A, Nikoyan N, Ohanyan N, et al. Comparative study of Rhodiola preparations on behavioral despair of rats. Phytomedicine. 2008;15(1):84–91.
  • Khom S, Strommer B, Schoffmann A, et al. GABAA receptor modulation by piperine and a non-TRPV1 activating derivative. Biochem Pharmacol. 2013;85(12):1827–1836.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.